diff --git a/spacy/errors.py b/spacy/errors.py
index 4f9e90b57..d8c5cc3a8 100644
--- a/spacy/errors.py
+++ b/spacy/errors.py
@@ -73,8 +73,13 @@ class Warnings:
"degree. If this is intentional or the language you're using "
"doesn't have a normalization table, please ignore this warning. "
"If this is surprising, make sure you have the spacy-lookups-data "
- "package installed. The languages with lexeme normalization tables "
- "are currently: {langs}")
+ "package installed and load the table in your config. The "
+ "languages with lexeme normalization tables are currently: "
+ "{langs}\n\nLoad the table in your config with:\n\n"
+ "[initialize.lookups]\n"
+ "@misc = \"spacy.LookupsDataLoader.v1\"\n"
+ "lang = ${{nlp.lang}}\n"
+ "tables = [\"lexeme_norm\"]\n")
W035 = ('Discarding subpattern "{pattern}" due to an unrecognized '
"attribute or operator.")
diff --git a/spacy/language.py b/spacy/language.py
index 871dfafaa..04a5e843e 100644
--- a/spacy/language.py
+++ b/spacy/language.py
@@ -1686,15 +1686,21 @@ class Language:
)
# Detect components with listeners that are not frozen consistently
for name, proc in nlp.pipeline:
- if getattr(proc, "listening_components", None): # e.g. tok2vec/transformer
- for listener in proc.listening_components:
- # If it's a component sourced from another pipeline, we check if
- # the tok2vec listeners should be replaced with standalone tok2vec
- # models (e.g. so component can be frozen without its performance
- # degrading when other components/tok2vec are updated)
- paths = sourced.get(listener, {}).get("replace_listeners", [])
- if paths:
- nlp.replace_listeners(name, listener, paths)
+ # Remove listeners not in the pipeline
+ listener_names = getattr(proc, "listening_components", [])
+ unused_listener_names = [ll for ll in listener_names if ll not in nlp.pipe_names]
+ for listener_name in unused_listener_names:
+ for listener in proc.listener_map.get(listener_name, []):
+ proc.remove_listener(listener, listener_name)
+
+ for listener in getattr(proc, "listening_components", []): # e.g. tok2vec/transformer
+ # If it's a component sourced from another pipeline, we check if
+ # the tok2vec listeners should be replaced with standalone tok2vec
+ # models (e.g. so component can be frozen without its performance
+ # degrading when other components/tok2vec are updated)
+ paths = sourced.get(listener, {}).get("replace_listeners", [])
+ if paths:
+ nlp.replace_listeners(name, listener, paths)
return nlp
def replace_listeners(
diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx
index ec5d72f9e..26dca05eb 100644
--- a/spacy/matcher/matcher.pyx
+++ b/spacy/matcher/matcher.pyx
@@ -202,6 +202,8 @@ cdef class Matcher:
doclike (Doc or Span): The document to match over.
as_spans (bool): Return Span objects with labels instead of (match_id,
start, end) tuples.
+ allow_missing (bool): Whether to skip checks for missing annotation for
+ attributes included in patterns. Defaults to False.
RETURNS (list): A list of `(match_id, start, end)` tuples,
describing the matches. A match tuple describes a span
`doc[start:end]`. The `match_id` is an integer. If as_spans is set
@@ -222,7 +224,7 @@ cdef class Matcher:
if attr == TAG:
pipe = "tagger"
elif attr in (POS, MORPH):
- pipe = "morphologizer"
+ pipe = "morphologizer or tagger+attribute_ruler"
elif attr == LEMMA:
pipe = "lemmatizer"
elif attr == DEP:
diff --git a/spacy/matcher/phrasematcher.pyx b/spacy/matcher/phrasematcher.pyx
index 088456b9a..e5ff2202c 100644
--- a/spacy/matcher/phrasematcher.pyx
+++ b/spacy/matcher/phrasematcher.pyx
@@ -194,7 +194,7 @@ cdef class PhraseMatcher:
if attr == TAG:
pipe = "tagger"
elif attr in (POS, MORPH):
- pipe = "morphologizer"
+ pipe = "morphologizer or tagger+attribute_ruler"
elif attr == LEMMA:
pipe = "lemmatizer"
elif attr == DEP:
diff --git a/spacy/pipeline/morphologizer.pyx b/spacy/pipeline/morphologizer.pyx
index 38da71ec7..cd0081346 100644
--- a/spacy/pipeline/morphologizer.pyx
+++ b/spacy/pipeline/morphologizer.pyx
@@ -137,6 +137,7 @@ class Morphologizer(Tagger):
DOCS: https://spacy.io/api/morphologizer#initialize
"""
validate_get_examples(get_examples, "Morphologizer.initialize")
+ util.check_lexeme_norms(self.vocab, "morphologizer")
if labels is not None:
self.cfg["labels_morph"] = labels["morph"]
self.cfg["labels_pos"] = labels["pos"]
diff --git a/spacy/pipeline/senter.pyx b/spacy/pipeline/senter.pyx
index c03ec0462..83cd06739 100644
--- a/spacy/pipeline/senter.pyx
+++ b/spacy/pipeline/senter.pyx
@@ -138,6 +138,7 @@ class SentenceRecognizer(Tagger):
DOCS: https://spacy.io/api/sentencerecognizer#initialize
"""
validate_get_examples(get_examples, "SentenceRecognizer.initialize")
+ util.check_lexeme_norms(self.vocab, "senter")
doc_sample = []
label_sample = []
assert self.labels, Errors.E924.format(name=self.name)
diff --git a/spacy/pipeline/tagger.pyx b/spacy/pipeline/tagger.pyx
index 204308dcc..9af5245c1 100644
--- a/spacy/pipeline/tagger.pyx
+++ b/spacy/pipeline/tagger.pyx
@@ -249,6 +249,7 @@ class Tagger(TrainablePipe):
DOCS: https://spacy.io/api/tagger#initialize
"""
validate_get_examples(get_examples, "Tagger.initialize")
+ util.check_lexeme_norms(self.vocab, "tagger")
if labels is not None:
for tag in labels:
self.add_label(tag)
diff --git a/spacy/pipeline/transition_parser.pyx b/spacy/pipeline/transition_parser.pyx
index 816870a3e..4de57d311 100644
--- a/spacy/pipeline/transition_parser.pyx
+++ b/spacy/pipeline/transition_parser.pyx
@@ -493,10 +493,7 @@ cdef class Parser(TrainablePipe):
def initialize(self, get_examples, nlp=None, labels=None):
validate_get_examples(get_examples, "Parser.initialize")
- lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
- if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
- langs = ", ".join(util.LEXEME_NORM_LANGS)
- util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs))
+ util.check_lexeme_norms(self.vocab, "parser or NER")
if labels is not None:
actions = dict(labels)
else:
diff --git a/spacy/training/corpus.py b/spacy/training/corpus.py
index ae7b89f15..079b872d6 100644
--- a/spacy/training/corpus.py
+++ b/spacy/training/corpus.py
@@ -155,7 +155,7 @@ class Corpus:
continue
elif self.max_length == 0 or len(reference) < self.max_length:
yield self._make_example(nlp, reference, False)
- elif reference.is_sentenced:
+ elif reference.has_annotation("SENT_START"):
for ref_sent in reference.sents:
if len(ref_sent) == 0:
continue
@@ -166,7 +166,7 @@ class Corpus:
self, nlp: "Language", reference_docs: Iterable[Doc]
) -> Iterator[Example]:
for reference in reference_docs:
- if reference.is_sentenced:
+ if reference.has_annotation("SENT_START"):
ref_sents = [sent.as_doc() for sent in reference.sents]
else:
ref_sents = [reference]
diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py
index f7f2f21a4..f623627eb 100644
--- a/spacy/training/initialize.py
+++ b/spacy/training/initialize.py
@@ -72,13 +72,16 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
logger.info(f"Initialized pipeline components: {nlp.pipe_names}")
# Detect components with listeners that are not frozen consistently
for name, proc in nlp.pipeline:
- if getattr(proc, "listening_components", None): # e.g. tok2vec/transformer
- for listener in proc.listening_components:
- if listener in frozen_components and name not in frozen_components:
- logger.warning(Warnings.W087.format(name=name, listener=listener))
- # We always check this regardless, in case user freezes tok2vec
- if listener not in frozen_components and name in frozen_components:
- logger.warning(Warnings.W086.format(name=name, listener=listener))
+ for listener in getattr(proc, "listening_components", []): # e.g. tok2vec/transformer
+ # Don't warn about components not in the pipeline
+ if listener not in nlp.pipe_names:
+ continue
+
+ if listener in frozen_components and name not in frozen_components:
+ logger.warning(Warnings.W087.format(name=name, listener=listener))
+ # We always check this regardless, in case user freezes tok2vec
+ if listener not in frozen_components and name in frozen_components:
+ logger.warning(Warnings.W086.format(name=name, listener=listener))
return nlp
diff --git a/spacy/util.py b/spacy/util.py
index 389e3504f..9915de935 100644
--- a/spacy/util.py
+++ b/spacy/util.py
@@ -59,7 +59,7 @@ if TYPE_CHECKING:
OOV_RANK = numpy.iinfo(numpy.uint64).max
DEFAULT_OOV_PROB = -20
-LEXEME_NORM_LANGS = ["da", "de", "el", "en", "id", "lb", "pt", "ru", "sr", "ta", "th"]
+LEXEME_NORM_LANGS = ["cs", "da", "de", "el", "en", "id", "lb", "mk", "pt", "ru", "sr", "ta", "th"]
# Default order of sections in the config.cfg. Not all sections needs to exist,
# and additional sections are added at the end, in alphabetical order.
@@ -70,7 +70,9 @@ CONFIG_SECTION_ORDER = ["paths", "variables", "system", "nlp", "components", "co
logger = logging.getLogger("spacy")
logger_stream_handler = logging.StreamHandler()
-logger_stream_handler.setFormatter(logging.Formatter("[%(asctime)s] [%(levelname)s] %(message)s"))
+logger_stream_handler.setFormatter(
+ logging.Formatter("[%(asctime)s] [%(levelname)s] %(message)s")
+)
logger.addHandler(logger_stream_handler)
@@ -1454,10 +1456,13 @@ def is_cython_func(func: Callable) -> bool:
if hasattr(func, attr): # function or class instance
return True
# https://stackoverflow.com/a/55767059
- if hasattr(func, "__qualname__") and hasattr(func, "__module__") \
- and func.__module__ in sys.modules: # method
- cls_func = vars(sys.modules[func.__module__])[func.__qualname__.split(".")[0]]
- return hasattr(cls_func, attr)
+ if (
+ hasattr(func, "__qualname__")
+ and hasattr(func, "__module__")
+ and func.__module__ in sys.modules
+ ): # method
+ cls_func = vars(sys.modules[func.__module__])[func.__qualname__.split(".")[0]]
+ return hasattr(cls_func, attr)
return False
@@ -1508,7 +1513,16 @@ def warn_if_jupyter_cupy():
"""
if is_in_jupyter():
from thinc.backends.cupy_ops import CupyOps
+
if CupyOps.xp is not None:
from thinc.backends import contextvars_eq_thread_ops
+
if not contextvars_eq_thread_ops():
warnings.warn(Warnings.W111)
+
+
+def check_lexeme_norms(vocab, component_name):
+ lexeme_norms = vocab.lookups.get_table("lexeme_norm", {})
+ if len(lexeme_norms) == 0 and vocab.lang in LEXEME_NORM_LANGS:
+ langs = ", ".join(LEXEME_NORM_LANGS)
+ logger.debug(Warnings.W033.format(model=component_name, langs=langs))
diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md
index 16e84e53f..73a03cba8 100644
--- a/website/docs/api/cli.md
+++ b/website/docs/api/cli.md
@@ -77,7 +77,7 @@ $ python -m spacy info [model] [--markdown] [--silent] [--exclude]
| Name | Description |
| ------------------------------------------------ | --------------------------------------------------------------------------------------------- |
-| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(positional)~~ |
+| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(option)~~ |
| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ |
| `--silent`, `-s` 2.0.12 | Don't print anything, just return the values. ~~bool (flag)~~ |
| `--exclude`, `-e` | Comma-separated keys to exclude from the print-out. Defaults to `"labels"`. ~~Optional[str]~~ |
@@ -259,7 +259,7 @@ $ python -m spacy convert [input_file] [output_dir] [--converter] [--file-type]
| Name | Description |
| ------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `input_file` | Input file. ~~Path (positional)~~ |
-| `output_dir` | Output directory for converted file. Defaults to `"-"`, meaning data will be written to `stdout`. ~~Optional[Path] \(positional)~~ |
+| `output_dir` | Output directory for converted file. Defaults to `"-"`, meaning data will be written to `stdout`. ~~Optional[Path] \(option)~~ |
| `--converter`, `-c` 2 | Name of converter to use (see below). ~~str (option)~~ |
| `--file-type`, `-t` 2.1 | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. ~~str (option)~~ |
| `--n-sents`, `-n` | Number of sentences per document. Supported for: `conll`, `conllu`, `iob`, `ner` ~~int (option)~~ |
@@ -642,7 +642,7 @@ $ python -m spacy debug profile [model] [inputs] [--n-texts]
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------- |
| `model` | A loadable spaCy pipeline (package name or path). ~~str (positional)~~ |
-| `inputs` | Optional path to input file, or `-` for standard input. ~~Path (positional)~~ |
+| `inputs` | Path to input file, or `-` for standard input. ~~Path (positional)~~ |
| `--n-texts`, `-n` | Maximum number of texts to use if available. Defaults to `10000`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Profiling information for the pipeline. |
@@ -1191,14 +1191,14 @@ $ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
> $ python -m spacy project dvc all
> ```
-| Name | Description |
-| ----------------- | ----------------------------------------------------------------------------------------------------------------- |
-| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
-| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(positional)~~ |
-| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
-| `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
-| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
-| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |
+| Name | Description |
+| ----------------- | ------------------------------------------------------------------------------------------------------------- |
+| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
+| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ |
+| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
+| `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
+| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
+| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |
## ray {#ray new="3"}
@@ -1236,7 +1236,7 @@ $ python -m spacy ray train [config_path] [--code] [--output] [--n-workers] [--a
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
-| `--output`, `-o` | Directory or remote storage URL for saving trained pipeline. The directory will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ |
+| `--output`, `-o` | Directory or remote storage URL for saving trained pipeline. The directory will be created if it doesn't exist. ~~Optional[Path] \(option)~~ |
| `--n-workers`, `-n` | The number of workers. Defaults to `1`. ~~int (option)~~ |
| `--address`, `-a` | Optional address of the Ray cluster. If not set (default), Ray will run locally. ~~Optional[str] \(option)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
diff --git a/website/docs/api/language.md b/website/docs/api/language.md
index a90476dab..ca87cbb16 100644
--- a/website/docs/api/language.md
+++ b/website/docs/api/language.md
@@ -198,7 +198,6 @@ more efficient than processing texts one-by-one.
| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
-| `cleanup` | If `True`, unneeded strings are freed to control memory use. Experimental. ~~bool~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` 2.2.2 | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
@@ -872,10 +871,10 @@ when loading a config with
> replace_listeners = ["model.tok2vec"]
> ```
-| Name | Description |
-| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `tok2vec_name` | Name of the token-to-vector component, typically `"tok2vec"` or `"transformer"`.~~str~~ |
-| `pipe_name` | Name of pipeline component to replace listeners for. ~~str~~ |
+| Name | Description |
+| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `tok2vec_name` | Name of the token-to-vector component, typically `"tok2vec"` or `"transformer"`.~~str~~ |
+| `pipe_name` | Name of pipeline component to replace listeners for. ~~str~~ |
| `listeners` | The paths to the listeners, relative to the component config, e.g. `["model.tok2vec"]`. Typically, implementations will only connect to one tok2vec component, `model.tok2vec`, but in theory, custom models can use multiple listeners. The value here can either be an empty list to not replace any listeners, or a _complete_ list of the paths to all listener layers used by the model that should be replaced.~~Iterable[str]~~ |
## Language.meta {#meta tag="property"}
diff --git a/website/docs/api/lexeme.md b/website/docs/api/lexeme.md
index c1837fd05..c99f19482 100644
--- a/website/docs/api/lexeme.md
+++ b/website/docs/api/lexeme.md
@@ -133,8 +133,8 @@ The L2 norm of the lexeme's vector representation.
| `norm_` | The lexemes's norm, i.e. a normalized form of the lexeme text. ~~str~~ |
| `lower` | Lowercase form of the word. ~~int~~ |
| `lower_` | Lowercase form of the word. ~~str~~ |
-| `shape` | Transform of the words's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ |
-| `shape_` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ |
+| `shape` | Transform of the words's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ |
+| `shape_` | Transform of the word's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ |
| `prefix` | Length-N substring from the start of the word. Defaults to `N=1`. ~~int~~ |
| `prefix_` | Length-N substring from the start of the word. Defaults to `N=1`. ~~str~~ |
| `suffix` | Length-N substring from the end of the word. Defaults to `N=3`. ~~int~~ |
diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md
index 7c39d9caf..95a76586a 100644
--- a/website/docs/api/matcher.md
+++ b/website/docs/api/matcher.md
@@ -120,12 +120,13 @@ Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
> matches = matcher(doc)
> ```
-| Name | Description |
-| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
-| _keyword-only_ | |
-| `as_spans` 3 | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
-| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
+| Name | Description |
+| ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
+| _keyword-only_ | |
+| `as_spans` 3 | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
+| `allow_missing` 3 | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ |
+| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
## Matcher.\_\_len\_\_ {#len tag="method" new="2"}
diff --git a/website/docs/models/index.md b/website/docs/models/index.md
index 30b4f11d9..d37e9471d 100644
--- a/website/docs/models/index.md
+++ b/website/docs/models/index.md
@@ -4,6 +4,7 @@ teaser: Downloadable trained pipelines and weights for spaCy
menu:
- ['Quickstart', 'quickstart']
- ['Conventions', 'conventions']
+ - ['Pipeline Design', 'design']
---
@@ -53,3 +54,146 @@ For a detailed compatibility overview, see the
[`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json).
This is also the source of spaCy's internal compatibility check, performed when
you run the [`download`](/api/cli#download) command.
+
+## Pretrained pipeline design {#design}
+
+The spaCy v3 pretrained pipelines are designed to be efficient and configurable.
+For example, multiple components can share a common "token-to-vector" model and
+it's easy to swap out or disable the lemmatizer. The pipelines are designed to
+be efficient in terms of speed and size and work well when the pipeline is run
+in full.
+
+When modifying a pretrained pipeline, it's important to understand how the
+components **depend on** each other. Unlike spaCy v2, where the `tagger`,
+`parser` and `ner` components were all independent, some v3 components depend on
+earlier components in the pipeline. As a result, disabling or reordering
+components can affect the annotation quality or lead to warnings and errors.
+
+Main changes from spaCy v2 models:
+
+- The [`Tok2Vec`](/api/tok2vec) component may be a separate, shared component. A
+ component like a tagger or parser can
+ [listen](/api/architectures#Tok2VecListener) to an earlier `tok2vec` or
+ `transformer` rather than having its own separate tok2vec layer.
+- Rule-based exceptions move from individual components to the
+ `attribute_ruler`. Lemma and POS exceptions move from the tokenizer exceptions
+ to the attribute ruler and the tag map and morph rules move from the tagger to
+ the attribute ruler.
+- The lemmatizer tables and processing move from the vocab and tagger to a
+ separate `lemmatizer` component.
+
+### CNN/CPU pipeline design
+
+In the `sm`/`md`/`lg` models:
+
+- The `tagger`, `morphologizer` and `parser` components listen to the `tok2vec`
+ component.
+- The `attribute_ruler` maps `token.tag` to `token.pos` if there is no
+ `morphologizer`. The `attribute_ruler` additionally makes sure whitespace is
+ tagged consistently and copies `token.pos` to `token.tag` if there is no
+ tagger. For English, the attribute ruler can improve its mapping from
+ `token.tag` to `token.pos` if dependency parses from a `parser` are present,
+ but the parser is not required.
+- The rule-based `lemmatizer` (Dutch, English, French, Greek, Macedonian,
+ Norwegian and Spanish) requires `token.pos` annotation from either
+ `tagger`+`attribute_ruler` or `morphologizer`.
+- The `ner` component is independent with its own internal tok2vec layer.
+
+
+
+### Transformer pipeline design
+
+In the tranformer (`trf`) models, the `tagger`, `parser` and `ner` (if present)
+all listen to the `transformer` component. The `attribute_ruler` and
+`lemmatizer` have the same configuration as in the CNN models.
+
+
+
+### Modifying the default pipeline
+
+For faster processing, you may only want to run a subset of the components in a
+pretrained pipeline. The `disable` and `exclude` arguments to
+[`spacy.load`](/api/top-level#spacy.load) let you control which components are
+loaded and run. Disabled components are loaded in the background so it's
+possible to reenable them in the same pipeline in the future with
+[`nlp.enable_pipe`](/api/language/#enable_pipe). To skip loading a component
+completely, use `exclude` instead of `disable`.
+
+#### Disable part-of-speech tagging and lemmatization
+
+To disable part-of-speech tagging and lemmatization, disable the `tagger`,
+`morphologizer`, `attribute_ruler` and `lemmatizer` components.
+
+```python
+# Note: English doesn't include a morphologizer
+nlp = spacy.load("en_core_web_sm", disable=["tagger", "attribute_ruler", "lemmatizer"])
+nlp = spacy.load("en_core_web_trf", disable=["tagger", "attribute_ruler", "lemmatizer"])
+```
+
+
+
+The lemmatizer depends on `tagger`+`attribute_ruler` or `morphologizer` for
+Dutch, English, French, Greek, Macedonian, Norwegian and Spanish. If you disable
+any of these components, you'll see lemmatizer warnings unless the lemmatizer is
+also disabled.
+
+
+
+#### Use senter rather than parser for fast sentence segmentation
+
+If you need fast sentence segmentation without dependency parses, disable the
+`parser` use the `senter` component instead:
+
+```python
+nlp = spacy.load("en_core_web_sm")
+nlp.disable_pipe("parser")
+nlp.enable_pipe("senter")
+```
+
+The `senter` component is ~10× faster than the parser and more accurate
+than the rule-based `sentencizer`.
+
+#### Switch from rule-based to lookup lemmatization
+
+For the Dutch, English, French, Greek, Macedonian, Norwegian and Spanish
+pipelines, you can switch from the default rule-based lemmatizer to a lookup
+lemmatizer:
+
+```python
+# Requirements: pip install spacy-lookups-data
+nlp = spacy.load("en_core_web_sm")
+nlp.remove_pipe("lemmatizer")
+nlp.add_pipe("lemmatizer", config={"mode": "lookup"}).initialize()
+```
+
+#### Disable everything except NER
+
+For the non-transformer models, the `ner` component is independent, so you can
+disable everything else:
+
+```python
+nlp = spacy.load("en_core_web_sm", disable=["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer"])
+```
+
+In the transformer models, `ner` listens to the `transformer` component, so you
+can disable all components related tagging, parsing, and lemmatization.
+
+```python
+nlp = spacy.load("en_core_web_trf", disable=["tagger", "parser", "attribute_ruler", "lemmatizer"])
+```
+
+#### Move NER to the end of the pipeline
+
+For access to `POS` and `LEMMA` features in an `entity_ruler`, move `ner` to the
+end of the pipeline after `attribute_ruler` and `lemmatizer`:
+
+```python
+# load without NER
+nlp = spacy.load("en_core_web_sm", exclude=["ner"])
+
+# source NER from the same pipeline package as the last component
+nlp.add_pipe("ner", source=spacy.load("en_core_web_sm"))
+
+# insert the entity ruler
+nlp.add_pipe("entity_ruler", before="ner")
+```
diff --git a/website/docs/usage/linguistic-features.md b/website/docs/usage/linguistic-features.md
index fd76c6e4d..40ea2bf9c 100644
--- a/website/docs/usage/linguistic-features.md
+++ b/website/docs/usage/linguistic-features.md
@@ -599,18 +599,27 @@ ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
print('Before', ents)
# The model didn't recognize "fb" as an entity :(
-fb_ent = Span(doc, 0, 1, label="ORG") # create a Span for the new entity
+# Create a span for the new entity
+fb_ent = Span(doc, 0, 1, label="ORG")
+
+# Option 1: Modify the provided entity spans, leaving the rest unmodified
+doc.set_ents([fb_ent], default="unmodified")
+
+# Option 2: Assign a complete list of ents to doc.ents
doc.ents = list(doc.ents) + [fb_ent]
-ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
+ents = [(e.text, e.start, e.end, e.label_) for e in doc.ents]
print('After', ents)
-# [('fb', 0, 2, 'ORG')] 🎉
+# [('fb', 0, 1, 'ORG')] 🎉
```
-Keep in mind that you need to create a `Span` with the start and end index of
-the **token**, not the start and end index of the entity in the document. In
-this case, "fb" is token `(0, 1)` – but at the document level, the entity will
-have the start and end indices `(0, 2)`.
+Keep in mind that `Span` is initialized with the start and end **token**
+indices, not the character offsets. To create a span from character offsets, use
+[`Doc.char_span`](/api/doc#char_span):
+
+```python
+fb_ent = doc.char_span(0, 2, label="ORG")
+```
#### Setting entity annotations from array {#setting-from-array}
@@ -645,9 +654,10 @@ write efficient native code.
```python
# cython: infer_types=True
+from spacy.typedefs cimport attr_t
from spacy.tokens.doc cimport Doc
-cpdef set_entity(Doc doc, int start, int end, int ent_type):
+cpdef set_entity(Doc doc, int start, int end, attr_t ent_type):
for i in range(start, end):
doc.c[i].ent_type = ent_type
doc.c[start].ent_iob = 3
diff --git a/website/docs/usage/processing-pipelines.md b/website/docs/usage/processing-pipelines.md
index 909a9c7de..52568658d 100644
--- a/website/docs/usage/processing-pipelines.md
+++ b/website/docs/usage/processing-pipelines.md
@@ -54,9 +54,8 @@ texts = ["This is a text", "These are lots of texts", "..."]
In this example, we're using [`nlp.pipe`](/api/language#pipe) to process a
(potentially very large) iterable of texts as a stream. Because we're only
accessing the named entities in `doc.ents` (set by the `ner` component), we'll
-disable all other statistical components (the `tagger` and `parser`) during
-processing. `nlp.pipe` yields `Doc` objects, so we can iterate over them and
-access the named entity predictions:
+disable all other components during processing. `nlp.pipe` yields `Doc` objects,
+so we can iterate over them and access the named entity predictions:
> #### ✏️ Things to try
>
@@ -73,7 +72,7 @@ texts = [
]
nlp = spacy.load("en_core_web_sm")
-for doc in nlp.pipe(texts, disable=["tagger", "parser"]):
+for doc in nlp.pipe(texts, disable=["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer"]):
# Do something with the doc here
print([(ent.text, ent.label_) for ent in doc.ents])
```
@@ -92,6 +91,54 @@ have to call `list()` on it first:
+### Multiprocessing {#multiprocessing}
+
+spaCy includes built-in support for multiprocessing with
+[`nlp.pipe`](/api/language#pipe) using the `n_process` option:
+
+```python
+# Multiprocessing with 4 processes
+docs = nlp.pipe(texts, n_process=4)
+
+# With as many processes as CPUs (use with caution!)
+docs = nlp.pipe(texts, n_process=-1)
+```
+
+Depending on your platform, starting many processes with multiprocessing can add
+a lot of overhead. In particular, the default start method `spawn` used in
+macOS/OS X (as of Python 3.8) and in Windows can be slow for larger models
+because the model data is copied in memory for each new process. See the
+[Python docs on multiprocessing](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
+for further details.
+
+For shorter tasks and in particular with `spawn`, it can be faster to use a
+smaller number of processes with a larger batch size. The optimal `batch_size`
+setting will depend on the pipeline components, the length of your documents,
+the number of processes and how much memory is available.
+
+```python
+# Default batch size is `nlp.batch_size` (typically 1000)
+docs = nlp.pipe(texts, n_process=2, batch_size=2000)
+```
+
+
+
+Multiprocessing is not generally recommended on GPU because RAM is too limited.
+If you want to try it out, be aware that it is only possible using `spawn` due
+to limitations in CUDA.
+
+
+
+
+
+In Linux, transformer models may hang or deadlock with multiprocessing due to an
+[issue in PyTorch](https://github.com/pytorch/pytorch/issues/17199). One
+suggested workaround is to use `spawn` instead of `fork` and another is to limit
+the number of threads before loading any models using
+`torch.set_num_threads(1)`.
+
+
+
## Pipelines and built-in components {#pipelines}
spaCy makes it very easy to create your own pipelines consisting of reusable
@@ -144,10 +191,12 @@ nlp = spacy.load("en_core_web_sm")
```
... the pipeline's `config.cfg` tells spaCy to use the language `"en"` and the
-pipeline `["tok2vec", "tagger", "parser", "ner"]`. spaCy will then initialize
-`spacy.lang.en.English`, and create each pipeline component and add it to the
-processing pipeline. It'll then load in the model data from the data directory
-and return the modified `Language` class for you to use as the `nlp` object.
+pipeline
+`["tok2vec", "tagger", "parser", "ner", "attribute_ruler", "lemmatizer"]`. spaCy
+will then initialize `spacy.lang.en.English`, and create each pipeline component
+and add it to the processing pipeline. It'll then load in the model data from
+the data directory and return the modified `Language` class for you to use as
+the `nlp` object.
@@ -171,7 +220,7 @@ the binary data:
```python
### spacy.load under the hood
lang = "en"
-pipeline = ["tok2vec", "tagger", "parser", "ner"]
+pipeline = ["tok2vec", "tagger", "parser", "ner", "attribute_ruler", "lemmatizer"]
data_path = "path/to/en_core_web_sm/en_core_web_sm-3.0.0"
cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
@@ -186,7 +235,7 @@ component** on the `Doc`, in order. Since the model data is loaded, the
components can access it to assign annotations to the `Doc` object, and
subsequently to the `Token` and `Span` which are only views of the `Doc`, and
don't own any data themselves. All components return the modified document,
-which is then processed by the component next in the pipeline.
+which is then processed by the next component in the pipeline.
```python
### The pipeline under the hood
@@ -201,9 +250,9 @@ list of human-readable component names.
```python
print(nlp.pipeline)
-# [('tok2vec', ), ('tagger', ), ('parser', ), ('ner', )]
+# [('tok2vec', ), ('tagger', ), ('parser', ), ('ner', ), ('attribute_ruler', ), ('lemmatizer', )]
print(nlp.pipe_names)
-# ['tok2vec', 'tagger', 'parser', 'ner']
+# ['tok2vec', 'tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer']
```
### Built-in pipeline components {#built-in}
@@ -300,7 +349,7 @@ blocks.
```python
### Disable for block
# 1. Use as a context manager
-with nlp.select_pipes(disable=["tagger", "parser"]):
+with nlp.select_pipes(disable=["tagger", "parser", "lemmatizer"]):
doc = nlp("I won't be tagged and parsed")
doc = nlp("I will be tagged and parsed")
@@ -324,7 +373,7 @@ The [`nlp.pipe`](/api/language#pipe) method also supports a `disable` keyword
argument if you only want to disable components during processing:
```python
-for doc in nlp.pipe(texts, disable=["tagger", "parser"]):
+for doc in nlp.pipe(texts, disable=["tagger", "parser", "lemmatizer"]):
# Do something with the doc here
```
@@ -1497,24 +1546,33 @@ to `Doc.user_span_hooks` and `Doc.user_token_hooks`.
| Name | Customizes |
| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `user_hooks` | [`Doc.vector`](/api/doc#vector), [`Doc.has_vector`](/api/doc#has_vector), [`Doc.vector_norm`](/api/doc#vector_norm), [`Doc.sents`](/api/doc#sents) |
+| `user_hooks` | [`Doc.similarity`](/api/doc#similarity), [`Doc.vector`](/api/doc#vector), [`Doc.has_vector`](/api/doc#has_vector), [`Doc.vector_norm`](/api/doc#vector_norm), [`Doc.sents`](/api/doc#sents) |
| `user_token_hooks` | [`Token.similarity`](/api/token#similarity), [`Token.vector`](/api/token#vector), [`Token.has_vector`](/api/token#has_vector), [`Token.vector_norm`](/api/token#vector_norm), [`Token.conjuncts`](/api/token#conjuncts) |
| `user_span_hooks` | [`Span.similarity`](/api/span#similarity), [`Span.vector`](/api/span#vector), [`Span.has_vector`](/api/span#has_vector), [`Span.vector_norm`](/api/span#vector_norm), [`Span.root`](/api/span#root) |
```python
### Add custom similarity hooks
+from spacy.language import Language
+
+
class SimilarityModel:
- def __init__(self, model):
- self._model = model
+ def __init__(self, name: str, index: int):
+ self.name = name
+ self.index = index
def __call__(self, doc):
doc.user_hooks["similarity"] = self.similarity
doc.user_span_hooks["similarity"] = self.similarity
doc.user_token_hooks["similarity"] = self.similarity
+ return doc
def similarity(self, obj1, obj2):
- y = self._model([obj1.vector, obj2.vector])
- return float(y[0])
+ return obj1.vector[self.index] + obj2.vector[self.index]
+
+
+@Language.factory("similarity_component", default_config={"index": 0})
+def create_similarity_component(nlp, name, index: int):
+ return SimilarityModel(name, index)
```
## Developing plugins and wrappers {#plugins}
diff --git a/website/docs/usage/saving-loading.md b/website/docs/usage/saving-loading.md
index f15493fd7..9dad077e7 100644
--- a/website/docs/usage/saving-loading.md
+++ b/website/docs/usage/saving-loading.md
@@ -19,9 +19,8 @@ import Serialization101 from 'usage/101/\_serialization.md'
When serializing the pipeline, keep in mind that this will only save out the
**binary data for the individual components** to allow spaCy to restore them –
not the entire objects. This is a good thing, because it makes serialization
-safe. But it also means that you have to take care of storing the language name
-and pipeline component names as well, and restoring them separately before you
-can load in the data.
+safe. But it also means that you have to take care of storing the config, which
+contains the pipeline configuration and all the relevant settings.
> #### Saving the meta and config
>
@@ -33,24 +32,21 @@ can load in the data.
```python
### Serialize
+config = nlp.config
bytes_data = nlp.to_bytes()
-lang = nlp.config["nlp"]["lang"] # "en"
-pipeline = nlp.config["nlp"]["pipeline"] # ["tagger", "parser", "ner"]
```
```python
### Deserialize
-nlp = spacy.blank(lang)
-for pipe_name in pipeline:
- nlp.add_pipe(pipe_name)
+lang_cls = spacy.util.get_lang_class(config["nlp"]["lang"])
+nlp = lang_cls.from_config(config)
nlp.from_bytes(bytes_data)
```
This is also how spaCy does it under the hood when loading a pipeline: it loads
the `config.cfg` containing the language and pipeline information, initializes
-the language class, creates and adds the pipeline components based on the
-defined [factories](/usage/processing-pipeline#custom-components-factories) and
-_then_ loads in the binary data. You can read more about this process
+the language class, creates and adds the pipeline components based on the config
+and _then_ loads in the binary data. You can read more about this process
[here](/usage/processing-pipelines#pipelines).
## Serializing Doc objects efficiently {#docs new="2.2"}