Merge branch 'feature/coref' into coref/dimension-inference

This commit is contained in:
Paul O'Leary McCann 2022-07-11 19:18:46 +09:00
commit 4d032396b8
10 changed files with 486 additions and 95 deletions

View File

@ -934,6 +934,7 @@ class Errors(metaclass=ErrorsWithCodes):
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
E1042 = ("Function was called with `{arg1}`={arg1_values} and "
"`{arg2}`={arg2_values} but these arguments are conflicting.")
E1043 = ("Misalignment in coref. Head token has no match in training doc.")
# Deprecated model shortcuts, only used in errors and warnings

View File

@ -1,8 +1,8 @@
from typing import List, Tuple
from typing import List, Tuple, Callable, cast
from thinc.api import Model, chain, get_width
from thinc.api import PyTorchWrapper, ArgsKwargs
from thinc.types import Floats2d
from thinc.types import Floats2d, Ints2d
from thinc.util import torch, xp2torch, torch2xp
from ...tokens import Doc
@ -22,10 +22,8 @@ def build_wl_coref_model(
# pairs to keep per mention after rough scoring
antecedent_limit: int = 50,
antecedent_batch_size: int = 512,
):
# TODO add model return types
nI = None
) -> Model[List[Doc], Tuple[Floats2d, Ints2d]]:
with Model.define_operators({">>": chain}):
coref_clusterer = Model(
@ -83,7 +81,6 @@ def coref_init(model: Model, X=None, Y=None):
def coref_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_coref_clusterer_inputs(model: Model, X: List[Floats2d], is_train: bool):
# The input here is List[Floats2d], one for each doc
# just use the first
@ -91,16 +88,17 @@ def convert_coref_clusterer_inputs(model: Model, X: List[Floats2d], is_train: bo
X = X[0]
word_features = xp2torch(X, requires_grad=is_train)
# TODO fix or remove type annotations
def backprop(args: ArgsKwargs): # -> List[Floats2d]:
def backprop(args: ArgsKwargs) -> List[Floats2d]:
# convert to xp and wrap in list
gradients = torch2xp(args.args[0])
gradients = cast(Floats2d, torch2xp(args.args[0]))
return [gradients]
return ArgsKwargs(args=(word_features,), kwargs={}), backprop
def convert_coref_clusterer_outputs(model: Model, inputs_outputs, is_train: bool):
def convert_coref_clusterer_outputs(
model: Model, inputs_outputs, is_train: bool
) -> Tuple[Tuple[Floats2d, Ints2d], Callable]:
_, outputs = inputs_outputs
scores, indices = outputs
@ -111,8 +109,8 @@ def convert_coref_clusterer_outputs(model: Model, inputs_outputs, is_train: bool
kwargs={"grad_tensors": [dY_t]},
)
scores_xp = torch2xp(scores)
indices_xp = torch2xp(indices)
scores_xp = cast(Floats2d, torch2xp(scores))
indices_xp = cast(Ints2d, torch2xp(indices))
return (scores_xp, indices_xp), convert_for_torch_backward

View File

@ -143,16 +143,18 @@ def create_head_span_idxs(ops, doclen: int):
def get_clusters_from_doc(doc) -> List[List[Tuple[int, int]]]:
"""Given a Doc, convert the cluster spans to simple int tuple lists."""
"""Convert the span clusters in a Doc to simple integer tuple lists. The
ints are char spans, to be tokenization independent.
"""
out = []
for key, val in doc.spans.items():
cluster = []
for span in val:
# TODO check that there isn't an off-by-one error here
# cluster.append((span.start, span.end))
# TODO This conversion should be happening earlier in processing
head_i = span.root.i
cluster.append((head_i, head_i + 1))
head = doc[head_i]
char_span = (head.idx, head.idx + len(head))
cluster.append(char_span)
# don't want duplicates
cluster = list(set(cluster))

View File

@ -1,4 +1,4 @@
from typing import List, Tuple
from typing import List, Tuple, cast
from thinc.api import Model, chain, tuplify, get_width
from thinc.api import PyTorchWrapper, ArgsKwargs
@ -76,15 +76,17 @@ def span_predictor_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_span_predictor_inputs(
model: Model, X: Tuple[List[Floats2d], Tuple[List[Ints1d], List[Ints1d]]], is_train: bool
model: Model,
X: Tuple[List[Floats2d], Tuple[List[Ints1d], List[Ints1d]]],
is_train: bool,
):
tok2vec, (sent_ids, head_ids) = X
# Normally we should use the input is_train, but for these two it's not relevant
# TODO fix the type here, or remove it
def backprop(args: ArgsKwargs): #-> Tuple[List[Floats2d], None]:
gradients = torch2xp(args.args[1])
def backprop(args: ArgsKwargs) -> Tuple[List[Floats2d], None]:
gradients = cast(Floats2d, torch2xp(args.args[1]))
# The sent_ids and head_ids are None because no gradients
return [[gradients], None]
return ([gradients], None)
word_features = xp2torch(tok2vec[0], requires_grad=is_train)
sent_ids_tensor = xp2torch(sent_ids[0], requires_grad=False)
@ -129,7 +131,6 @@ def predict_span_clusters(
def build_get_head_metadata(prefix):
# TODO this name is awful, fix it
model = Model(
"HeadDataProvider", attrs={"prefix": prefix}, forward=head_data_forward
)
@ -175,7 +176,6 @@ class SpanPredictor(torch.nn.Module):
raise ValueError("max_distance has to be an even number")
# input size = single token size
# 64 = probably distance emb size
# TODO check that dist_emb_size use is correct
self.ffnn = torch.nn.Sequential(
torch.nn.Linear(input_size * 2 + dist_emb_size, hidden_size),
torch.nn.ReLU(),
@ -192,7 +192,6 @@ class SpanPredictor(torch.nn.Module):
torch.nn.Conv1d(dist_emb_size, conv_channels, kernel_size, 1, 1),
torch.nn.Conv1d(conv_channels, 2, kernel_size, 1, 1),
)
# TODO make embeddings size a parameter
self.max_distance = max_distance
# handle distances between +-(max_distance - 2 / 2)
self.emb = torch.nn.Embedding(max_distance, dist_emb_size)
@ -244,9 +243,7 @@ class SpanPredictor(torch.nn.Module):
dim=1,
)
lengths = same_sent.sum(dim=1)
padding_mask = torch.arange(
0, lengths.max().item(), device=device
).unsqueeze(0)
padding_mask = torch.arange(0, lengths.max().item(), device=device).unsqueeze(0)
# (n_heads x max_sent_len)
padding_mask = padding_mask < lengths.unsqueeze(1)
# (n_heads x max_sent_len x input_size * 2 + distance_emb_size)

View File

@ -95,7 +95,7 @@ def make_coref(
class CoreferenceResolver(TrainablePipe):
"""Pipeline component for coreference resolution.
DOCS: https://spacy.io/api/coref (TODO)
DOCS: https://spacy.io/api/coref
"""
def __init__(
@ -118,8 +118,10 @@ class CoreferenceResolver(TrainablePipe):
are stored in.
span_cluster_prefix (str): Prefix for the key in doc.spans to store the
coref clusters in.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_coref_clusters.
DOCS: https://spacy.io/api/coref#init (TODO)
DOCS: https://spacy.io/api/coref#init
"""
self.vocab = vocab
self.model = model
@ -133,11 +135,12 @@ class CoreferenceResolver(TrainablePipe):
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
Return the list of predicted clusters.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
RETURNS (List[MentionClusters]): The model's prediction for each document.
DOCS: https://spacy.io/api/coref#predict (TODO)
DOCS: https://spacy.io/api/coref#predict
"""
out = []
for doc in docs:
@ -163,7 +166,7 @@ class CoreferenceResolver(TrainablePipe):
docs (Iterable[Doc]): The documents to modify.
clusters: The span clusters, produced by CoreferenceResolver.predict.
DOCS: https://spacy.io/api/coref#set_annotations (TODO)
DOCS: https://spacy.io/api/coref#set_annotations
"""
docs = list(docs)
if len(docs) != len(clusters_by_doc):
@ -204,7 +207,7 @@ class CoreferenceResolver(TrainablePipe):
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/coref#update (TODO)
DOCS: https://spacy.io/api/coref#update
"""
if losses is None:
losses = {}
@ -218,12 +221,17 @@ class CoreferenceResolver(TrainablePipe):
total_loss = 0
for eg in examples:
# TODO check this causes no issues (in practice it runs)
if eg.x.text != eg.y.text:
# TODO assign error number
raise ValueError(
"""Text, including whitespace, must match between reference and
predicted docs in coref training.
"""
)
preds, backprop = self.model.begin_update([eg.predicted])
score_matrix, mention_idx = preds
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
total_loss += loss
# TODO check shape here
backprop((d_scores, mention_idx))
if sgd is not None:
@ -232,7 +240,12 @@ class CoreferenceResolver(TrainablePipe):
return losses
def rehearse(self, examples, *, sgd=None, losses=None, **config):
raise NotImplementedError
# TODO this should be added later
raise NotImplementedError(
Errors.E931.format(
parent="CoreferenceResolver", method="add_label", name=self.name
)
)
def add_label(self, label: str) -> int:
"""Technically this method should be implemented from TrainablePipe,
@ -257,7 +270,7 @@ class CoreferenceResolver(TrainablePipe):
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/coref#get_loss (TODO)
DOCS: https://spacy.io/api/coref#get_loss
"""
ops = self.model.ops
xp = ops.xp
@ -267,12 +280,23 @@ class CoreferenceResolver(TrainablePipe):
example = list(examples)[0]
cidx = mention_idx
clusters = get_clusters_from_doc(example.reference)
clusters_by_char = get_clusters_from_doc(example.reference)
# convert to token clusters, and give up if necessary
clusters = []
for cluster in clusters_by_char:
cc = []
for start_char, end_char in cluster:
span = example.predicted.char_span(start_char, end_char)
if span is None:
# TODO log more details
raise IndexError(Errors.E1043)
cc.append((span.start, span.end))
clusters.append(cc)
span_idxs = create_head_span_idxs(ops, len(example.predicted))
gscores = create_gold_scores(span_idxs, clusters)
# TODO fix type here. This is bools but asarray2f wants ints.
# Note on type here. This is bools but asarray2f wants ints.
gscores = ops.asarray2f(gscores) # type: ignore
# top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
# now add the placeholder
gold_placeholder = ~top_gscores.any(axis=1).T
@ -304,7 +328,7 @@ class CoreferenceResolver(TrainablePipe):
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
DOCS: https://spacy.io/api/coref#initialize (TODO)
DOCS: https://spacy.io/api/coref#initialize
"""
validate_get_examples(get_examples, "CoreferenceResolver.initialize")

View File

@ -383,7 +383,7 @@ class EntityLinker(TrainablePipe):
no prediction.
docs (Iterable[Doc]): The documents to predict.
RETURNS (List[str]): The models prediction for each document.
RETURNS (List[str]): The model's prediction for each document.
DOCS: https://spacy.io/api/entitylinker#predict
"""

View File

@ -29,7 +29,7 @@ distance_embedding_size = 64
conv_channels = 4
window_size = 1
max_distance = 128
prefix = coref_head_clusters
prefix = "coref_head_clusters"
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
@ -95,6 +95,8 @@ class SpanPredictor(TrainablePipe):
"""Pipeline component to resolve one-token spans to full spans.
Used in coreference resolution.
DOCS: https://spacy.io/api/span_predictor
"""
def __init__(
@ -119,6 +121,14 @@ class SpanPredictor(TrainablePipe):
}
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
Return the list of predicted span clusters.
docs (Iterable[Doc]): The documents to predict.
RETURNS (List[MentionClusters]): The model's prediction for each document.
DOCS: https://spacy.io/api/span_predictor#predict
"""
# for now pretend there's just one doc
out = []
@ -151,6 +161,13 @@ class SpanPredictor(TrainablePipe):
return out
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
clusters: The span clusters, produced by SpanPredictor.predict.
DOCS: https://spacy.io/api/span_predictor#set_annotations
"""
for doc, clusters in zip(docs, clusters_by_doc):
for ii, cluster in enumerate(clusters):
spans = [doc[mm[0] : mm[1]] for mm in cluster]
@ -166,6 +183,15 @@ class SpanPredictor(TrainablePipe):
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/span_predictor#update
"""
if losses is None:
losses = {}
@ -178,6 +204,13 @@ class SpanPredictor(TrainablePipe):
total_loss = 0
for eg in examples:
if eg.x.text != eg.y.text:
# TODO assign error number
raise ValueError(
"""Text, including whitespace, must match between reference and
predicted docs in span predictor training.
"""
)
span_scores, backprop = self.model.begin_update([eg.predicted])
# FIXME, this only happens once in the first 1000 docs of OntoNotes
# and I'm not sure yet why.
@ -222,6 +255,15 @@ class SpanPredictor(TrainablePipe):
examples: Iterable[Example],
span_scores: Floats3d,
):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/span_predictor#get_loss
"""
ops = self.model.ops
# NOTE This is doing fake batching, and should always get a list of one example
@ -231,16 +273,29 @@ class SpanPredictor(TrainablePipe):
for eg in examples:
starts = []
ends = []
keeps = []
sidx = 0
for key, sg in eg.reference.spans.items():
if key.startswith(self.output_prefix):
for mention in sg:
starts.append(mention.start)
ends.append(mention.end)
for ii, mention in enumerate(sg):
sidx += 1
# convert to span in pred
sch, ech = (mention.start_char, mention.end_char)
span = eg.predicted.char_span(sch, ech)
# TODO add to errors.py
if span is None:
warnings.warn("Could not align gold span in span predictor, skipping")
continue
starts.append(span.start)
ends.append(span.end)
keeps.append(sidx - 1)
starts = self.model.ops.xp.asarray(starts)
ends = self.model.ops.xp.asarray(ends)
start_scores = span_scores[:, :, 0]
end_scores = span_scores[:, :, 1]
start_scores = span_scores[:, :, 0][keeps]
end_scores = span_scores[:, :, 1][keeps]
n_classes = start_scores.shape[1]
start_probs = ops.softmax(start_scores, axis=1)
end_probs = ops.softmax(end_scores, axis=1)
@ -248,7 +303,14 @@ class SpanPredictor(TrainablePipe):
end_targets = to_categorical(ends, n_classes)
start_grads = start_probs - start_targets
end_grads = end_probs - end_targets
grads = ops.xp.stack((start_grads, end_grads), axis=2)
# now return to original shape, with 0s
final_start_grads = ops.alloc2f(*span_scores[:, :, 0].shape)
final_start_grads[keeps] = start_grads
final_end_grads = ops.alloc2f(*final_start_grads.shape)
final_end_grads[keeps] = end_grads
# XXX Note this only works with fake batching
grads = ops.xp.stack((final_start_grads, final_end_grads), axis=2)
loss = float((grads**2).sum())
return loss, grads
@ -258,6 +320,15 @@ class SpanPredictor(TrainablePipe):
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
DOCS: https://spacy.io/api/span_predictor#initialize
"""
validate_get_examples(get_examples, "SpanPredictor.initialize")
X = []
@ -267,6 +338,7 @@ class SpanPredictor(TrainablePipe):
if not ex.predicted.spans:
# set placeholder for shape inference
doc = ex.predicted
# TODO should be able to check if there are some valid docs in the batch
assert len(doc) > 2, "Coreference requires at least two tokens"
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
X.append(ex.predicted)

View File

@ -9,6 +9,7 @@ from spacy.ml.models.coref_util import (
DEFAULT_CLUSTER_PREFIX,
select_non_crossing_spans,
get_sentence_ids,
get_clusters_from_doc,
)
from thinc.util import has_torch
@ -35,6 +36,9 @@ TRAIN_DATA = [
# fmt: on
CONFIG = {"model": {"@architectures": "spacy.Coref.v1", "tok2vec_size": 64}}
@pytest.fixture
def nlp():
return English()
@ -60,9 +64,10 @@ def test_not_initialized(nlp):
with pytest.raises(ValueError, match="E109"):
nlp(text)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_initialized(nlp):
nlp.add_pipe("coref")
nlp.add_pipe("coref", config=CONFIG)
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "She gave me her pen."
@ -74,7 +79,7 @@ def test_initialized(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_initialized_short(nlp):
nlp.add_pipe("coref")
nlp.add_pipe("coref", config=CONFIG)
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "Hi there"
@ -84,58 +89,47 @@ def test_initialized_short(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_coref_serialization(nlp):
# Test that the coref component can be serialized
nlp.add_pipe("coref", last=True)
nlp.add_pipe("coref", last=True, config=CONFIG)
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "She gave me her pen."
doc = nlp(text)
spans_result = doc.spans
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = spacy.load(tmp_dir)
assert nlp2.pipe_names == ["coref"]
doc2 = nlp2(text)
spans_result2 = doc2.spans
print(1, [(k, len(v)) for k, v in spans_result.items()])
print(2, [(k, len(v)) for k, v in spans_result2.items()])
# Note: spans do not compare equal because docs are different and docs
# use object identity for equality
for k, v in spans_result.items():
assert str(spans_result[k]) == str(spans_result2[k])
# assert spans_result == spans_result2
assert get_clusters_from_doc(doc) == get_clusters_from_doc(doc2)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_overfitting_IO(nlp):
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
# Simple test to try and quickly overfit - ensuring the ML models work correctly
train_examples = []
for text, annot in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
nlp.add_pipe("coref")
nlp.add_pipe("coref", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
print("BEFORE", doc.spans)
for i in range(5):
# Needs ~12 epochs to converge
for i in range(15):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
print(i, doc.spans)
print(losses["coref"]) # < 0.001
# test the trained model
doc = nlp(test_text)
print("AFTER", doc.spans)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
print("doc2", doc2.spans)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
@ -143,14 +137,67 @@ def test_overfitting_IO(nlp):
"I noticed many friends around me",
"They received it. They received the SMS.",
]
batch_deps_1 = [doc.spans for doc in nlp.pipe(texts)]
print(batch_deps_1)
batch_deps_2 = [doc.spans for doc in nlp.pipe(texts)]
print(batch_deps_2)
no_batch_deps = [doc.spans for doc in [nlp(text) for text in texts]]
print(no_batch_deps)
# assert_equal(batch_deps_1, batch_deps_2)
# assert_equal(batch_deps_1, no_batch_deps)
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_tokenization_mismatch(nlp):
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
ref = eg.reference
char_spans = {}
for key, cluster in ref.spans.items():
char_spans[key] = []
for span in cluster:
char_spans[key].append((span[0].idx, span[-1].idx + len(span[-1])))
with ref.retokenize() as retokenizer:
# merge "many friends"
retokenizer.merge(ref[5:7])
# Note this works because it's the same doc and we know the keys
for key, _ in ref.spans.items():
spans = char_spans[key]
ref.spans[key] = [ref.char_span(*span) for span in spans]
train_examples.append(eg)
nlp.add_pipe("coref", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
for i in range(15):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
# test the trained model
doc = nlp(test_text)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
test_text,
"I noticed many friends around me",
"They received it. They received the SMS.",
]
# save the docs so they don't get garbage collected
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
@pytest.mark.skipif(not has_torch, reason="Torch not available")
@ -165,8 +212,26 @@ def test_crossing_spans():
guess = sorted(guess)
assert gold == guess
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_sentence_map(snlp):
doc = snlp("I like text. This is text.")
sm = get_sentence_ids(doc)
assert sm == [0, 0, 0, 0, 1, 1, 1, 1]
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_whitespace_mismatch(nlp):
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
eg.predicted = nlp.make_doc(" " + text)
train_examples.append(eg)
nlp.add_pipe("coref", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
with pytest.raises(ValueError, match="whitespace"):
nlp.update(train_examples, sgd=optimizer)

View File

@ -0,0 +1,227 @@
import pytest
import spacy
from spacy import util
from spacy.training import Example
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
from spacy.ml.models.coref_util import (
DEFAULT_CLUSTER_PREFIX,
select_non_crossing_spans,
get_sentence_ids,
get_clusters_from_doc,
)
from thinc.util import has_torch
# fmt: off
TRAIN_DATA = [
(
"John Smith picked up the red ball and he threw it away.",
{
"spans": {
f"{DEFAULT_CLUSTER_PREFIX}_1": [
(0, 10, "MENTION"), # John Smith
(38, 40, "MENTION"), # he
],
f"{DEFAULT_CLUSTER_PREFIX}_2": [
(25, 33, "MENTION"), # red ball
(47, 49, "MENTION"), # it
],
f"coref_head_clusters_1": [
(5, 10, "MENTION"), # Smith
(38, 40, "MENTION"), # he
],
f"coref_head_clusters_2": [
(29, 33, "MENTION"), # red ball
(47, 49, "MENTION"), # it
]
}
},
),
]
# fmt: on
CONFIG = {"model": {"@architectures": "spacy.SpanPredictor.v1", "tok2vec_size": 64}}
@pytest.fixture
def nlp():
return English()
@pytest.fixture
def snlp():
en = English()
en.add_pipe("sentencizer")
return en
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_add_pipe(nlp):
nlp.add_pipe("span_predictor")
assert nlp.pipe_names == ["span_predictor"]
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_not_initialized(nlp):
nlp.add_pipe("span_predictor")
text = "She gave me her pen."
with pytest.raises(ValueError, match="E109"):
nlp(text)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_span_predictor_serialization(nlp):
# Test that the span predictor component can be serialized
nlp.add_pipe("span_predictor", last=True, config=CONFIG)
nlp.initialize()
assert nlp.pipe_names == ["span_predictor"]
text = "She gave me her pen."
doc = nlp(text)
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = spacy.load(tmp_dir)
assert nlp2.pipe_names == ["span_predictor"]
doc2 = nlp2(text)
assert get_clusters_from_doc(doc) == get_clusters_from_doc(doc2)
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_overfitting_IO(nlp):
# Simple test to try and quickly overfit - ensuring the ML models work correctly
train_examples = []
for text, annot in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
ref = eg.reference
# Finally, copy over the head spans to the pred
pred = eg.predicted
for key, spans in ref.spans.items():
if key.startswith("coref_head_clusters"):
pred.spans[key] = [pred[span.start : span.end] for span in spans]
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
for i in range(15):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
# test the trained model, using the pred since it has heads
doc = nlp(train_examples[0].predicted)
# XXX This actually tests that it can overfit
assert get_clusters_from_doc(doc) == get_clusters_from_doc(train_examples[0].reference)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
test_text,
"I noticed many friends around me",
"They received it. They received the SMS.",
]
# XXX Note these have no predictions because they have no input spans
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_tokenization_mismatch(nlp):
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
ref = eg.reference
char_spans = {}
for key, cluster in ref.spans.items():
char_spans[key] = []
for span in cluster:
char_spans[key].append((span.start_char, span.end_char))
with ref.retokenize() as retokenizer:
# merge "picked up"
retokenizer.merge(ref[2:4])
# Note this works because it's the same doc and we know the keys
for key, _ in ref.spans.items():
spans = char_spans[key]
ref.spans[key] = [ref.char_span(*span) for span in spans]
# Finally, copy over the head spans to the pred
pred = eg.predicted
for key, val in ref.spans.items():
if key.startswith("coref_head_clusters"):
spans = char_spans[key]
pred.spans[key] = [pred.char_span(*span) for span in spans]
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
for i in range(15):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
# test the trained model; need to use doc with head spans on it already
test_doc = train_examples[0].predicted
doc = nlp(test_doc)
# XXX This actually tests that it can overfit
assert get_clusters_from_doc(doc) == get_clusters_from_doc(train_examples[0].reference)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
test_text,
"I noticed many friends around me",
"They received it. They received the SMS.",
]
# save the docs so they don't get garbage collected
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs2[0])
assert get_clusters_from_doc(docs1[0]) == get_clusters_from_doc(docs3[0])
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_whitespace_mismatch(nlp):
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
eg.predicted = nlp.make_doc(" " + text)
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
with pytest.raises(ValueError, match="whitespace"):
nlp.update(train_examples, sgd=optimizer)

View File

@ -587,8 +587,8 @@ consists of either two or three subnetworks:
run once for each batch.
- **lower**: Construct a feature-specific vector for each `(token, feature)`
pair. This is also run once for each batch. Constructing the state
representation is then a matter of summing the component features and
applying the non-linearity.
representation is then a matter of summing the component features and applying
the non-linearity.
- **upper** (optional): A feed-forward network that predicts scores from the
state representation. If not present, the output from the lower model is used
as action scores directly.
@ -628,8 +628,8 @@ same signature, but the `use_upper` argument was `True` by default.
> ```
Build a tagger model, using a provided token-to-vector component. The tagger
model adds a linear layer with softmax activation to predict scores given
the token vectors.
model adds a linear layer with softmax activation to predict scores given the
token vectors.
| Name | Description |
| ----------- | ------------------------------------------------------------------------------------------ |
@ -920,8 +920,8 @@ A function that reads an existing `KnowledgeBase` from file.
A function that takes as input a [`KnowledgeBase`](/api/kb) and a
[`Span`](/api/span) object denoting a named entity, and returns a list of
plausible [`Candidate`](/api/kb/#candidate) objects. The default
`CandidateGenerator` uses the text of a mention to find its potential
aliases in the `KnowledgeBase`. Note that this function is case-dependent.
`CandidateGenerator` uses the text of a mention to find its potential aliases in
the `KnowledgeBase`. Note that this function is case-dependent.
## Coreference Architectures
@ -975,7 +975,11 @@ The `Coref` model architecture is a Thinc `Model`.
> [model]
> @architectures = "spacy.SpanPredictor.v1"
> hidden_size = 1024
> dist_emb_size = 64
> distance_embedding_size = 64
> conv_channels = 4
> window_size = 1
> max_distance = 128
> prefix = "coref_head_clusters"
>
> [model.tok2vec]
> @architectures = "spacy-transformers.TransformerListener.v1"
@ -986,13 +990,14 @@ The `Coref` model architecture is a Thinc `Model`.
The `SpanPredictor` model architecture is a Thinc `Model`.
| Name | Description |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
| `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~ |
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
| `hidden_size` | Size of the main internal layers. ~~int~~ |
| `depth` | Depth of the internal network. ~~int~~ |
| `antecedent_limit` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
| `antecedent_batch_size` | Internal batch size. ~~int~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], TupleFloats2d]~~ |
| Name | Description |
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
| `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~ |
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
| `hidden_size` | Size of the main internal layers. ~~int~~ |
| `conv_channels` | The number of channels in the internal CNN. ~~int~~ |
| `window_size` | The number of neighboring tokens to consider in the internal CNN. `1` means consider one token on each side. ~~int~~ |
| `max_distance` | The longest possible length of a predicted span. ~~int~~ |
| `prefix` | The prefix that indicates spans to use for input data. ~~string~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], TupleFloats2d]~~ |