Fix spancat training on nested entities (#9007)

* overfitting test on non-overlapping entities

* add failing overfitting test for overlapping entities

* failing test for list comprehension

* remove test that was put in separate PR

* bugfix

* cleanup
This commit is contained in:
Sofie Van Landeghem 2021-08-20 12:37:50 +02:00 committed by GitHub
parent 9cc3dc2b67
commit 4d52d7051c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 106 additions and 36 deletions

View File

@ -398,7 +398,7 @@ class SpanCategorizer(TrainablePipe):
pass
def _get_aligned_spans(self, eg: Example):
return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, []))
return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, []), allow_overlap=True)
def _make_span_group(
self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str]

View File

@ -2,11 +2,14 @@ import pytest
import numpy
from numpy.testing import assert_array_equal, assert_almost_equal
from thinc.api import get_current_ops
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.tokens.doc import SpanGroups
from spacy.tokens import SpanGroup
from spacy.training import Example
from spacy.util import fix_random_seed, registry
from spacy.util import fix_random_seed, registry, make_tempdir
OPS = get_current_ops()
@ -20,18 +23,22 @@ TRAIN_DATA = [
),
]
TRAIN_DATA_OVERLAPPING = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
(
"I like London and Berlin",
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
),
]
def make_get_examples(nlp):
def make_examples(nlp, data=TRAIN_DATA):
train_examples = []
for t in TRAIN_DATA:
for t in data:
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
train_examples.append(eg)
def get_examples():
return train_examples
return get_examples
def test_no_label():
nlp = Language()
@ -57,9 +64,7 @@ def test_implicit_labels():
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
assert spancat.labels == ("PERSON", "LOC")
@ -140,30 +145,6 @@ def test_make_spangroup(max_positive, nr_results):
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
def test_simple_train():
fix_random_seed(0)
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
get_examples = make_get_examples(nlp)
nlp.initialize(get_examples)
sgd = nlp.create_optimizer()
assert len(spancat.labels) != 0
for i in range(40):
losses = {}
nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd)
doc = nlp("I like London and Berlin.")
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
assert len(doc.spans[spancat.key]) == 2
assert len(doc.spans[spancat.key].attrs["scores"]) == 2
assert doc.spans[spancat.key][0].text == "London"
scores = nlp.evaluate(get_examples())
assert f"spans_{SPAN_KEY}_f" in scores
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
# also test that the spancat works for just a single entity in a sentence
doc = nlp("London")
assert len(doc.spans[spancat.key]) == 1
def test_ngram_suggester(en_tokenizer):
# test different n-gram lengths
for size in [1, 2, 3]:
@ -282,3 +263,92 @@ def test_ngram_sizes(en_tokenizer):
range_suggester = suggester_factory(min_size=2, max_size=4)
ngrams_3 = range_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
def test_overfitting_IO():
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 2
assert set(spancat.labels) == {"LOC", "PERSON"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
spans = doc.spans[SPAN_KEY]
assert len(spans) == 2
assert len(spans.attrs["scores"]) == 2
assert min(spans.attrs["scores"]) > 0.9
assert set([span.text for span in spans]) == {"London", "Berlin"}
assert set([span.label_ for span in spans]) == {"LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 2
assert len(spans2.attrs["scores"]) == 2
assert min(spans2.attrs["scores"]) > 0.9
assert set([span.text for span in spans2]) == {"London", "Berlin"}
assert set([span.label_ for span in spans2]) == {"LOC"}
# Test scoring
scores = nlp.evaluate(train_examples)
assert f"spans_{SPAN_KEY}_f" in scores
assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
# also test that the spancat works for just a single entity in a sentence
doc = nlp("London")
assert len(doc.spans[spancat.key]) == 1
def test_overfitting_IO_overlapping():
# Test for overfitting on overlapping entities
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 3
assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
spans = doc.spans[SPAN_KEY]
assert len(spans) == 3
assert len(spans.attrs["scores"]) == 3
assert min(spans.attrs["scores"]) > 0.9
assert set([span.text for span in spans]) == {"London", "Berlin", "London and Berlin"}
assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 3
assert len(spans2.attrs["scores"]) == 3
assert min(spans2.attrs["scores"]) > 0.9
assert set([span.text for span in spans2]) == {"London", "Berlin", "London and Berlin"}
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}