mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Fix spancat training on nested entities (#9007)
* overfitting test on non-overlapping entities * add failing overfitting test for overlapping entities * failing test for list comprehension * remove test that was put in separate PR * bugfix * cleanup
This commit is contained in:
parent
9cc3dc2b67
commit
4d52d7051c
|
@ -398,7 +398,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
pass
|
||||
|
||||
def _get_aligned_spans(self, eg: Example):
|
||||
return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, []))
|
||||
return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, []), allow_overlap=True)
|
||||
|
||||
def _make_span_group(
|
||||
self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str]
|
||||
|
|
|
@ -2,11 +2,14 @@ import pytest
|
|||
import numpy
|
||||
from numpy.testing import assert_array_equal, assert_almost_equal
|
||||
from thinc.api import get_current_ops
|
||||
|
||||
from spacy import util
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.tokens.doc import SpanGroups
|
||||
from spacy.tokens import SpanGroup
|
||||
from spacy.training import Example
|
||||
from spacy.util import fix_random_seed, registry
|
||||
from spacy.util import fix_random_seed, registry, make_tempdir
|
||||
|
||||
OPS = get_current_ops()
|
||||
|
||||
|
@ -20,18 +23,22 @@ TRAIN_DATA = [
|
|||
),
|
||||
]
|
||||
|
||||
TRAIN_DATA_OVERLAPPING = [
|
||||
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
||||
(
|
||||
"I like London and Berlin",
|
||||
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
|
||||
),
|
||||
]
|
||||
|
||||
def make_get_examples(nlp):
|
||||
|
||||
def make_examples(nlp, data=TRAIN_DATA):
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
for t in data:
|
||||
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
|
||||
train_examples.append(eg)
|
||||
|
||||
def get_examples():
|
||||
return train_examples
|
||||
|
||||
return get_examples
|
||||
|
||||
|
||||
def test_no_label():
|
||||
nlp = Language()
|
||||
|
@ -57,9 +64,7 @@ def test_implicit_labels():
|
|||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
assert len(spancat.labels) == 0
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
train_examples = make_examples(nlp)
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
assert spancat.labels == ("PERSON", "LOC")
|
||||
|
||||
|
@ -140,30 +145,6 @@ def test_make_spangroup(max_positive, nr_results):
|
|||
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
|
||||
|
||||
|
||||
def test_simple_train():
|
||||
fix_random_seed(0)
|
||||
nlp = Language()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
get_examples = make_get_examples(nlp)
|
||||
nlp.initialize(get_examples)
|
||||
sgd = nlp.create_optimizer()
|
||||
assert len(spancat.labels) != 0
|
||||
for i in range(40):
|
||||
losses = {}
|
||||
nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd)
|
||||
doc = nlp("I like London and Berlin.")
|
||||
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
|
||||
assert len(doc.spans[spancat.key]) == 2
|
||||
assert len(doc.spans[spancat.key].attrs["scores"]) == 2
|
||||
assert doc.spans[spancat.key][0].text == "London"
|
||||
scores = nlp.evaluate(get_examples())
|
||||
assert f"spans_{SPAN_KEY}_f" in scores
|
||||
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
|
||||
# also test that the spancat works for just a single entity in a sentence
|
||||
doc = nlp("London")
|
||||
assert len(doc.spans[spancat.key]) == 1
|
||||
|
||||
|
||||
def test_ngram_suggester(en_tokenizer):
|
||||
# test different n-gram lengths
|
||||
for size in [1, 2, 3]:
|
||||
|
@ -282,3 +263,92 @@ def test_ngram_sizes(en_tokenizer):
|
|||
range_suggester = suggester_factory(min_size=2, max_size=4)
|
||||
ngrams_3 = range_suggester(docs)
|
||||
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
|
||||
|
||||
|
||||
def test_overfitting_IO():
|
||||
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
|
||||
fix_random_seed(0)
|
||||
nlp = English()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
train_examples = make_examples(nlp)
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
assert spancat.model.get_dim("nO") == 2
|
||||
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
assert losses["spancat"] < 0.01
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like London and Berlin"
|
||||
doc = nlp(test_text)
|
||||
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
|
||||
spans = doc.spans[SPAN_KEY]
|
||||
assert len(spans) == 2
|
||||
assert len(spans.attrs["scores"]) == 2
|
||||
assert min(spans.attrs["scores"]) > 0.9
|
||||
assert set([span.text for span in spans]) == {"London", "Berlin"}
|
||||
assert set([span.label_ for span in spans]) == {"LOC"}
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
spans2 = doc2.spans[SPAN_KEY]
|
||||
assert len(spans2) == 2
|
||||
assert len(spans2.attrs["scores"]) == 2
|
||||
assert min(spans2.attrs["scores"]) > 0.9
|
||||
assert set([span.text for span in spans2]) == {"London", "Berlin"}
|
||||
assert set([span.label_ for span in spans2]) == {"LOC"}
|
||||
|
||||
# Test scoring
|
||||
scores = nlp.evaluate(train_examples)
|
||||
assert f"spans_{SPAN_KEY}_f" in scores
|
||||
assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
|
||||
assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
|
||||
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
|
||||
|
||||
# also test that the spancat works for just a single entity in a sentence
|
||||
doc = nlp("London")
|
||||
assert len(doc.spans[spancat.key]) == 1
|
||||
|
||||
|
||||
def test_overfitting_IO_overlapping():
|
||||
# Test for overfitting on overlapping entities
|
||||
fix_random_seed(0)
|
||||
nlp = English()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
|
||||
train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
assert spancat.model.get_dim("nO") == 3
|
||||
assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
assert losses["spancat"] < 0.01
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like London and Berlin"
|
||||
doc = nlp(test_text)
|
||||
spans = doc.spans[SPAN_KEY]
|
||||
assert len(spans) == 3
|
||||
assert len(spans.attrs["scores"]) == 3
|
||||
assert min(spans.attrs["scores"]) > 0.9
|
||||
assert set([span.text for span in spans]) == {"London", "Berlin", "London and Berlin"}
|
||||
assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
spans2 = doc2.spans[SPAN_KEY]
|
||||
assert len(spans2) == 3
|
||||
assert len(spans2.attrs["scores"]) == 3
|
||||
assert min(spans2.attrs["scores"]) > 0.9
|
||||
assert set([span.text for span in spans2]) == {"London", "Berlin", "London and Berlin"}
|
||||
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
||||
|
|
Loading…
Reference in New Issue
Block a user