mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Fix spancat training on nested entities (#9007)
* overfitting test on non-overlapping entities * add failing overfitting test for overlapping entities * failing test for list comprehension * remove test that was put in separate PR * bugfix * cleanup
This commit is contained in:
		
							parent
							
								
									9cc3dc2b67
								
							
						
					
					
						commit
						4d52d7051c
					
				|  | @ -398,7 +398,7 @@ class SpanCategorizer(TrainablePipe): | |||
|         pass | ||||
| 
 | ||||
|     def _get_aligned_spans(self, eg: Example): | ||||
|         return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, [])) | ||||
|         return eg.get_aligned_spans_y2x(eg.reference.spans.get(self.key, []), allow_overlap=True) | ||||
| 
 | ||||
|     def _make_span_group( | ||||
|         self, doc: Doc, indices: Ints2d, scores: Floats2d, labels: List[str] | ||||
|  |  | |||
|  | @ -2,11 +2,14 @@ import pytest | |||
| import numpy | ||||
| from numpy.testing import assert_array_equal, assert_almost_equal | ||||
| from thinc.api import get_current_ops | ||||
| 
 | ||||
| from spacy import util | ||||
| from spacy.lang.en import English | ||||
| from spacy.language import Language | ||||
| from spacy.tokens.doc import SpanGroups | ||||
| from spacy.tokens import SpanGroup | ||||
| from spacy.training import Example | ||||
| from spacy.util import fix_random_seed, registry | ||||
| from spacy.util import fix_random_seed, registry, make_tempdir | ||||
| 
 | ||||
| OPS = get_current_ops() | ||||
| 
 | ||||
|  | @ -20,17 +23,21 @@ TRAIN_DATA = [ | |||
|     ), | ||||
| ] | ||||
| 
 | ||||
| TRAIN_DATA_OVERLAPPING = [ | ||||
|     ("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}), | ||||
|     ( | ||||
|         "I like London and Berlin", | ||||
|         {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}}, | ||||
|     ), | ||||
| ] | ||||
| 
 | ||||
| def make_get_examples(nlp): | ||||
| 
 | ||||
| def make_examples(nlp, data=TRAIN_DATA): | ||||
|     train_examples = [] | ||||
|     for t in TRAIN_DATA: | ||||
|     for t in data: | ||||
|         eg = Example.from_dict(nlp.make_doc(t[0]), t[1]) | ||||
|         train_examples.append(eg) | ||||
| 
 | ||||
|     def get_examples(): | ||||
|         return train_examples | ||||
| 
 | ||||
|     return get_examples | ||||
|     return train_examples | ||||
| 
 | ||||
| 
 | ||||
| def test_no_label(): | ||||
|  | @ -57,9 +64,7 @@ def test_implicit_labels(): | |||
|     nlp = Language() | ||||
|     spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) | ||||
|     assert len(spancat.labels) == 0 | ||||
|     train_examples = [] | ||||
|     for t in TRAIN_DATA: | ||||
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) | ||||
|     train_examples = make_examples(nlp) | ||||
|     nlp.initialize(get_examples=lambda: train_examples) | ||||
|     assert spancat.labels == ("PERSON", "LOC") | ||||
| 
 | ||||
|  | @ -140,30 +145,6 @@ def test_make_spangroup(max_positive, nr_results): | |||
|     assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5) | ||||
| 
 | ||||
| 
 | ||||
| def test_simple_train(): | ||||
|     fix_random_seed(0) | ||||
|     nlp = Language() | ||||
|     spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) | ||||
|     get_examples = make_get_examples(nlp) | ||||
|     nlp.initialize(get_examples) | ||||
|     sgd = nlp.create_optimizer() | ||||
|     assert len(spancat.labels) != 0 | ||||
|     for i in range(40): | ||||
|         losses = {} | ||||
|         nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd) | ||||
|     doc = nlp("I like London and Berlin.") | ||||
|     assert doc.spans[spancat.key] == doc.spans[SPAN_KEY] | ||||
|     assert len(doc.spans[spancat.key]) == 2 | ||||
|     assert len(doc.spans[spancat.key].attrs["scores"]) == 2 | ||||
|     assert doc.spans[spancat.key][0].text == "London" | ||||
|     scores = nlp.evaluate(get_examples()) | ||||
|     assert f"spans_{SPAN_KEY}_f" in scores | ||||
|     assert scores[f"spans_{SPAN_KEY}_f"] == 1.0 | ||||
|     # also test that the spancat works for just a single entity in a sentence | ||||
|     doc = nlp("London") | ||||
|     assert len(doc.spans[spancat.key]) == 1 | ||||
| 
 | ||||
| 
 | ||||
| def test_ngram_suggester(en_tokenizer): | ||||
|     # test different n-gram lengths | ||||
|     for size in [1, 2, 3]: | ||||
|  | @ -282,3 +263,92 @@ def test_ngram_sizes(en_tokenizer): | |||
|     range_suggester = suggester_factory(min_size=2, max_size=4) | ||||
|     ngrams_3 = range_suggester(docs) | ||||
|     assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9]) | ||||
| 
 | ||||
| 
 | ||||
| def test_overfitting_IO(): | ||||
|     # Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly | ||||
|     fix_random_seed(0) | ||||
|     nlp = English() | ||||
|     spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) | ||||
|     train_examples = make_examples(nlp) | ||||
|     optimizer = nlp.initialize(get_examples=lambda: train_examples) | ||||
|     assert spancat.model.get_dim("nO") == 2 | ||||
|     assert set(spancat.labels) == {"LOC", "PERSON"} | ||||
| 
 | ||||
|     for i in range(50): | ||||
|         losses = {} | ||||
|         nlp.update(train_examples, sgd=optimizer, losses=losses) | ||||
|     assert losses["spancat"] < 0.01 | ||||
| 
 | ||||
|     # test the trained model | ||||
|     test_text = "I like London and Berlin" | ||||
|     doc = nlp(test_text) | ||||
|     assert doc.spans[spancat.key] == doc.spans[SPAN_KEY] | ||||
|     spans = doc.spans[SPAN_KEY] | ||||
|     assert len(spans) == 2 | ||||
|     assert len(spans.attrs["scores"]) == 2 | ||||
|     assert min(spans.attrs["scores"]) > 0.9 | ||||
|     assert set([span.text for span in spans]) == {"London", "Berlin"} | ||||
|     assert set([span.label_ for span in spans]) == {"LOC"} | ||||
| 
 | ||||
|     # Also test the results are still the same after IO | ||||
|     with make_tempdir() as tmp_dir: | ||||
|         nlp.to_disk(tmp_dir) | ||||
|         nlp2 = util.load_model_from_path(tmp_dir) | ||||
|         doc2 = nlp2(test_text) | ||||
|         spans2 = doc2.spans[SPAN_KEY] | ||||
|         assert len(spans2) == 2 | ||||
|         assert len(spans2.attrs["scores"]) == 2 | ||||
|         assert min(spans2.attrs["scores"]) > 0.9 | ||||
|         assert set([span.text for span in spans2]) == {"London", "Berlin"} | ||||
|         assert set([span.label_ for span in spans2]) == {"LOC"} | ||||
| 
 | ||||
|     # Test scoring | ||||
|     scores = nlp.evaluate(train_examples) | ||||
|     assert f"spans_{SPAN_KEY}_f" in scores | ||||
|     assert scores[f"spans_{SPAN_KEY}_p"] == 1.0 | ||||
|     assert scores[f"spans_{SPAN_KEY}_r"] == 1.0 | ||||
|     assert scores[f"spans_{SPAN_KEY}_f"] == 1.0 | ||||
| 
 | ||||
|     # also test that the spancat works for just a single entity in a sentence | ||||
|     doc = nlp("London") | ||||
|     assert len(doc.spans[spancat.key]) == 1 | ||||
| 
 | ||||
| 
 | ||||
| def test_overfitting_IO_overlapping(): | ||||
|     # Test for overfitting on overlapping entities | ||||
|     fix_random_seed(0) | ||||
|     nlp = English() | ||||
|     spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) | ||||
| 
 | ||||
|     train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING) | ||||
|     optimizer = nlp.initialize(get_examples=lambda: train_examples) | ||||
|     assert spancat.model.get_dim("nO") == 3 | ||||
|     assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"} | ||||
| 
 | ||||
|     for i in range(50): | ||||
|         losses = {} | ||||
|         nlp.update(train_examples, sgd=optimizer, losses=losses) | ||||
|     assert losses["spancat"] < 0.01 | ||||
| 
 | ||||
|     # test the trained model | ||||
|     test_text = "I like London and Berlin" | ||||
|     doc = nlp(test_text) | ||||
|     spans = doc.spans[SPAN_KEY] | ||||
|     assert len(spans) == 3 | ||||
|     assert len(spans.attrs["scores"]) == 3 | ||||
|     assert min(spans.attrs["scores"]) > 0.9 | ||||
|     assert set([span.text for span in spans]) == {"London", "Berlin", "London and Berlin"} | ||||
|     assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"} | ||||
| 
 | ||||
|     # Also test the results are still the same after IO | ||||
|     with make_tempdir() as tmp_dir: | ||||
|         nlp.to_disk(tmp_dir) | ||||
|         nlp2 = util.load_model_from_path(tmp_dir) | ||||
|         doc2 = nlp2(test_text) | ||||
|         spans2 = doc2.spans[SPAN_KEY] | ||||
|         assert len(spans2) == 3 | ||||
|         assert len(spans2.attrs["scores"]) == 3 | ||||
|         assert min(spans2.attrs["scores"]) > 0.9 | ||||
|         assert set([span.text for span in spans2]) == {"London", "Berlin", "London and Berlin"} | ||||
|         assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"} | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user