From 605f84938b6cea3d8c91b0aeb4dd6d41e375fe82 Mon Sep 17 00:00:00 2001 From: Gor Arakelyan Date: Fri, 10 Jun 2022 13:33:17 +0400 Subject: [PATCH 001/138] Add "Aim-spaCy" to spaCy Universe (#10943) * Add Aim-spaCy to spaCy universe * Update Aim thumbnail * Fix author links Co-authored-by: Paul O'Leary McCann --- website/meta/universe.json | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index b7f340f52..9b644adf4 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,28 @@ { "resources": [ + { + "id": "aim-spacy", + "title": "Aim-spaCy", + "slogan": "Aim-spaCy is an Aim-based spaCy experiment tracker.", + "description": "Aim-spaCy helps to easily collect, store and explore training logs for spaCy, including: hyper-parameters, metrics and displaCy visualizations", + "github": "aimhubio/aim-spacy", + "pip": "aim-spacy", + "code_example": [ + "https://github.com/aimhubio/aim-spacy/tree/master/examples" + ], + "code_language": "python", + "url": "https://aimstack.io/spacy", + "thumb": "https://user-images.githubusercontent.com/13848158/172912427-ee9327ea-3cd8-47fa-8427-6c0d36cd831f.png", + "image": "https://user-images.githubusercontent.com/13848158/136364717-0939222c-55b6-44f0-ad32-d9ab749546e4.png", + "author": "AimStack", + "author_links": { + "twitter": "aimstackio", + "github": "aimhubio", + "website": "https://aimstack.io" + }, + "category": ["visualizers"], + "tags": ["experiment-tracking", "visualization"] + }, { "id": "spacy-report", "title": "spacy-report", From 97e8a5041b14a5e125866245b3f789e1b8caf7b9 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 10 Jun 2022 13:21:33 +0200 Subject: [PATCH 002/138] Auto-format code with black (#10945) Co-authored-by: explosion-bot --- spacy/tests/parser/test_nonproj.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/spacy/tests/parser/test_nonproj.py b/spacy/tests/parser/test_nonproj.py index b420c300f..051d0ef0c 100644 --- a/spacy/tests/parser/test_nonproj.py +++ b/spacy/tests/parser/test_nonproj.py @@ -49,7 +49,9 @@ def test_parser_contains_cycle(tree, cyclic_tree, partial_tree, multirooted_tree assert contains_cycle(multirooted_tree) is None -def test_parser_is_nonproj_arc(cyclic_tree, nonproj_tree, partial_tree, multirooted_tree): +def test_parser_is_nonproj_arc( + cyclic_tree, nonproj_tree, partial_tree, multirooted_tree +): assert is_nonproj_arc(0, nonproj_tree) is False assert is_nonproj_arc(1, nonproj_tree) is False assert is_nonproj_arc(2, nonproj_tree) is False @@ -62,7 +64,9 @@ def test_parser_is_nonproj_arc(cyclic_tree, nonproj_tree, partial_tree, multiroo assert is_nonproj_arc(7, partial_tree) is False assert is_nonproj_arc(17, multirooted_tree) is False assert is_nonproj_arc(16, multirooted_tree) is True - with pytest.raises(ValueError, match=r'Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]'): + with pytest.raises( + ValueError, match=r"Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]" + ): is_nonproj_arc(6, cyclic_tree) @@ -73,7 +77,9 @@ def test_parser_is_nonproj_tree( assert is_nonproj_tree(nonproj_tree) is True assert is_nonproj_tree(partial_tree) is False assert is_nonproj_tree(multirooted_tree) is True - with pytest.raises(ValueError, match=r'Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]'): + with pytest.raises( + ValueError, match=r"Found cycle in dependency graph: \[1, 2, 2, 4, 5, 3, 2\]" + ): is_nonproj_tree(cyclic_tree) From a83a50119520ea8708f0ef0730f65f486556c273 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Fri, 10 Jun 2022 18:12:28 +0200 Subject: [PATCH 003/138] precomputable_biaffine: avoid concatenation (#10911) The `forward` of `precomputable_biaffine` performs matrix multiplication and then `vstack`s the result with padding. This creates a temporary array used for the output of matrix concatenation. This change avoids the temporary by pre-allocating an array that is large enough for the output of matrix multiplication plus padding and fills the array in-place. This gave me a small speedup (a bit over 100 WPS) on de_core_news_lg on M1 Max (after changing thinc-apple-ops to support in-place gemm as BLIS does). --- spacy/ml/_precomputable_affine.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/spacy/ml/_precomputable_affine.py b/spacy/ml/_precomputable_affine.py index b99de2d2b..007d68aca 100644 --- a/spacy/ml/_precomputable_affine.py +++ b/spacy/ml/_precomputable_affine.py @@ -22,9 +22,11 @@ def forward(model, X, is_train): nP = model.get_dim("nP") nI = model.get_dim("nI") W = model.get_param("W") - Yf = model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True) + # Preallocate array for layer output, including padding. + Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False) + model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:]) Yf = Yf.reshape((Yf.shape[0], nF, nO, nP)) - Yf = model.ops.xp.vstack((model.get_param("pad"), Yf)) + Yf[0] = model.get_param("pad") def backward(dY_ids): # This backprop is particularly tricky, because we get back a different From 126d1db1234295a901d57553e275a6d9adf593ab Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Mon, 13 Jun 2022 10:56:45 +0200 Subject: [PATCH 004/138] Add failing test: `test_matcher_extension_in_set_predicate` (#10948) --- spacy/tests/matcher/test_matcher_api.py | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py index a27baf130..e8c3d53e8 100644 --- a/spacy/tests/matcher/test_matcher_api.py +++ b/spacy/tests/matcher/test_matcher_api.py @@ -476,6 +476,17 @@ def test_matcher_extension_set_membership(en_vocab): assert len(matches) == 0 +@pytest.mark.xfail(reason="IN predicate must handle sequence values in extensions") +def test_matcher_extension_in_set_predicate(en_vocab): + matcher = Matcher(en_vocab) + Token.set_extension("ext", default=[]) + pattern = [{"_": {"ext": {"IN": ["A", "C"]}}}] + matcher.add("M", [pattern]) + doc = Doc(en_vocab, words=["a", "b", "c"]) + doc[0]._.ext = ["A", "B"] + assert len(matcher(doc)) == 1 + + def test_matcher_basic_check(en_vocab): matcher = Matcher(en_vocab) # Potential mistake: pass in pattern instead of list of patterns From 0d352c46ed74484429b53809370ca0041b139f12 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Wed, 15 Jun 2022 15:32:02 +0200 Subject: [PATCH 005/138] vectors: remove use of float as row number (#10955) The float -1 was returned rather than the integer -1 as the row for unknown keys. This doesn't introduce a realy bug, since such floats cast (without issues) to int in the conversion to NumPy arrays. Still, it's nice to to do the correct thing :). --- spacy/vectors.pyx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/vectors.pyx b/spacy/vectors.pyx index bcba9d03f..93f6818ee 100644 --- a/spacy/vectors.pyx +++ b/spacy/vectors.pyx @@ -339,7 +339,7 @@ cdef class Vectors: return self.key2row.get(key, -1) elif keys is not None: keys = [get_string_id(key) for key in keys] - rows = [self.key2row.get(key, -1.) for key in keys] + rows = [self.key2row.get(key, -1) for key in keys] return xp.asarray(rows, dtype="i") else: row2key = {row: key for key, row in self.key2row.items()} From 3d3fbeda9f5fa3164a0aef983d606c67b677a744 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Thu, 16 Jun 2022 11:42:34 +0200 Subject: [PATCH 006/138] Update for CBlas changes in Thinc 8.1.0.dev2 (#10970) --- pyproject.toml | 2 +- requirements.txt | 2 +- setup.cfg | 4 ++-- spacy/ml/parser_model.pyx | 5 +++-- 4 files changed, 7 insertions(+), 6 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 14e09e30f..4fea41be2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ requires = [ "cymem>=2.0.2,<2.1.0", "preshed>=3.0.2,<3.1.0", "murmurhash>=0.28.0,<1.1.0", - "thinc>=8.1.0.dev0,<8.2.0", + "thinc>=8.1.0.dev2,<8.2.0", "pathy", "numpy>=1.15.0", ] diff --git a/requirements.txt b/requirements.txt index b2929145e..082ef1522 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,7 +3,7 @@ spacy-legacy>=3.0.9,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 -thinc>=8.1.0.dev0,<8.2.0 +thinc>=8.1.0.dev2,<8.2.0 ml_datasets>=0.2.0,<0.3.0 murmurhash>=0.28.0,<1.1.0 wasabi>=0.9.1,<1.1.0 diff --git a/setup.cfg b/setup.cfg index c6036a8b3..110a2e4ee 100644 --- a/setup.cfg +++ b/setup.cfg @@ -38,7 +38,7 @@ setup_requires = cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 murmurhash>=0.28.0,<1.1.0 - thinc>=8.1.0.dev0,<8.2.0 + thinc>=8.1.0.dev2,<8.2.0 install_requires = # Our libraries spacy-legacy>=3.0.9,<3.1.0 @@ -46,7 +46,7 @@ install_requires = murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 - thinc>=8.1.0.dev0,<8.2.0 + thinc>=8.1.0.dev2,<8.2.0 wasabi>=0.9.1,<1.1.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 diff --git a/spacy/ml/parser_model.pyx b/spacy/ml/parser_model.pyx index 57f933b07..e045dc3b7 100644 --- a/spacy/ml/parser_model.pyx +++ b/spacy/ml/parser_model.pyx @@ -4,6 +4,7 @@ from libc.math cimport exp from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free, realloc from thinc.backends.linalg cimport Vec, VecVec +from thinc.backends.cblas cimport saxpy, sgemm import numpy import numpy.random @@ -112,7 +113,7 @@ cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states, memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float)) else: # Compute hidden-to-output - cblas.sgemm()(False, True, n.states, n.classes, n.hiddens, + sgemm(cblas)(False, True, n.states, n.classes, n.hiddens, 1.0, A.hiddens, n.hiddens, W.hidden_weights, n.hiddens, 0.0, A.scores, n.classes) @@ -147,7 +148,7 @@ cdef void sum_state_features(CBlas cblas, float* output, else: idx = token_ids[f] * id_stride + f*O feature = &cached[idx] - cblas.saxpy()(O, one, feature, 1, &output[b*O], 1) + saxpy(cblas)(O, one, feature, 1, &output[b*O], 1) token_ids += F From a7f6bc5dfb9df4f010d1748d7352f0ff75e7ac61 Mon Sep 17 00:00:00 2001 From: Raphael Mitsch Date: Fri, 17 Jun 2022 12:15:36 +0200 Subject: [PATCH 007/138] Workaround for Typer optional default values with Python calls (#10788) * Workaround for Typer optional default values with Python calls: added test and workaround. * @rmitsch Workaround for Typer optional default values with Python calls: reverting some black formatting changes. Co-authored-by: Sofie Van Landeghem * @rmitsch Workaround for Typer optional default values with Python calls: removing return type hint. Co-authored-by: Sofie Van Landeghem * Workaround for Typer optional default values with Python calls: fixed imports, added GitHub issue marker. * Workaround for Typer optional default values with Python calls: removed forcing of default values for optional arguments in init_config_cli(). Added default values for init_config(). Synchronized default values for init_config_cli() and init_config(). * Workaround for Typer optional default values with Python calls: removed unused import. * Workaround for Typer optional default values with Python calls: fixed usage of optimize in init_config_cli(). * Workaround for Typer optional default values with Pythhon calls: remove output_file from InitDefaultValues. * Workaround for Typer optional default values with Python calls: rename class for default init values. * Workaround for Typer optional default values with Python calls: remove newline. * remove introduced newlines * Remove test_init_config_from_python_without_optional_args(). * remove leftover import * reformat import * remove duplicate Co-authored-by: Sofie Van Landeghem --- spacy/cli/init_config.py | 37 ++++++++++++++++++++++++++----------- 1 file changed, 26 insertions(+), 11 deletions(-) diff --git a/spacy/cli/init_config.py b/spacy/cli/init_config.py index d4cd939c2..b634caa4c 100644 --- a/spacy/cli/init_config.py +++ b/spacy/cli/init_config.py @@ -10,6 +10,7 @@ from jinja2 import Template from .. import util from ..language import DEFAULT_CONFIG_PRETRAIN_PATH from ..schemas import RecommendationSchema +from ..util import SimpleFrozenList from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND from ._util import string_to_list, import_code @@ -24,16 +25,30 @@ class Optimizations(str, Enum): accuracy = "accuracy" +class InitValues: + """ + Default values for initialization. Dedicated class to allow synchronized default values for init_config_cli() and + init_config(), i.e. initialization calls via CLI respectively Python. + """ + + lang = "en" + pipeline = SimpleFrozenList(["tagger", "parser", "ner"]) + optimize = Optimizations.efficiency + gpu = False + pretraining = False + force_overwrite = False + + @init_cli.command("config") def init_config_cli( # fmt: off output_file: Path = Arg(..., help="File to save the config to or - for stdout (will only output config and no additional logging info)", allow_dash=True), - lang: str = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"), - pipeline: str = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"), - optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."), - gpu: bool = Opt(False, "--gpu", "-G", help="Whether the model can run on GPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."), - pretraining: bool = Opt(False, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"), - force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"), + lang: str = Opt(InitValues.lang, "--lang", "-l", help="Two-letter code of the language to use"), + pipeline: str = Opt(",".join(InitValues.pipeline), "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"), + optimize: Optimizations = Opt(InitValues.optimize, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."), + gpu: bool = Opt(InitValues.gpu, "--gpu", "-G", help="Whether the model can run on GPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."), + pretraining: bool = Opt(InitValues.pretraining, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"), + force_overwrite: bool = Opt(InitValues.force_overwrite, "--force", "-F", help="Force overwriting the output file"), # fmt: on ): """ @@ -133,11 +148,11 @@ def fill_config( def init_config( *, - lang: str, - pipeline: List[str], - optimize: str, - gpu: bool, - pretraining: bool = False, + lang: str = InitValues.lang, + pipeline: List[str] = InitValues.pipeline, + optimize: str = InitValues.optimize, + gpu: bool = InitValues.gpu, + pretraining: bool = InitValues.pretraining, silent: bool = True, ) -> Config: msg = Printer(no_print=silent) From d50668dbf054dddc42bb55dcf3431affc4660736 Mon Sep 17 00:00:00 2001 From: Raphael Mitsch Date: Fri, 17 Jun 2022 15:55:34 +0200 Subject: [PATCH 008/138] Made _initialize_X() methods private. (#10978) --- spacy/kb.pyx | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/spacy/kb.pyx b/spacy/kb.pyx index 9a765c8e4..ae1983a8d 100644 --- a/spacy/kb.pyx +++ b/spacy/kb.pyx @@ -93,14 +93,14 @@ cdef class KnowledgeBase: self.vocab = vocab self._create_empty_vectors(dummy_hash=self.vocab.strings[""]) - def initialize_entities(self, int64_t nr_entities): + def _initialize_entities(self, int64_t nr_entities): self._entry_index = PreshMap(nr_entities + 1) self._entries = entry_vec(nr_entities + 1) - def initialize_vectors(self, int64_t nr_entities): + def _initialize_vectors(self, int64_t nr_entities): self._vectors_table = float_matrix(nr_entities + 1) - def initialize_aliases(self, int64_t nr_aliases): + def _initialize_aliases(self, int64_t nr_aliases): self._alias_index = PreshMap(nr_aliases + 1) self._aliases_table = alias_vec(nr_aliases + 1) @@ -155,8 +155,8 @@ cdef class KnowledgeBase: raise ValueError(Errors.E140) nr_entities = len(set(entity_list)) - self.initialize_entities(nr_entities) - self.initialize_vectors(nr_entities) + self._initialize_entities(nr_entities) + self._initialize_vectors(nr_entities) i = 0 cdef KBEntryC entry @@ -388,9 +388,9 @@ cdef class KnowledgeBase: nr_entities = header[0] nr_aliases = header[1] entity_vector_length = header[2] - self.initialize_entities(nr_entities) - self.initialize_vectors(nr_entities) - self.initialize_aliases(nr_aliases) + self._initialize_entities(nr_entities) + self._initialize_vectors(nr_entities) + self._initialize_aliases(nr_aliases) self.entity_vector_length = entity_vector_length def deserialize_vectors(b): @@ -512,8 +512,8 @@ cdef class KnowledgeBase: cdef int64_t entity_vector_length reader.read_header(&nr_entities, &entity_vector_length) - self.initialize_entities(nr_entities) - self.initialize_vectors(nr_entities) + self._initialize_entities(nr_entities) + self._initialize_vectors(nr_entities) self.entity_vector_length = entity_vector_length # STEP 1: load entity vectors @@ -552,7 +552,7 @@ cdef class KnowledgeBase: # STEP 3: load aliases cdef int64_t nr_aliases reader.read_alias_length(&nr_aliases) - self.initialize_aliases(nr_aliases) + self._initialize_aliases(nr_aliases) cdef int64_t nr_candidates cdef vector[int64_t] entry_indices From 6313787fb65002328a5858c2c3f5c5db29ebe3e1 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 17 Jun 2022 19:41:55 +0100 Subject: [PATCH 009/138] Auto-format code with black (#10977) Co-authored-by: explosion-bot --- spacy/ml/_precomputable_affine.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/ml/_precomputable_affine.py b/spacy/ml/_precomputable_affine.py index 007d68aca..7a25e7574 100644 --- a/spacy/ml/_precomputable_affine.py +++ b/spacy/ml/_precomputable_affine.py @@ -23,7 +23,7 @@ def forward(model, X, is_train): nI = model.get_dim("nI") W = model.get_param("W") # Preallocate array for layer output, including padding. - Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False) + Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False) model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:]) Yf = Yf.reshape((Yf.shape[0], nF, nO, nP)) Yf[0] = model.get_param("pad") From eaeca5eb6a6e233b1f1f73c47fbfaf3f51720c18 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Fri, 17 Jun 2022 20:02:37 +0100 Subject: [PATCH 010/138] account for NER labels with a hyphen in the name (#10960) * account for NER labels with a hyphen in the name * cleanup * fix docstring * add return type to helper method * shorter method and few more occurrences * user helper method across repo * fix circular import * partial revert to avoid circular import --- spacy/cli/debug_data.py | 8 +++---- .../pipeline/_parser_internals/arc_eager.pyx | 3 ++- spacy/pipeline/_parser_internals/ner.pyx | 3 ++- spacy/pipeline/dep_parser.pyx | 3 ++- spacy/pipeline/ner.pyx | 4 ++-- spacy/tests/parser/test_ner.py | 22 ++++++++++++++++--- spacy/tests/util.py | 3 ++- spacy/training/__init__.py | 1 + spacy/training/augment.py | 8 +++---- spacy/training/example.pyx | 4 ++-- spacy/training/iob_utils.py | 10 ++++++++- 11 files changed, 48 insertions(+), 21 deletions(-) diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index 0061515c6..8a6dde955 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -10,7 +10,7 @@ import math from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides from ._util import import_code, debug_cli -from ..training import Example +from ..training import Example, remove_bilu_prefix from ..training.initialize import get_sourced_components from ..schemas import ConfigSchemaTraining from ..pipeline._parser_internals import nonproj @@ -758,9 +758,9 @@ def _compile_gold( # "Illegal" whitespace entity data["ws_ents"] += 1 if label.startswith(("B-", "U-")): - combined_label = label.split("-")[1] + combined_label = remove_bilu_prefix(label) data["ner"][combined_label] += 1 - if sent_starts[i] == True and label.startswith(("I-", "L-")): + if sent_starts[i] and label.startswith(("I-", "L-")): data["boundary_cross_ents"] += 1 elif label == "-": data["ner"]["-"] += 1 @@ -908,7 +908,7 @@ def _get_examples_without_label( for eg in data: if component == "ner": labels = [ - label.split("-")[1] + remove_bilu_prefix(label) for label in eg.get_aligned_ner() if label not in ("O", "-", None) ] diff --git a/spacy/pipeline/_parser_internals/arc_eager.pyx b/spacy/pipeline/_parser_internals/arc_eager.pyx index d60f1c3e6..257b5ef8a 100644 --- a/spacy/pipeline/_parser_internals/arc_eager.pyx +++ b/spacy/pipeline/_parser_internals/arc_eager.pyx @@ -10,6 +10,7 @@ from ...strings cimport hash_string from ...structs cimport TokenC from ...tokens.doc cimport Doc, set_children_from_heads from ...tokens.token cimport MISSING_DEP +from ...training import split_bilu_label from ...training.example cimport Example from .stateclass cimport StateClass from ._state cimport StateC, ArcC @@ -687,7 +688,7 @@ cdef class ArcEager(TransitionSystem): return self.c[name_or_id] name = name_or_id if '-' in name: - move_str, label_str = name.split('-', 1) + move_str, label_str = split_bilu_label(name) label = self.strings[label_str] else: move_str = name diff --git a/spacy/pipeline/_parser_internals/ner.pyx b/spacy/pipeline/_parser_internals/ner.pyx index 3edeff19a..fab872f00 100644 --- a/spacy/pipeline/_parser_internals/ner.pyx +++ b/spacy/pipeline/_parser_internals/ner.pyx @@ -13,6 +13,7 @@ from ...typedefs cimport weight_t, attr_t from ...lexeme cimport Lexeme from ...attrs cimport IS_SPACE from ...structs cimport TokenC, SpanC +from ...training import split_bilu_label from ...training.example cimport Example from .stateclass cimport StateClass from ._state cimport StateC @@ -182,7 +183,7 @@ cdef class BiluoPushDown(TransitionSystem): if name == '-' or name == '' or name is None: return Transition(clas=0, move=MISSING, label=0, score=0) elif '-' in name: - move_str, label_str = name.split('-', 1) + move_str, label_str = split_bilu_label(name) # Deprecated, hacky way to denote 'not this entity' if label_str.startswith('!'): raise ValueError(Errors.E869.format(label=name)) diff --git a/spacy/pipeline/dep_parser.pyx b/spacy/pipeline/dep_parser.pyx index 50c57ee5b..e5f686158 100644 --- a/spacy/pipeline/dep_parser.pyx +++ b/spacy/pipeline/dep_parser.pyx @@ -12,6 +12,7 @@ from ..language import Language from ._parser_internals import nonproj from ._parser_internals.nonproj import DELIMITER from ..scorer import Scorer +from ..training import remove_bilu_prefix from ..util import registry @@ -314,7 +315,7 @@ cdef class DependencyParser(Parser): # Get the labels from the model by looking at the available moves for move in self.move_names: if "-" in move: - label = move.split("-")[1] + label = remove_bilu_prefix(move) if DELIMITER in label: label = label.split(DELIMITER)[1] labels.add(label) diff --git a/spacy/pipeline/ner.pyx b/spacy/pipeline/ner.pyx index 4835a8c4b..25f48c9f8 100644 --- a/spacy/pipeline/ner.pyx +++ b/spacy/pipeline/ner.pyx @@ -6,10 +6,10 @@ from thinc.api import Model, Config from ._parser_internals.transition_system import TransitionSystem from .transition_parser cimport Parser from ._parser_internals.ner cimport BiluoPushDown - from ..language import Language from ..scorer import get_ner_prf, PRFScore from ..util import registry +from ..training import remove_bilu_prefix default_model_config = """ @@ -242,7 +242,7 @@ cdef class EntityRecognizer(Parser): def labels(self): # Get the labels from the model by looking at the available moves, e.g. # B-PERSON, I-PERSON, L-PERSON, U-PERSON - labels = set(move.split("-")[1] for move in self.move_names + labels = set(remove_bilu_prefix(move) for move in self.move_names if move[0] in ("B", "I", "L", "U")) return tuple(sorted(labels)) diff --git a/spacy/tests/parser/test_ner.py b/spacy/tests/parser/test_ner.py index b3b29d1f9..53bb2d554 100644 --- a/spacy/tests/parser/test_ner.py +++ b/spacy/tests/parser/test_ner.py @@ -10,7 +10,7 @@ from spacy.lang.it import Italian from spacy.language import Language from spacy.lookups import Lookups from spacy.pipeline._parser_internals.ner import BiluoPushDown -from spacy.training import Example, iob_to_biluo +from spacy.training import Example, iob_to_biluo, split_bilu_label from spacy.tokens import Doc, Span from spacy.vocab import Vocab import logging @@ -110,6 +110,9 @@ def test_issue2385(): # maintain support for iob2 format tags3 = ("B-PERSON", "I-PERSON", "B-PERSON") assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"] + # ensure it works with hyphens in the name + tags4 = ("B-MULTI-PERSON", "I-MULTI-PERSON", "B-MULTI-PERSON") + assert iob_to_biluo(tags4) == ["B-MULTI-PERSON", "L-MULTI-PERSON", "U-MULTI-PERSON"] @pytest.mark.issue(2800) @@ -154,6 +157,19 @@ def test_issue3209(): assert ner2.move_names == move_names +def test_labels_from_BILUO(): + """Test that labels are inferred correctly when there's a - in label. + """ + nlp = English() + ner = nlp.add_pipe("ner") + ner.add_label("LARGE-ANIMAL") + nlp.initialize() + move_names = ["O", "B-LARGE-ANIMAL", "I-LARGE-ANIMAL", "L-LARGE-ANIMAL", "U-LARGE-ANIMAL"] + labels = {"LARGE-ANIMAL"} + assert ner.move_names == move_names + assert set(ner.labels) == labels + + @pytest.mark.issue(4267) def test_issue4267(): """Test that running an entity_ruler after ner gives consistent results""" @@ -298,7 +314,7 @@ def test_oracle_moves_missing_B(en_vocab): elif tag == "O": moves.add_action(move_types.index("O"), "") else: - action, label = tag.split("-") + action, label = split_bilu_label(tag) moves.add_action(move_types.index("B"), label) moves.add_action(move_types.index("I"), label) moves.add_action(move_types.index("L"), label) @@ -324,7 +340,7 @@ def test_oracle_moves_whitespace(en_vocab): elif tag == "O": moves.add_action(move_types.index("O"), "") else: - action, label = tag.split("-") + action, label = split_bilu_label(tag) moves.add_action(move_types.index(action), label) moves.get_oracle_sequence(example) diff --git a/spacy/tests/util.py b/spacy/tests/util.py index 365ea4349..d5f3c39ff 100644 --- a/spacy/tests/util.py +++ b/spacy/tests/util.py @@ -5,6 +5,7 @@ import srsly from spacy.tokens import Doc from spacy.vocab import Vocab from spacy.util import make_tempdir # noqa: F401 +from spacy.training import split_bilu_label from thinc.api import get_current_ops @@ -40,7 +41,7 @@ def apply_transition_sequence(parser, doc, sequence): desired state.""" for action_name in sequence: if "-" in action_name: - move, label = action_name.split("-") + move, label = split_bilu_label(action_name) parser.add_label(label) with parser.step_through(doc) as stepwise: for transition in sequence: diff --git a/spacy/training/__init__.py b/spacy/training/__init__.py index a4feb01f4..71d1fa775 100644 --- a/spacy/training/__init__.py +++ b/spacy/training/__init__.py @@ -5,6 +5,7 @@ from .augment import dont_augment, orth_variants_augmenter # noqa: F401 from .iob_utils import iob_to_biluo, biluo_to_iob # noqa: F401 from .iob_utils import offsets_to_biluo_tags, biluo_tags_to_offsets # noqa: F401 from .iob_utils import biluo_tags_to_spans, tags_to_entities # noqa: F401 +from .iob_utils import split_bilu_label, remove_bilu_prefix # noqa: F401 from .gold_io import docs_to_json, read_json_file # noqa: F401 from .batchers import minibatch_by_padded_size, minibatch_by_words # noqa: F401 from .loggers import console_logger # noqa: F401 diff --git a/spacy/training/augment.py b/spacy/training/augment.py index 59a39c7ee..55d780ba4 100644 --- a/spacy/training/augment.py +++ b/spacy/training/augment.py @@ -3,10 +3,10 @@ from typing import Optional import random import itertools from functools import partial -from pydantic import BaseModel, StrictStr from ..util import registry from .example import Example +from .iob_utils import split_bilu_label if TYPE_CHECKING: from ..language import Language # noqa: F401 @@ -278,10 +278,8 @@ def make_whitespace_variant( ent_prev = doc_dict["entities"][position - 1] ent_next = doc_dict["entities"][position] if "-" in ent_prev and "-" in ent_next: - ent_iob_prev = ent_prev.split("-")[0] - ent_type_prev = ent_prev.split("-", 1)[1] - ent_iob_next = ent_next.split("-")[0] - ent_type_next = ent_next.split("-", 1)[1] + ent_iob_prev, ent_type_prev = split_bilu_label(ent_prev) + ent_iob_next, ent_type_next = split_bilu_label(ent_next) if ( ent_iob_prev in ("B", "I") and ent_iob_next in ("I", "L") diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx index 3035388a6..045f0b483 100644 --- a/spacy/training/example.pyx +++ b/spacy/training/example.pyx @@ -9,7 +9,7 @@ from ..tokens.span import Span from ..attrs import IDS from .alignment import Alignment from .iob_utils import biluo_to_iob, offsets_to_biluo_tags, doc_to_biluo_tags -from .iob_utils import biluo_tags_to_spans +from .iob_utils import biluo_tags_to_spans, remove_bilu_prefix from ..errors import Errors, Warnings from ..pipeline._parser_internals import nonproj from ..tokens.token cimport MISSING_DEP @@ -519,7 +519,7 @@ def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces): else: ent_iobs.append(iob_tag.split("-")[0]) if iob_tag.startswith("I") or iob_tag.startswith("B"): - ent_types.append(iob_tag.split("-", 1)[1]) + ent_types.append(remove_bilu_prefix(iob_tag)) else: ent_types.append("") return ent_iobs, ent_types diff --git a/spacy/training/iob_utils.py b/spacy/training/iob_utils.py index 64492c2bc..61f83a1c3 100644 --- a/spacy/training/iob_utils.py +++ b/spacy/training/iob_utils.py @@ -1,4 +1,4 @@ -from typing import List, Dict, Tuple, Iterable, Union, Iterator +from typing import List, Dict, Tuple, Iterable, Union, Iterator, cast import warnings from ..errors import Errors, Warnings @@ -218,6 +218,14 @@ def tags_to_entities(tags: Iterable[str]) -> List[Tuple[str, int, int]]: return entities +def split_bilu_label(label: str) -> Tuple[str, str]: + return cast(Tuple[str, str], label.split("-", 1)) + + +def remove_bilu_prefix(label: str) -> str: + return label.split("-", 1)[1] + + # Fallbacks to make backwards-compat easier offsets_from_biluo_tags = biluo_tags_to_offsets spans_from_biluo_tags = biluo_tags_to_spans From 4c058eb40a1843191352a1501bead0dc99526bed Mon Sep 17 00:00:00 2001 From: Raphael Mitsch Date: Fri, 17 Jun 2022 21:24:13 +0200 Subject: [PATCH 011/138] `enable` argument for spacy.load() (#10784) * Enable flag on spacy.load: foundation for include, enable arguments. * Enable flag on spacy.load: fixed tests. * Enable flag on spacy.load: switched from pretrained model to empty model with added pipes for tests. * Enable flag on spacy.load: switched to more consistent error on misspecification of component activity. Test refactoring. Added to default config. * Enable flag on spacy.load: added support for fields not in pipeline. * Enable flag on spacy.load: removed serialization fields from supported fields. * Enable flag on spacy.load: removed 'enable' from config again. * Enable flag on spacy.load: relaxed checks in _resolve_component_activation_status() to allow non-standard pipes. * Enable flag on spacy.load: fixed relaxed checks for _resolve_component_activation_status() to allow non-standard pipes. Extended tests. * Enable flag on spacy.load: comments w.r.t. resolution workarounds. * Enable flag on spacy.load: remove include fields. Update website docs. * Enable flag on spacy.load: updates w.r.t. changes in master. * Implement Doc.from_json(): update docstrings. Co-authored-by: Adriane Boyd * Implement Doc.from_json(): remove newline. Co-authored-by: Adriane Boyd * Implement Doc.from_json(): change error message for E1038. Co-authored-by: Adriane Boyd * Enable flag on spacy.load: wrapped docstring for _resolve_component_status() at 80 chars. * Enable flag on spacy.load: changed exmples for enable flag. * Remove newline. Co-authored-by: Sofie Van Landeghem * Fix docstring for Language._resolve_component_status(). * Rename E1038 to E1042. Co-authored-by: Adriane Boyd Co-authored-by: Sofie Van Landeghem --- spacy/__init__.py | 10 ++++- spacy/errors.py | 2 + spacy/language.py | 50 ++++++++++++++++++++- spacy/tests/pipeline/test_pipe_methods.py | 52 +++++++++++++++++++++- spacy/util.py | 37 ++++++++++++--- website/docs/api/top-level.md | 1 + website/docs/usage/processing-pipelines.md | 12 +++++ 7 files changed, 155 insertions(+), 9 deletions(-) diff --git a/spacy/__init__.py b/spacy/__init__.py index ca47edc94..069215fda 100644 --- a/spacy/__init__.py +++ b/spacy/__init__.py @@ -32,6 +32,7 @@ def load( *, vocab: Union[Vocab, bool] = True, disable: Iterable[str] = util.SimpleFrozenList(), + enable: Iterable[str] = util.SimpleFrozenList(), exclude: Iterable[str] = util.SimpleFrozenList(), config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(), ) -> Language: @@ -42,6 +43,8 @@ def load( disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (but can be enabled later using nlp.enable_pipe). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict @@ -49,7 +52,12 @@ def load( RETURNS (Language): The loaded nlp object. """ return util.load_model( - name, vocab=vocab, disable=disable, exclude=exclude, config=config + name, + vocab=vocab, + disable=disable, + enable=enable, + exclude=exclude, + config=config, ) diff --git a/spacy/errors.py b/spacy/errors.py index 384a6a4d2..14010565b 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -932,6 +932,8 @@ class Errors(metaclass=ErrorsWithCodes): E1040 = ("Doc.from_json requires all tokens to have the same attributes. " "Some tokens do not contain annotation for: {partial_attrs}") E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}") + E1042 = ("Function was called with `{arg1}`={arg1_values} and " + "`{arg2}`={arg2_values} but these arguments are conflicting.") # Deprecated model shortcuts, only used in errors and warnings diff --git a/spacy/language.py b/spacy/language.py index 42847823f..816bd6531 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -1,4 +1,4 @@ -from typing import Iterator, Optional, Any, Dict, Callable, Iterable +from typing import Iterator, Optional, Any, Dict, Callable, Iterable, Collection from typing import Union, Tuple, List, Set, Pattern, Sequence from typing import NoReturn, TYPE_CHECKING, TypeVar, cast, overload @@ -1694,6 +1694,7 @@ class Language: *, vocab: Union[Vocab, bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), meta: Dict[str, Any] = SimpleFrozenDict(), auto_fill: bool = True, @@ -1708,6 +1709,8 @@ class Language: disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (and can be enabled using `nlp.enable_pipe`). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. meta (Dict[str, Any]): Meta overrides for nlp.meta. @@ -1861,8 +1864,15 @@ class Language: # Restore the original vocab after sourcing if necessary if vocab_b is not None: nlp.vocab.from_bytes(vocab_b) - disabled_pipes = [*config["nlp"]["disabled"], *disable] + + # Resolve disabled/enabled settings. + disabled_pipes = cls._resolve_component_status( + [*config["nlp"]["disabled"], *disable], + [*config["nlp"].get("enabled", []), *enable], + config["nlp"]["pipeline"], + ) nlp._disabled = set(p for p in disabled_pipes if p not in exclude) + nlp.batch_size = config["nlp"]["batch_size"] nlp.config = filled if auto_fill else config if after_pipeline_creation is not None: @@ -2014,6 +2024,42 @@ class Language: serializers["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude) util.to_disk(path, serializers, exclude) + @staticmethod + def _resolve_component_status( + disable: Iterable[str], enable: Iterable[str], pipe_names: Collection[str] + ) -> Tuple[str, ...]: + """Derives whether (1) `disable` and `enable` values are consistent and (2) + resolves those to a single set of disabled components. Raises an error in + case of inconsistency. + + disable (Iterable[str]): Names of components or serialization fields to disable. + enable (Iterable[str]): Names of pipeline components to enable. + pipe_names (Iterable[str]): Names of all pipeline components. + + RETURNS (Tuple[str, ...]): Names of components to exclude from pipeline w.r.t. + specified includes and excludes. + """ + + if disable is not None and isinstance(disable, str): + disable = [disable] + to_disable = disable + + if enable: + to_disable = [ + pipe_name for pipe_name in pipe_names if pipe_name not in enable + ] + if disable and disable != to_disable: + raise ValueError( + Errors.E1042.format( + arg1="enable", + arg2="disable", + arg1_values=enable, + arg2_values=disable, + ) + ) + + return tuple(to_disable) + def from_disk( self, path: Union[str, Path], diff --git a/spacy/tests/pipeline/test_pipe_methods.py b/spacy/tests/pipeline/test_pipe_methods.py index 4b8fb8ebc..6f00a1cd9 100644 --- a/spacy/tests/pipeline/test_pipe_methods.py +++ b/spacy/tests/pipeline/test_pipe_methods.py @@ -4,13 +4,14 @@ import numpy import pytest from thinc.api import get_current_ops +import spacy from spacy.lang.en import English from spacy.lang.en.syntax_iterators import noun_chunks from spacy.language import Language from spacy.pipeline import TrainablePipe from spacy.tokens import Doc from spacy.training import Example -from spacy.util import SimpleFrozenList, get_arg_names +from spacy.util import SimpleFrozenList, get_arg_names, make_tempdir from spacy.vocab import Vocab @@ -602,3 +603,52 @@ def test_update_with_annotates(): assert results[component] == "".join(eg.predicted.text for eg in examples) for component in components - set(components_to_annotate): assert results[component] == "" + + +def test_load_disable_enable() -> None: + """ + Tests spacy.load() with dis-/enabling components. + """ + + base_nlp = English() + for pipe in ("sentencizer", "tagger", "parser"): + base_nlp.add_pipe(pipe) + + with make_tempdir() as tmp_dir: + base_nlp.to_disk(tmp_dir) + to_disable = ["parser", "tagger"] + to_enable = ["tagger", "parser"] + + # Setting only `disable`. + nlp = spacy.load(tmp_dir, disable=to_disable) + assert all([comp_name in nlp.disabled for comp_name in to_disable]) + + # Setting only `enable`. + nlp = spacy.load(tmp_dir, enable=to_enable) + assert all( + [ + (comp_name in nlp.disabled) is (comp_name not in to_enable) + for comp_name in nlp.component_names + ] + ) + + # Testing consistent enable/disable combination. + nlp = spacy.load( + tmp_dir, + enable=to_enable, + disable=[ + comp_name + for comp_name in nlp.component_names + if comp_name not in to_enable + ], + ) + assert all( + [ + (comp_name in nlp.disabled) is (comp_name not in to_enable) + for comp_name in nlp.component_names + ] + ) + + # Inconsistent enable/disable combination. + with pytest.raises(ValueError): + spacy.load(tmp_dir, enable=to_enable, disable=["parser"]) diff --git a/spacy/util.py b/spacy/util.py index 0111c839e..9b871b87b 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -1,6 +1,6 @@ from typing import List, Mapping, NoReturn, Union, Dict, Any, Set, cast from typing import Optional, Iterable, Callable, Tuple, Type -from typing import Iterator, Type, Pattern, Generator, TYPE_CHECKING +from typing import Iterator, Pattern, Generator, TYPE_CHECKING from types import ModuleType import os import importlib @@ -12,7 +12,6 @@ from thinc.api import NumpyOps, get_current_ops, Adam, Config, Optimizer from thinc.api import ConfigValidationError, Model import functools import itertools -import numpy.random import numpy import srsly import catalogue @@ -400,6 +399,7 @@ def load_model( *, vocab: Union["Vocab", bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": @@ -409,11 +409,19 @@ def load_model( vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. disable (Iterable[str]): Names of pipeline components to disable. + enable (Iterable[str]): Names of pipeline components to enable. All others will be disabled. + exclude (Iterable[str]): Names of pipeline components to exclude. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. RETURNS (Language): The loaded nlp object. """ - kwargs = {"vocab": vocab, "disable": disable, "exclude": exclude, "config": config} + kwargs = { + "vocab": vocab, + "disable": disable, + "enable": enable, + "exclude": exclude, + "config": config, + } if isinstance(name, str): # name or string path if name.startswith("blank:"): # shortcut for blank model return get_lang_class(name.replace("blank:", ""))() @@ -433,6 +441,7 @@ def load_model_from_package( *, vocab: Union["Vocab", bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": @@ -444,6 +453,8 @@ def load_model_from_package( disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (and can be enabled using `nlp.enable_pipe`). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict @@ -451,7 +462,7 @@ def load_model_from_package( RETURNS (Language): The loaded nlp object. """ cls = importlib.import_module(name) - return cls.load(vocab=vocab, disable=disable, exclude=exclude, config=config) # type: ignore[attr-defined] + return cls.load(vocab=vocab, disable=disable, enable=enable, exclude=exclude, config=config) # type: ignore[attr-defined] def load_model_from_path( @@ -460,6 +471,7 @@ def load_model_from_path( meta: Optional[Dict[str, Any]] = None, vocab: Union["Vocab", bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": @@ -473,6 +485,8 @@ def load_model_from_path( disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (and can be enabled using `nlp.enable_pipe`). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict @@ -487,7 +501,12 @@ def load_model_from_path( overrides = dict_to_dot(config) config = load_config(config_path, overrides=overrides) nlp = load_model_from_config( - config, vocab=vocab, disable=disable, exclude=exclude, meta=meta + config, + vocab=vocab, + disable=disable, + enable=enable, + exclude=exclude, + meta=meta, ) return nlp.from_disk(model_path, exclude=exclude, overrides=overrides) @@ -498,6 +517,7 @@ def load_model_from_config( meta: Dict[str, Any] = SimpleFrozenDict(), vocab: Union["Vocab", bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), auto_fill: bool = False, validate: bool = True, @@ -512,6 +532,8 @@ def load_model_from_config( disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (and can be enabled using `nlp.enable_pipe`). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. auto_fill (bool): Whether to auto-fill config with missing defaults. @@ -530,6 +552,7 @@ def load_model_from_config( config, vocab=vocab, disable=disable, + enable=enable, exclude=exclude, auto_fill=auto_fill, validate=validate, @@ -594,6 +617,7 @@ def load_model_from_init_py( *, vocab: Union["Vocab", bool] = True, disable: Iterable[str] = SimpleFrozenList(), + enable: Iterable[str] = SimpleFrozenList(), exclude: Iterable[str] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": @@ -605,6 +629,8 @@ def load_model_from_init_py( disable (Iterable[str]): Names of pipeline components to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. + enable (Iterable[str]): Names of pipeline components to enable. All other + pipes will be disabled (and can be enabled using `nlp.enable_pipe`). exclude (Iterable[str]): Names of pipeline components to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict @@ -622,6 +648,7 @@ def load_model_from_init_py( vocab=vocab, meta=meta, disable=disable, + enable=enable, exclude=exclude, config=config, ) diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index 889c6437c..c96c571e9 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -51,6 +51,7 @@ specified separately using the new `exclude` keyword argument. | _keyword-only_ | | | `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | | `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | +| `enable` | Names of pipeline components to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled. ~~List[str]~~ | | `exclude` 3 | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | | `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | | **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ | diff --git a/website/docs/usage/processing-pipelines.md b/website/docs/usage/processing-pipelines.md index 4f75b5193..bd28810ae 100644 --- a/website/docs/usage/processing-pipelines.md +++ b/website/docs/usage/processing-pipelines.md @@ -362,6 +362,18 @@ nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser"]) nlp.enable_pipe("tagger") ``` +In addition to `disable`, `spacy.load()` also accepts `enable`. If `enable` is +set, all components except for those in `enable` are disabled. + +```python +# Load the complete pipeline, but disable all components except for tok2vec and tagger +nlp = spacy.load("en_core_web_sm", enable=["tok2vec", "tagger"]) +# Has the same effect, as NER is already not part of enabled set of components +nlp = spacy.load("en_core_web_sm", enable=["tok2vec", "tagger"], disable=["ner"]) +# Will raise an error, as the sets of enabled and disabled components are conflicting +nlp = spacy.load("en_core_web_sm", enable=["ner"], disable=["ner"]) +``` + As of v3.0, the `disable` keyword argument specifies components to load but From f00254ae276eca963991efb8a45748b2948b1c77 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Mon, 20 Jun 2022 08:48:40 +0100 Subject: [PATCH 012/138] add counts to verbose list of NER labels (#10957) --- spacy/cli/debug_data.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index 8a6dde955..bd05471b1 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -361,7 +361,7 @@ def debug_data( if label != "-" ] labels_with_counts = _format_labels(labels_with_counts, counts=True) - msg.text(f"Labels in train data: {_format_labels(labels)}", show=verbose) + msg.text(f"Labels in train data: {labels_with_counts}", show=verbose) missing_labels = model_labels - labels if missing_labels: msg.warn( From cdad815c6854a5349abbde469f2478585b118e6a Mon Sep 17 00:00:00 2001 From: Lucaterre Date: Mon, 20 Jun 2022 14:28:49 +0200 Subject: [PATCH 013/138] updated spacy universe for spacyfishing --- .github/contributors/Lucaterre.md | 106 ++++++++++++++++++++++++++++++ website/meta/universe.json | 29 ++++++++ 2 files changed, 135 insertions(+) create mode 100644 .github/contributors/Lucaterre.md diff --git a/.github/contributors/Lucaterre.md b/.github/contributors/Lucaterre.md new file mode 100644 index 000000000..5da763b22 --- /dev/null +++ b/.github/contributors/Lucaterre.md @@ -0,0 +1,106 @@ +# spaCy contributor agreement + +This spaCy Contributor Agreement (**"SCA"**) is based on the +[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). +The SCA applies to any contribution that you make to any product or project +managed by us (the **"project"**), and sets out the intellectual property rights +you grant to us in the contributed materials. The term **"us"** shall mean +[ExplosionAI GmbH](https://explosion.ai/legal). The term +**"you"** shall mean the person or entity identified below. + +If you agree to be bound by these terms, fill in the information requested +below and include the filled-in version with your first pull request, under the +folder [`.github/contributors/`](/.github/contributors/). The name of the file +should be your GitHub username, with the extension `.md`. For example, the user +example_user would create the file `.github/contributors/example_user.md`. + +Read this agreement carefully before signing. These terms and conditions +constitute a binding legal agreement. + +## Contributor Agreement + +1. The term "contribution" or "contributed materials" means any source code, +object code, patch, tool, sample, graphic, specification, manual, +documentation, or any other material posted or submitted by you to the project. + +2. With respect to any worldwide copyrights, or copyright applications and +registrations, in your contribution: + + * you hereby assign to us joint ownership, and to the extent that such + assignment is or becomes invalid, ineffective or unenforceable, you hereby + grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, + royalty-free, unrestricted license to exercise all rights under those + copyrights. This includes, at our option, the right to sublicense these same + rights to third parties through multiple levels of sublicensees or other + licensing arrangements; + + * you agree that each of us can do all things in relation to your + contribution as if each of us were the sole owners, and if one of us makes + a derivative work of your contribution, the one who makes the derivative + work (or has it made will be the sole owner of that derivative work; + + * you agree that you will not assert any moral rights in your contribution + against us, our licensees or transferees; + + * you agree that we may register a copyright in your contribution and + exercise all ownership rights associated with it; and + + * you agree that neither of us has any duty to consult with, obtain the + consent of, pay or render an accounting to the other for any use or + distribution of your contribution. + +3. With respect to any patents you own, or that you can license without payment +to any third party, you hereby grant to us a perpetual, irrevocable, +non-exclusive, worldwide, no-charge, royalty-free license to: + + * make, have made, use, sell, offer to sell, import, and otherwise transfer + your contribution in whole or in part, alone or in combination with or + included in any product, work or materials arising out of the project to + which your contribution was submitted, and + + * at our option, to sublicense these same rights to third parties through + multiple levels of sublicensees or other licensing arrangements. + +4. Except as set out above, you keep all right, title, and interest in your +contribution. The rights that you grant to us under these terms are effective +on the date you first submitted a contribution to us, even if your submission +took place before the date you sign these terms. + +5. You covenant, represent, warrant and agree that: + + * Each contribution that you submit is and shall be an original work of + authorship and you can legally grant the rights set out in this SCA; + + * to the best of your knowledge, each contribution will not violate any + third party's copyrights, trademarks, patents, or other intellectual + property rights; and + + * each contribution shall be in compliance with U.S. export control laws and + other applicable export and import laws. You agree to notify us if you + become aware of any circumstance which would make any of the foregoing + representations inaccurate in any respect. We may publicly disclose your + participation in the project, including the fact that you have signed the SCA. + +6. This SCA is governed by the laws of the State of California and applicable +U.S. Federal law. Any choice of law rules will not apply. + +7. Please place an “x” on one of the applicable statement below. Please do NOT +mark both statements: + + * [x] I am signing on behalf of myself as an individual and no other person + or entity, including my employer, has or will have rights with respect to my + contributions. + + * [ ] I am signing on behalf of my employer or a legal entity and I have the + actual authority to contractually bind that entity. + +## Contributor Details + +| Field | Entry | +|------------------------------- |---------------| +| Name | Lucas Terriel | +| Company name (if applicable) | | +| Title or role (if applicable) | | +| Date | 2022-06-20 | +| GitHub username | Lucaterre | +| Website (optional) | | \ No newline at end of file diff --git a/website/meta/universe.json b/website/meta/universe.json index 9b644adf4..ce2c63739 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,34 @@ { "resources": [ + { + "id": "spacyfishing", + "title": "spaCy fishing", + "slogan": "Named entity disambiguation and linking on Wikidata in spaCy with Entity-Fishing.", + "description": "A spaCy wrapper of Entity-Fishing for named entity disambiguation and linking against a Wikidata knowledge base.", + "github": "Lucaterre/spacyfishing", + "pip": "spacyfishing", + "code_example": [ + "import spacy", + "text = 'Victor Hugo and Honoré de Balzac are French writers who lived in Paris.'", + "nlp = spacy.load('en_core_web_sm')", + "nlp.add_pipe('spacyfishing')", + "doc = nlp(text)", + "for span in doc.ents:", + " print((ent.text, ent.label_, ent._.kb_qid, ent._.url_wikidata, ent._.nerd_score))", + "# ('Victor Hugo', 'PERSON', 'Q535', 'https://www.wikidata.org/wiki/Q535', 0.972)", + "# ('Honoré de Balzac', 'PERSON', 'Q9711', 'https://www.wikidata.org/wiki/Q9711', 0.9724)", + "# ('French', 'NORP', 'Q121842', 'https://www.wikidata.org/wiki/Q121842', 0.3739)", + "# ('Paris', 'GPE', 'Q90', 'https://www.wikidata.org/wiki/Q90', 0.5652)", + "## Set parameter `extra_info` to `True` and check also span._.description, span._.src_description, span._.normal_term, span._.other_ids" + ], + "category": ["models", "pipeline"], + "tags": ["NER", "NEL"], + "author": "Lucas Terriel", + "author_links": { + "twitter": "TerreLuca", + "github": "Lucaterre" + } + }, { "id": "aim-spacy", "title": "Aim-spaCy", From 2820d7dd8daa66e12bb7c07b1dcfb31423741a72 Mon Sep 17 00:00:00 2001 From: Lucaterre Date: Mon, 20 Jun 2022 15:26:23 +0200 Subject: [PATCH 014/138] correct typo in universe.json for 'code_example' key : pipe name 'entityfishing' --- website/meta/universe.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index ce2c63739..4a3ec6225 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -11,7 +11,7 @@ "import spacy", "text = 'Victor Hugo and Honoré de Balzac are French writers who lived in Paris.'", "nlp = spacy.load('en_core_web_sm')", - "nlp.add_pipe('spacyfishing')", + "nlp.add_pipe('entityfishing')", "doc = nlp(text)", "for span in doc.ents:", " print((ent.text, ent.label_, ent._.kb_qid, ent._.url_wikidata, ent._.nerd_score))", From a08ca064e53810cf1c7c0aa1ee7030654d11b5aa Mon Sep 17 00:00:00 2001 From: Victoria <80417010+victorialslocum@users.noreply.github.com> Date: Tue, 21 Jun 2022 01:03:41 -0500 Subject: [PATCH 015/138] Update linguistic-features.md (#10993) Change link for downloading fasttext word vectors --- website/docs/usage/linguistic-features.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/docs/usage/linguistic-features.md b/website/docs/usage/linguistic-features.md index c547ec0bc..9dae6f2ee 100644 --- a/website/docs/usage/linguistic-features.md +++ b/website/docs/usage/linguistic-features.md @@ -1899,7 +1899,7 @@ access to some nice Latin vectors. You can then pass the directory path to > ``` ```cli -$ wget https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.la.300.vec.gz +$ wget https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.la.300.vec.gz $ python -m spacy init vectors en cc.la.300.vec.gz /tmp/la_vectors_wiki_lg ``` From 0271306f1603a3f70870c1786e8783fe39e22bd2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 21 Jun 2022 08:26:59 +0200 Subject: [PATCH 016/138] Use thinc-apple-ops>=0.1.0.dev0 with `apple` extras (#10904) * Use thinc-apple-ops>=0.1.0.dev0 with `apple` extras Also test with thinc-apple-ops that is at least 0.1.0.dev0. * Check thinc-apple-ops on macOS with Python 3.10 Co-authored-by: Adriane Boyd * Use `pip install --pre` for installing thinc-apple-ops in CI Co-authored-by: Adriane Boyd --- .github/azure-steps.yml | 4 ++-- setup.cfg | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index 80c88b0b8..d7233328a 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -111,7 +111,7 @@ steps: condition: eq(variables['python_version'], '3.8') - script: | - ${{ parameters.prefix }} python -m pip install thinc-apple-ops + ${{ parameters.prefix }} python -m pip install --pre thinc-apple-ops ${{ parameters.prefix }} python -m pytest --pyargs spacy displayName: "Run CPU tests with thinc-apple-ops" - condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.9')) + condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.10')) diff --git a/setup.cfg b/setup.cfg index 110a2e4ee..d317847ba 100644 --- a/setup.cfg +++ b/setup.cfg @@ -104,7 +104,7 @@ cuda114 = cuda115 = cupy-cuda115>=5.0.0b4,<11.0.0 apple = - thinc-apple-ops>=0.0.4,<1.0.0 + thinc-apple-ops>=0.1.0.dev0,<1.0.0 # Language tokenizers with external dependencies ja = sudachipy>=0.5.2,!=0.6.1 From 0fa004c4cd718319d750abad896447c114f39106 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Tue, 21 Jun 2022 21:00:07 +0100 Subject: [PATCH 017/138] the 'new' indicator wants a 'number' (#10997) --- website/docs/api/spanruler.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/docs/api/spanruler.md b/website/docs/api/spanruler.md index a1c222714..b573f7c58 100644 --- a/website/docs/api/spanruler.md +++ b/website/docs/api/spanruler.md @@ -2,7 +2,7 @@ title: SpanRuler tag: class source: spacy/pipeline/span_ruler.py -new: 3.3.1 +new: 3.3 teaser: 'Pipeline component for rule-based span and named entity recognition' api_string_name: span_ruler api_trainable: false From bed23ff291f3e97f5ba6ee42f1a80db7c713b691 Mon Sep 17 00:00:00 2001 From: jademlc <68696651+jademlc@users.noreply.github.com> Date: Wed, 22 Jun 2022 20:45:26 +0200 Subject: [PATCH 018/138] Update serialization methods code block (#11004) * Update serialization methods code block * Update website/docs/usage/saving-loading.md Co-authored-by: Adriane Boyd --- website/docs/usage/saving-loading.md | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/website/docs/usage/saving-loading.md b/website/docs/usage/saving-loading.md index af140e7a7..0fd713a49 100644 --- a/website/docs/usage/saving-loading.md +++ b/website/docs/usage/saving-loading.md @@ -203,11 +203,14 @@ the data to and from a JSON file. ```python ### {highlight="16-23,25-30"} +import json +from spacy import Language from spacy.util import ensure_path @Language.factory("my_component") class CustomComponent: - def __init__(self): + def __init__(self, nlp: Language, name: str = "my_component"): + self.name = name self.data = [] def __call__(self, doc): @@ -231,7 +234,7 @@ class CustomComponent: # This will receive the directory path + /my_component data_path = path / "data.json" with data_path.open("r", encoding="utf8") as f: - self.data = json.loads(f) + self.data = json.load(f) return self ``` From 3335bb9d0c9df99f20460ed18e07d8844200d7d7 Mon Sep 17 00:00:00 2001 From: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Date: Thu, 23 Jun 2022 02:15:28 -0400 Subject: [PATCH 019/138] remove `cuda116` extra from install widget (#11012) --- website/src/widgets/quickstart-install.js | 1 - 1 file changed, 1 deletion(-) diff --git a/website/src/widgets/quickstart-install.js b/website/src/widgets/quickstart-install.js index 926d76ae3..ccc6b56d9 100644 --- a/website/src/widgets/quickstart-install.js +++ b/website/src/widgets/quickstart-install.js @@ -24,7 +24,6 @@ const CUDA = { '11.3': 'cuda113', '11.4': 'cuda114', '11.5': 'cuda115', - '11.6': 'cuda116', } const LANG_EXTRAS = ['ja'] // only for languages with models From f1197d9175927b453312be633cd789157c17a6e7 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 23 Jun 2022 08:16:38 +0200 Subject: [PATCH 020/138] Add API docs for token attribute symbols (#10836) * Add API docs for token attribute symbols * Remove NBSP's * Fix typo * Rephrase Co-authored-by: svlandeg --- website/docs/api/attributes.md | 78 ++++++++++++++++++++++++++++++++++ website/meta/sidebars.json | 1 + 2 files changed, 79 insertions(+) create mode 100644 website/docs/api/attributes.md diff --git a/website/docs/api/attributes.md b/website/docs/api/attributes.md new file mode 100644 index 000000000..adacd3898 --- /dev/null +++ b/website/docs/api/attributes.md @@ -0,0 +1,78 @@ +--- +title: Attributes +teaser: Token attributes +source: spacy/attrs.pyx +--- + +[Token](/api/token) attributes are specified using internal IDs in many places +including: + +- [`Matcher` patterns](/api/matcher#patterns), +- [`Doc.to_array`](/api/doc#to_array) and + [`Doc.from_array`](/api/doc#from_array) +- [`Doc.has_annotation`](/api/doc#has_annotation) +- [`MultiHashEmbed`](/api/architectures#MultiHashEmbed) Tok2Vec architecture + `attrs` + +> ```python +> import spacy +> from spacy.attrs import DEP +> +> nlp = spacy.blank("en") +> doc = nlp("There are many attributes.") +> +> # DEP always has the same internal value +> assert DEP == 76 +> +> # "DEP" is automatically converted to DEP +> assert DEP == nlp.vocab.strings["DEP"] +> assert doc.has_annotation(DEP) == doc.has_annotation("DEP") +> +> # look up IDs in spacy.attrs.IDS +> from spacy.attrs import IDS +> assert IDS["DEP"] == DEP +> ``` + +All methods automatically convert between the string version of an ID (`"DEP"`) +and the internal integer symbols (`DEP`). The internal IDs can be imported from +`spacy.attrs` or retrieved from the [`StringStore`](/api/stringstore). A map +from string attribute names to internal attribute IDs is stored in +`spacy.attrs.IDS`. + +The corresponding [`Token` object attributes](/api/token#attributes) can be +accessed using the same names in lowercase, e.g. `token.orth` or `token.length`. +For attributes that represent string values, the internal integer ID is +accessed as `Token.attr`, e.g. `token.dep`, while the string value can be +retrieved by appending `_` as in `token.dep_`. + + +| Attribute | Description | +| ------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `DEP` | The token's dependency label. ~~str~~ | +| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ | +| `ENT_IOB` | The IOB part of the token's entity tag. Uses custom integer vaues rather than the string store: unset is `0`, `I` is `1`, `O` is `2`, and `B` is `3`. ~~str~~ | +| `ENT_KB_ID` | The token's entity knowledge base ID. ~~str~~ | +| `ENT_TYPE` | The token's entity label. ~~str~~ | +| `IS_ALPHA` | Token text consists of alphabetic characters. ~~bool~~ | +| `IS_ASCII` | Token text consists of ASCII characters. ~~bool~~ | +| `IS_DIGIT` | Token text consists of digits. ~~bool~~ | +| `IS_LOWER` | Token text is in lowercase. ~~bool~~ | +| `IS_PUNCT` | Token is punctuation. ~~bool~~ | +| `IS_SPACE` | Token is whitespace. ~~bool~~ | +| `IS_STOP` | Token is a stop word. ~~bool~~ | +| `IS_TITLE` | Token text is in titlecase. ~~bool~~ | +| `IS_UPPER` | Token text is in uppercase. ~~bool~~ | +| `LEMMA` | The token's lemma. ~~str~~ | +| `LENGTH` | The length of the token text. ~~int~~ | +| `LIKE_EMAIL` | Token text resembles an email address. ~~bool~~ | +| `LIKE_NUM` | Token text resembles a number. ~~bool~~ | +| `LIKE_URL` | Token text resembles a URL. ~~bool~~ | +| `LOWER` | The lowercase form of the token text. ~~str~~ | +| `MORPH` | The token's morphological analysis. ~~MorphAnalysis~~ | +| `NORM` | The normalized form of the token text. ~~str~~ | +| `ORTH` | The exact verbatim text of a token. ~~str~~ | +| `POS` | The token's universal part of speech (UPOS). ~~str~~ | +| `SENT_START` | Token is start of sentence. ~~bool~~ | +| `SHAPE` | The token's shape. ~~str~~ | +| `SPACY` | Token has a trailing space. ~~bool~~ | +| `TAG` | The token's fine-grained part of speech. ~~str~~ | diff --git a/website/meta/sidebars.json b/website/meta/sidebars.json index c23f0a255..1bc395a66 100644 --- a/website/meta/sidebars.json +++ b/website/meta/sidebars.json @@ -124,6 +124,7 @@ { "label": "Other", "items": [ + { "text": "Attributes", "url": "/api/attributes" }, { "text": "Corpus", "url": "/api/corpus" }, { "text": "KnowledgeBase", "url": "/api/kb" }, { "text": "Lookups", "url": "/api/lookups" }, From d4e3f43639a963125bad123abe9514a1e6da81fc Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 23 Jun 2022 09:50:25 +0200 Subject: [PATCH 021/138] Update thinc version to switch back to blis v0.7 (#11014) --- pyproject.toml | 2 +- requirements.txt | 2 +- setup.cfg | 4 ++-- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 4fea41be2..4e388e54f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ requires = [ "cymem>=2.0.2,<2.1.0", "preshed>=3.0.2,<3.1.0", "murmurhash>=0.28.0,<1.1.0", - "thinc>=8.1.0.dev2,<8.2.0", + "thinc>=8.1.0.dev3,<8.2.0", "pathy", "numpy>=1.15.0", ] diff --git a/requirements.txt b/requirements.txt index 082ef1522..3b77140f6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,7 +3,7 @@ spacy-legacy>=3.0.9,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 -thinc>=8.1.0.dev2,<8.2.0 +thinc>=8.1.0.dev3,<8.2.0 ml_datasets>=0.2.0,<0.3.0 murmurhash>=0.28.0,<1.1.0 wasabi>=0.9.1,<1.1.0 diff --git a/setup.cfg b/setup.cfg index d317847ba..ba5b46ff0 100644 --- a/setup.cfg +++ b/setup.cfg @@ -38,7 +38,7 @@ setup_requires = cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 murmurhash>=0.28.0,<1.1.0 - thinc>=8.1.0.dev2,<8.2.0 + thinc>=8.1.0.dev3,<8.2.0 install_requires = # Our libraries spacy-legacy>=3.0.9,<3.1.0 @@ -46,7 +46,7 @@ install_requires = murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 - thinc>=8.1.0.dev2,<8.2.0 + thinc>=8.1.0.dev3,<8.2.0 wasabi>=0.9.1,<1.1.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 From f8116078ce2c5760ae218bc1657977ed116fcf18 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Thu, 23 Jun 2022 09:57:46 +0100 Subject: [PATCH 022/138] disable failing test because Stanford servers are down (#11015) --- spacy/tests/training/test_readers.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/spacy/tests/training/test_readers.py b/spacy/tests/training/test_readers.py index 8c5c81625..eb07a52b1 100644 --- a/spacy/tests/training/test_readers.py +++ b/spacy/tests/training/test_readers.py @@ -60,11 +60,12 @@ def test_readers(): assert isinstance(extra_corpus, Callable) +# TODO: enable IMDB test once Stanford servers are back up and running @pytest.mark.slow @pytest.mark.parametrize( "reader,additional_config", [ - ("ml_datasets.imdb_sentiment.v1", {"train_limit": 10, "dev_limit": 10}), + # ("ml_datasets.imdb_sentiment.v1", {"train_limit": 10, "dev_limit": 10}), ("ml_datasets.dbpedia.v1", {"train_limit": 10, "dev_limit": 10}), ("ml_datasets.cmu_movies.v1", {"limit": 10, "freq_cutoff": 200, "split": 0.8}), ], From 4cd8b4cc222bebc2108eb52b4400eea562db4ac2 Mon Sep 17 00:00:00 2001 From: Dmytro Sadovnychyi Date: Thu, 23 Jun 2022 17:53:00 +0200 Subject: [PATCH 023/138] Fix some of the broken links on universe pages (#11011) Currently some of the "AUTHOR INFO" links (e.g. here[0]) are broken: ``` https://github.com/https://github.com/explosion ``` [0] https://spacy.io/universe/project/spacy-experimental Also one remains broken with `https://szegedai.github.io/`. --- website/meta/universe.json | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 4a3ec6225..ab64fe895 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -84,7 +84,7 @@ "code_language": "python", "author": "Leap Beyond", "author_links": { - "github": "https://github.com/LeapBeyond", + "github": "LeapBeyond", "website": "https://leapbeyond.ai" }, "code_example": [ @@ -107,8 +107,8 @@ "code_language": "python", "author": "Peter Baumgartner", "author_links": { - "twitter" : "https://twitter.com/pmbaumgartner", - "github": "https://github.com/pmbaumgartner", + "twitter" : "pmbaumgartner", + "github": "pmbaumgartner", "website": "https://www.peterbaumgartner.com/" }, "code_example": [ @@ -127,8 +127,8 @@ "code_language": "python", "author": "Explosion", "author_links": { - "twitter" : "https://twitter.com/explosion_ai", - "github": "https://github.com/explosion", + "twitter" : "explosion_ai", + "github": "explosion", "website": "https://explosion.ai/" }, "code_example": [ @@ -600,8 +600,8 @@ "code_language": "python", "author": "Keith Rozario", "author_links": { - "twitter" : "https://twitter.com/keithrozario", - "github": "https://github.com/keithrozario", + "twitter" : "keithrozario", + "github": "keithrozario", "website": "https://www.keithrozario.com" }, "code_example": [ @@ -2324,7 +2324,7 @@ "author": "Daniel Whitenack & Chris Benson", "author_links": { "website": "https://changelog.com/practicalai", - "twitter": "https://twitter.com/PracticalAIFM" + "twitter": "PracticalAIFM" }, "category": ["podcasts"] }, From 9738b69c0e3babb365cafaa26b872ca1028c9696 Mon Sep 17 00:00:00 2001 From: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Date: Fri, 24 Jun 2022 02:11:29 -0400 Subject: [PATCH 024/138] Update Code Conventions.md (#11018) --- extra/DEVELOPER_DOCS/Code Conventions.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/extra/DEVELOPER_DOCS/Code Conventions.md b/extra/DEVELOPER_DOCS/Code Conventions.md index 37cd8ff27..31a87d362 100644 --- a/extra/DEVELOPER_DOCS/Code Conventions.md +++ b/extra/DEVELOPER_DOCS/Code Conventions.md @@ -455,6 +455,10 @@ Regression tests are tests that refer to bugs reported in specific issues. They The test suite also provides [fixtures](https://github.com/explosion/spaCy/blob/master/spacy/tests/conftest.py) for different language tokenizers that can be used as function arguments of the same name and will be passed in automatically. Those should only be used for tests related to those specific languages. We also have [test utility functions](https://github.com/explosion/spaCy/blob/master/spacy/tests/util.py) for common operations, like creating a temporary file. +### Testing Cython Code + +If you're developing Cython code (`.pyx` files), those extensions will need to be built before the test runner can test that code - otherwise it's going to run the tests with stale code from the last time the extension was built. You can build the extensions locally with `python setup.py build_ext -i`. + ### Constructing objects and state Test functions usually follow the same simple structure: they set up some state, perform the operation you want to test and `assert` conditions that you expect to be true, usually before and after the operation. From bffe54d02b840a73f8dec4d8cd50056507695853 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 24 Jun 2022 08:48:58 +0200 Subject: [PATCH 025/138] Set version to v3.4.0 --- spacy/about.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/about.py b/spacy/about.py index 03eabc2e9..ef0358e1a 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -1,6 +1,6 @@ # fmt: off __title__ = "spacy" -__version__ = "3.3.0" +__version__ = "3.4.0" __download_url__ = "https://github.com/explosion/spacy-models/releases/download" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __projects__ = "https://github.com/explosion/projects" From d9320db7db74b970b3751e38ed6f14de5b7d16d5 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 1 Apr 2022 10:42:25 +0200 Subject: [PATCH 026/138] Temporarily skip tests that require models/compat --- .github/azure-steps.yml | 34 +++++++++++++++++----------------- spacy/tests/test_cli.py | 2 ++ 2 files changed, 19 insertions(+), 17 deletions(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index d7233328a..41f743feb 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -64,12 +64,12 @@ steps: displayName: "Run GPU tests" condition: eq(${{ parameters.gpu }}, true) - - script: | - python -m spacy download ca_core_news_sm - python -m spacy download ca_core_news_md - python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')" - displayName: 'Test download CLI' - condition: eq(variables['python_version'], '3.8') +# - script: | +# python -m spacy download ca_core_news_sm +# python -m spacy download ca_core_news_md +# python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')" +# displayName: 'Test download CLI' +# condition: eq(variables['python_version'], '3.8') - script: | python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json . @@ -93,17 +93,17 @@ steps: displayName: 'Test train CLI' condition: eq(variables['python_version'], '3.8') - - script: | - python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')" - PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir - displayName: 'Test assemble CLI' - condition: eq(variables['python_version'], '3.8') - - - script: | - python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')" - python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113 - displayName: 'Test assemble CLI vectors warning' - condition: eq(variables['python_version'], '3.8') +# - script: | +# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')" +# PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir +# displayName: 'Test assemble CLI' +# condition: eq(variables['python_version'], '3.8') +# +# - script: | +# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')" +# python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113 +# displayName: 'Test assemble CLI vectors warning' +# condition: eq(variables['python_version'], '3.8') - script: | python .github/validate_universe_json.py website/meta/universe.json diff --git a/spacy/tests/test_cli.py b/spacy/tests/test_cli.py index 838e00369..fe8b3a8a1 100644 --- a/spacy/tests/test_cli.py +++ b/spacy/tests/test_cli.py @@ -589,6 +589,7 @@ def test_string_to_list_intify(value): assert string_to_list(value, intify=True) == [1, 2, 3] +@pytest.mark.skip(reason="Temporarily skip for dev version") def test_download_compatibility(): spec = SpecifierSet("==" + about.__version__) spec.prereleases = False @@ -599,6 +600,7 @@ def test_download_compatibility(): assert get_minor_version(about.__version__) == get_minor_version(version) +@pytest.mark.skip(reason="Temporarily skip for dev version") def test_validate_compatibility_table(): spec = SpecifierSet("==" + about.__version__) spec.prereleases = False From 8f1ba4de582c5e5282c022a7713a56b47302cabe Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Fri, 24 Jun 2022 13:39:52 +0200 Subject: [PATCH 027/138] Backport parser/alignment optimizations from `feature/refactor-parser` (#10952) --- spacy/training/alignment_array.pyx | 20 +++-- spacy/training/example.pyx | 129 +++++++++++++++++++++++------ spacy/util.py | 7 ++ 3 files changed, 123 insertions(+), 33 deletions(-) diff --git a/spacy/training/alignment_array.pyx b/spacy/training/alignment_array.pyx index b58f08786..01e9d9bf8 100644 --- a/spacy/training/alignment_array.pyx +++ b/spacy/training/alignment_array.pyx @@ -1,33 +1,39 @@ from typing import List from ..errors import Errors import numpy +from libc.stdint cimport int32_t cdef class AlignmentArray: """AlignmentArray is similar to Thinc's Ragged with two simplfications: indexing returns numpy arrays and this type can only be used for CPU arrays. - However, these changes make AlginmentArray more efficient for indexing in a + However, these changes make AlignmentArray more efficient for indexing in a tight loop.""" __slots__ = [] def __init__(self, alignment: List[List[int]]): - self._lengths = None - self._starts_ends = numpy.zeros(len(alignment) + 1, dtype="i") - cdef int data_len = 0 cdef int outer_len cdef int idx + + self._starts_ends = numpy.zeros(len(alignment) + 1, dtype='int32') + cdef int32_t* starts_ends_ptr = self._starts_ends.data + for idx, outer in enumerate(alignment): outer_len = len(outer) - self._starts_ends[idx + 1] = self._starts_ends[idx] + outer_len + starts_ends_ptr[idx + 1] = starts_ends_ptr[idx] + outer_len data_len += outer_len - self._data = numpy.empty(data_len, dtype="i") + self._lengths = None + self._data = numpy.empty(data_len, dtype="int32") + idx = 0 + cdef int32_t* data_ptr = self._data.data + for outer in alignment: for inner in outer: - self._data[idx] = inner + data_ptr[idx] = inner idx += 1 def __getitem__(self, idx): diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx index 045f0b483..473364f93 100644 --- a/spacy/training/example.pyx +++ b/spacy/training/example.pyx @@ -13,7 +13,7 @@ from .iob_utils import biluo_tags_to_spans, remove_bilu_prefix from ..errors import Errors, Warnings from ..pipeline._parser_internals import nonproj from ..tokens.token cimport MISSING_DEP -from ..util import logger, to_ternary_int +from ..util import logger, to_ternary_int, all_equal cpdef Doc annotations_to_doc(vocab, tok_annot, doc_annot): @@ -151,50 +151,127 @@ cdef class Example: self._y_sig = y_sig return self._cached_alignment + + def _get_aligned_vectorized(self, align, gold_values): + # Fast path for Doc attributes/fields that are predominantly a single value, + # i.e., TAG, POS, MORPH. + x2y_single_toks = [] + x2y_single_toks_i = [] + + x2y_multiple_toks = [] + x2y_multiple_toks_i = [] + + # Gather indices of gold tokens aligned to the candidate tokens into two buckets. + # Bucket 1: All tokens that have a one-to-one alignment. + # Bucket 2: All tokens that have a one-to-many alignment. + for idx, token in enumerate(self.predicted): + aligned_gold_i = align[token.i] + aligned_gold_len = len(aligned_gold_i) + + if aligned_gold_len == 1: + x2y_single_toks.append(aligned_gold_i.item()) + x2y_single_toks_i.append(idx) + elif aligned_gold_len > 1: + x2y_multiple_toks.append(aligned_gold_i) + x2y_multiple_toks_i.append(idx) + + # Map elements of the first bucket directly to the output array. + output = numpy.full(len(self.predicted), None) + output[x2y_single_toks_i] = gold_values[x2y_single_toks].squeeze() + + # Collapse many-to-one alignments into one-to-one alignments if they + # share the same value. Map to None in all other cases. + for i in range(len(x2y_multiple_toks)): + aligned_gold_values = gold_values[x2y_multiple_toks[i]] + + # If all aligned tokens have the same value, use it. + if all_equal(aligned_gold_values): + x2y_multiple_toks[i] = aligned_gold_values[0].item() + else: + x2y_multiple_toks[i] = None + + output[x2y_multiple_toks_i] = x2y_multiple_toks + + return output.tolist() + + + def _get_aligned_non_vectorized(self, align, gold_values): + # Slower path for fields that return multiple values (resulting + # in ragged arrays that cannot be vectorized trivially). + output = [None] * len(self.predicted) + + for token in self.predicted: + aligned_gold_i = align[token.i] + values = gold_values[aligned_gold_i].ravel() + if len(values) == 1: + output[token.i] = values.item() + elif all_equal(values): + # If all aligned tokens have the same value, use it. + output[token.i] = values[0].item() + + return output + + def get_aligned(self, field, as_string=False): """Return an aligned array for a token attribute.""" align = self.alignment.x2y + gold_values = self.reference.to_array([field]) + + if len(gold_values.shape) == 1: + output = self._get_aligned_vectorized(align, gold_values) + else: + output = self._get_aligned_non_vectorized(align, gold_values) vocab = self.reference.vocab - gold_values = self.reference.to_array([field]) - output = [None] * len(self.predicted) - for token in self.predicted: - values = gold_values[align[token.i]] - values = values.ravel() - if len(values) == 0: - output[token.i] = None - elif len(values) == 1: - output[token.i] = values[0] - elif len(set(list(values))) == 1: - # If all aligned tokens have the same value, use it. - output[token.i] = values[0] - else: - output[token.i] = None if as_string and field not in ["ENT_IOB", "SENT_START"]: output = [vocab.strings[o] if o is not None else o for o in output] + return output def get_aligned_parse(self, projectivize=True): cand_to_gold = self.alignment.x2y gold_to_cand = self.alignment.y2x - aligned_heads = [None] * self.x.length - aligned_deps = [None] * self.x.length - has_deps = [token.has_dep() for token in self.y] - has_heads = [token.has_head() for token in self.y] heads = [token.head.i for token in self.y] deps = [token.dep_ for token in self.y] + if projectivize: proj_heads, proj_deps = nonproj.projectivize(heads, deps) + has_deps = [token.has_dep() for token in self.y] + has_heads = [token.has_head() for token in self.y] + # ensure that missing data remains missing heads = [h if has_heads[i] else heads[i] for i, h in enumerate(proj_heads)] deps = [d if has_deps[i] else deps[i] for i, d in enumerate(proj_deps)] - for cand_i in range(self.x.length): - if cand_to_gold.lengths[cand_i] == 1: - gold_i = cand_to_gold[cand_i][0] - if gold_to_cand.lengths[heads[gold_i]] == 1: - aligned_heads[cand_i] = int(gold_to_cand[heads[gold_i]][0]) - aligned_deps[cand_i] = deps[gold_i] - return aligned_heads, aligned_deps + + # Select all candidate tokens that are aligned to a single gold token. + c2g_single_toks = numpy.where(cand_to_gold.lengths == 1)[0] + + # Fetch all aligned gold token incides. + if c2g_single_toks.shape == cand_to_gold.lengths.shape: + # This the most likely case. + gold_i = cand_to_gold[:].squeeze() + else: + gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0])(c2g_single_toks).squeeze() + + # Fetch indices of all gold heads for the aligned gold tokens. + heads = numpy.asarray(heads, dtype='i') + gold_head_i = heads[gold_i] + + # Select all gold tokens that are heads of the previously selected + # gold tokens (and are aligned to a single candidate token). + g2c_len_heads = gold_to_cand.lengths[gold_head_i] + g2c_len_heads = numpy.where(g2c_len_heads == 1)[0] + g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0])(gold_head_i[g2c_len_heads]).squeeze() + + # Update head/dep alignments with the above. + aligned_heads = numpy.full((self.x.length), None) + aligned_heads[c2g_single_toks[g2c_len_heads]] = g2c_i + + deps = numpy.asarray(deps) + aligned_deps = numpy.full((self.x.length), None) + aligned_deps[c2g_single_toks] = deps[gold_i] + + return aligned_heads.tolist(), aligned_deps.tolist() def get_aligned_sent_starts(self): """Get list of SENT_START attributes aligned to the predicted tokenization. diff --git a/spacy/util.py b/spacy/util.py index 9b871b87b..4f21d618a 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -1716,3 +1716,10 @@ def packages_distributions() -> Dict[str, List[str]]: for pkg in (dist.read_text("top_level.txt") or "").split(): pkg_to_dist[pkg].append(dist.metadata["Name"]) return dict(pkg_to_dist) + + +def all_equal(iterable): + """Return True if all the elements are equal to each other + (or if the input is an empty sequence), False otherwise.""" + g = itertools.groupby(iterable) + return next(g, True) and not next(g, False) From 4155a59d470c231b5bfca26044a6d4f93bea7e48 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 27 Jun 2022 09:35:35 +0200 Subject: [PATCH 028/138] Auto-format code with black (#11022) Co-authored-by: explosion-bot --- spacy/tests/parser/test_ner.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/spacy/tests/parser/test_ner.py b/spacy/tests/parser/test_ner.py index 53bb2d554..00889efdc 100644 --- a/spacy/tests/parser/test_ner.py +++ b/spacy/tests/parser/test_ner.py @@ -158,13 +158,18 @@ def test_issue3209(): def test_labels_from_BILUO(): - """Test that labels are inferred correctly when there's a - in label. - """ + """Test that labels are inferred correctly when there's a - in label.""" nlp = English() ner = nlp.add_pipe("ner") ner.add_label("LARGE-ANIMAL") nlp.initialize() - move_names = ["O", "B-LARGE-ANIMAL", "I-LARGE-ANIMAL", "L-LARGE-ANIMAL", "U-LARGE-ANIMAL"] + move_names = [ + "O", + "B-LARGE-ANIMAL", + "I-LARGE-ANIMAL", + "L-LARGE-ANIMAL", + "U-LARGE-ANIMAL", + ] labels = {"LARGE-ANIMAL"} assert ner.move_names == move_names assert set(ner.labels) == labels From 308a612ec98f27098fe7f69ec20be0b5e88d51fa Mon Sep 17 00:00:00 2001 From: Eric Holscher <25510+ericholscher@users.noreply.github.com> Date: Mon, 27 Jun 2022 00:45:22 -0700 Subject: [PATCH 029/138] Remove `simply` (#11017) I was reading this page, and as a relative beginner, nothing about it was simple :) --- website/docs/api/architectures.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/website/docs/api/architectures.md b/website/docs/api/architectures.md index 2bddcb28c..2537faff6 100644 --- a/website/docs/api/architectures.md +++ b/website/docs/api/architectures.md @@ -587,7 +587,7 @@ consists of either two or three subnetworks: run once for each batch. - **lower**: Construct a feature-specific vector for each `(token, feature)` pair. This is also run once for each batch. Constructing the state - representation is then simply a matter of summing the component features and + representation is then a matter of summing the component features and applying the non-linearity. - **upper** (optional): A feed-forward network that predicts scores from the state representation. If not present, the output from the lower model is used @@ -628,7 +628,7 @@ same signature, but the `use_upper` argument was `True` by default. > ``` Build a tagger model, using a provided token-to-vector component. The tagger -model simply adds a linear layer with softmax activation to predict scores given +model adds a linear layer with softmax activation to predict scores given the token vectors. | Name | Description | @@ -920,5 +920,5 @@ A function that reads an existing `KnowledgeBase` from file. A function that takes as input a [`KnowledgeBase`](/api/kb) and a [`Span`](/api/span) object denoting a named entity, and returns a list of plausible [`Candidate`](/api/kb/#candidate) objects. The default -`CandidateGenerator` simply uses the text of a mention to find its potential +`CandidateGenerator` uses the text of a mention to find its potential aliases in the `KnowledgeBase`. Note that this function is case-dependent. From 8ffff18ac4e6a1d4fdae76dd7a9ecdf251b149fa Mon Sep 17 00:00:00 2001 From: Zackere Date: Tue, 28 Jun 2022 15:11:15 +0200 Subject: [PATCH 030/138] Try cloning repo from main & master (#10843) * Try cloning repo from main & master * fixup! Try cloning repo from main & master * fixup! fixup! Try cloning repo from main & master * refactor clone and check for repo:branch existence * spacing fix * make mypy happy * type util function * Update spacy/cli/project/clone.py Co-authored-by: Sofie Van Landeghem Co-authored-by: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem --- spacy/cli/_util.py | 17 +++++++++++++++++ spacy/cli/project/clone.py | 30 +++++++++++++++++++++++------- 2 files changed, 40 insertions(+), 7 deletions(-) diff --git a/spacy/cli/_util.py b/spacy/cli/_util.py index bb7f2d352..ae43b991b 100644 --- a/spacy/cli/_util.py +++ b/spacy/cli/_util.py @@ -462,6 +462,23 @@ def git_sparse_checkout(repo, subpath, dest, branch): shutil.move(str(source_path), str(dest)) +def git_repo_branch_exists(repo: str, branch: str) -> bool: + """Uses 'git ls-remote' to check if a repository and branch exists + + repo (str): URL to get repo. + branch (str): Branch on repo to check. + RETURNS (bool): True if repo:branch exists. + """ + get_git_version() + cmd = f"git ls-remote {repo} {branch}" + # We might be tempted to use `--exit-code` with `git ls-remote`, but + # `run_command` handles the `returncode` for us, so we'll rely on + # the fact that stdout returns '' if the requested branch doesn't exist + ret = run_command(cmd, capture=True) + exists = ret.stdout != "" + return exists + + def get_git_version( error: str = "Could not run 'git'. Make sure it's installed and the executable is available.", ) -> Tuple[int, int]: diff --git a/spacy/cli/project/clone.py b/spacy/cli/project/clone.py index 360ee3428..14b4ed9b5 100644 --- a/spacy/cli/project/clone.py +++ b/spacy/cli/project/clone.py @@ -7,11 +7,11 @@ import re from ... import about from ...util import ensure_path from .._util import project_cli, Arg, Opt, COMMAND, PROJECT_FILE -from .._util import git_checkout, get_git_version +from .._util import git_checkout, get_git_version, git_repo_branch_exists DEFAULT_REPO = about.__projects__ DEFAULT_PROJECTS_BRANCH = about.__projects_branch__ -DEFAULT_BRANCH = "master" +DEFAULT_BRANCHES = ["main", "master"] @project_cli.command("clone") @@ -20,7 +20,7 @@ def project_clone_cli( name: str = Arg(..., help="The name of the template to clone"), dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False), repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"), - branch: Optional[str] = Opt(None, "--branch", "-b", help="The branch to clone from"), + branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"), sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.") # fmt: on ): @@ -33,9 +33,25 @@ def project_clone_cli( """ if dest is None: dest = Path.cwd() / Path(name).parts[-1] + if repo == DEFAULT_REPO and branch is None: + branch = DEFAULT_PROJECTS_BRANCH + if branch is None: - # If it's a user repo, we want to default to other branch - branch = DEFAULT_PROJECTS_BRANCH if repo == DEFAULT_REPO else DEFAULT_BRANCH + for default_branch in DEFAULT_BRANCHES: + if git_repo_branch_exists(repo, default_branch): + branch = default_branch + break + if branch is None: + default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES) + msg.fail( + "No branch provided and attempted default " + f"branches {default_branches_msg} do not exist.", + exits=1, + ) + else: + if not git_repo_branch_exists(repo, branch): + msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1) + assert isinstance(branch, str) project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout) @@ -61,9 +77,9 @@ def project_clone( try: git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout) except subprocess.CalledProcessError: - err = f"Could not clone '{name}' from repo '{repo_name}'" + err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')" msg.fail(err, exits=1) - msg.good(f"Cloned '{name}' from {repo_name}", project_dir) + msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir) if not (project_dir / PROJECT_FILE).exists(): msg.warn(f"No {PROJECT_FILE} found in directory") else: From a9559e7435f99648aa0004f301692f1a2dfe72fe Mon Sep 17 00:00:00 2001 From: Richard Hudson Date: Tue, 28 Jun 2022 15:35:32 +0200 Subject: [PATCH 031/138] Handle Cyrillic combining diacritics (#10837) * Handle Russian, Ukrainian and Bulgarian * Corrections * Correction * Correction to comment * Changes based on review * Correction * Reverted irrelevant change in punctuation.py * Remove unnecessary group * Reverted accidental change --- spacy/lang/bg/__init__.py | 5 +++- spacy/lang/char_classes.py | 4 ++++ spacy/lang/punctuation.py | 22 ++++++++++++++++- spacy/lang/ru/__init__.py | 4 ++++ spacy/lang/uk/__init__.py | 4 ++++ spacy/tests/lang/bg/test_tokenizer.py | 8 +++++++ spacy/tests/lang/ru/test_tokenizer.py | 34 +++++++++++++++++++++++++++ spacy/tests/lang/uk/test_tokenizer.py | 7 ++++++ 8 files changed, 86 insertions(+), 2 deletions(-) create mode 100644 spacy/tests/lang/bg/test_tokenizer.py diff --git a/spacy/lang/bg/__init__.py b/spacy/lang/bg/__init__.py index 559cc34c4..c9176b946 100644 --- a/spacy/lang/bg/__init__.py +++ b/spacy/lang/bg/__init__.py @@ -2,7 +2,8 @@ from .stop_words import STOP_WORDS from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .lex_attrs import LEX_ATTRS from ..tokenizer_exceptions import BASE_EXCEPTIONS - +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_INFIXES +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_SUFFIXES from ...language import Language, BaseDefaults from ...attrs import LANG from ...util import update_exc @@ -16,6 +17,8 @@ class BulgarianDefaults(BaseDefaults): stop_words = STOP_WORDS tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS) + suffixes = COMBINING_DIACRITICS_TOKENIZER_SUFFIXES + infixes = COMBINING_DIACRITICS_TOKENIZER_INFIXES class Bulgarian(Language): diff --git a/spacy/lang/char_classes.py b/spacy/lang/char_classes.py index b15bb3cf3..1d204c46c 100644 --- a/spacy/lang/char_classes.py +++ b/spacy/lang/char_classes.py @@ -258,6 +258,10 @@ ALPHA = group_chars( ALPHA_LOWER = group_chars(_lower + _uncased) ALPHA_UPPER = group_chars(_upper + _uncased) +_combining_diacritics = r"\u0300-\u036f" + +COMBINING_DIACRITICS = _combining_diacritics + _units = ( "km km² km³ m m² m³ dm dm² dm³ cm cm² cm³ mm mm² mm³ ha µm nm yd in ft " "kg g mg µg t lb oz m/s km/h kmh mph hPa Pa mbar mb MB kb KB gb GB tb " diff --git a/spacy/lang/punctuation.py b/spacy/lang/punctuation.py index e712e71d6..a1cfe6224 100644 --- a/spacy/lang/punctuation.py +++ b/spacy/lang/punctuation.py @@ -1,5 +1,5 @@ from .char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_CURRENCY -from .char_classes import LIST_ICONS, HYPHENS, CURRENCY, UNITS +from .char_classes import LIST_ICONS, HYPHENS, CURRENCY, UNITS, COMBINING_DIACRITICS from .char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA, PUNCT @@ -44,3 +44,23 @@ TOKENIZER_INFIXES = ( r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA), ] ) + + +# Some languages e.g. written with the Cyrillic alphabet permit the use of diacritics +# to mark stressed syllables in words where stress is distinctive. Such languages +# should use the COMBINING_DIACRITICS... suffix and infix regex lists in +# place of the standard ones. +COMBINING_DIACRITICS_TOKENIZER_SUFFIXES = list(TOKENIZER_SUFFIXES) + [ + r"(?<=[{a}][{d}])\.".format(a=ALPHA, d=COMBINING_DIACRITICS), +] + +COMBINING_DIACRITICS_TOKENIZER_INFIXES = list(TOKENIZER_INFIXES) + [ + r"(?<=[{al}][{d}])\.(?=[{au}{q}])".format( + al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES, d=COMBINING_DIACRITICS + ), + r"(?<=[{a}][{d}]),(?=[{a}])".format(a=ALPHA, d=COMBINING_DIACRITICS), + r"(?<=[{a}][{d}])(?:{h})(?=[{a}])".format( + a=ALPHA, d=COMBINING_DIACRITICS, h=HYPHENS + ), + r"(?<=[{a}][{d}])[:<>=/](?=[{a}])".format(a=ALPHA, d=COMBINING_DIACRITICS), +] diff --git a/spacy/lang/ru/__init__.py b/spacy/lang/ru/__init__.py index 5d31d8ea2..c118c26ff 100644 --- a/spacy/lang/ru/__init__.py +++ b/spacy/lang/ru/__init__.py @@ -5,6 +5,8 @@ from .stop_words import STOP_WORDS from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .lex_attrs import LEX_ATTRS from .lemmatizer import RussianLemmatizer +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_INFIXES +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_SUFFIXES from ...language import Language, BaseDefaults @@ -12,6 +14,8 @@ class RussianDefaults(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS lex_attr_getters = LEX_ATTRS stop_words = STOP_WORDS + suffixes = COMBINING_DIACRITICS_TOKENIZER_SUFFIXES + infixes = COMBINING_DIACRITICS_TOKENIZER_INFIXES class Russian(Language): diff --git a/spacy/lang/uk/__init__.py b/spacy/lang/uk/__init__.py index 21f9649f2..737243b66 100644 --- a/spacy/lang/uk/__init__.py +++ b/spacy/lang/uk/__init__.py @@ -6,6 +6,8 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS from .lemmatizer import UkrainianLemmatizer +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_INFIXES +from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_SUFFIXES from ...language import Language, BaseDefaults @@ -13,6 +15,8 @@ class UkrainianDefaults(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS lex_attr_getters = LEX_ATTRS stop_words = STOP_WORDS + suffixes = COMBINING_DIACRITICS_TOKENIZER_SUFFIXES + infixes = COMBINING_DIACRITICS_TOKENIZER_INFIXES class Ukrainian(Language): diff --git a/spacy/tests/lang/bg/test_tokenizer.py b/spacy/tests/lang/bg/test_tokenizer.py new file mode 100644 index 000000000..2e2c45001 --- /dev/null +++ b/spacy/tests/lang/bg/test_tokenizer.py @@ -0,0 +1,8 @@ +import pytest + + +def test_bg_tokenizer_handles_final_diacritics(bg_tokenizer): + text = "Ня̀маше яйца̀. Ня̀маше яйца̀." + tokens = bg_tokenizer(text) + assert tokens[1].text == "яйца̀" + assert tokens[2].text == "." diff --git a/spacy/tests/lang/ru/test_tokenizer.py b/spacy/tests/lang/ru/test_tokenizer.py index 1cfdc50ee..083b55a09 100644 --- a/spacy/tests/lang/ru/test_tokenizer.py +++ b/spacy/tests/lang/ru/test_tokenizer.py @@ -1,3 +1,4 @@ +from string import punctuation import pytest @@ -122,3 +123,36 @@ def test_ru_tokenizer_splits_bracket_period(ru_tokenizer): text = "(Раз, два, три, проверка)." tokens = ru_tokenizer(text) assert tokens[len(tokens) - 1].text == "." + + +@pytest.mark.parametrize( + "text", + [ + "рекоменду́я подда́ть жару́. Самого́ Баргамота", + "РЕКОМЕНДУ́Я ПОДДА́ТЬ ЖАРУ́. САМОГО́ БАРГАМОТА", + "рекоменду̍я подда̍ть жару̍.Самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍.'Самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍,самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍:самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍. самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍, самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍: самого̍ Баргамота", + "рекоменду̍я подда̍ть жару̍-самого̍ Баргамота", + ], +) +def test_ru_tokenizer_handles_final_diacritics(ru_tokenizer, text): + tokens = ru_tokenizer(text) + assert tokens[2].text in ("жару́", "ЖАРУ́", "жару̍") + assert tokens[3].text in punctuation + + +@pytest.mark.parametrize( + "text", + [ + "РЕКОМЕНДУ́Я ПОДДА́ТЬ ЖАРУ́.САМОГО́ БАРГАМОТА", + "рекоменду̍я подда̍ть жару́.самого́ Баргамота", + ], +) +def test_ru_tokenizer_handles_final_diacritic_and_period(ru_tokenizer, text): + tokens = ru_tokenizer(text) + assert tokens[2].text.lower() == "жару́.самого́" diff --git a/spacy/tests/lang/uk/test_tokenizer.py b/spacy/tests/lang/uk/test_tokenizer.py index 3d6e87301..6596f490a 100644 --- a/spacy/tests/lang/uk/test_tokenizer.py +++ b/spacy/tests/lang/uk/test_tokenizer.py @@ -140,3 +140,10 @@ def test_uk_tokenizer_splits_bracket_period(uk_tokenizer): text = "(Раз, два, три, проверка)." tokens = uk_tokenizer(text) assert tokens[len(tokens) - 1].text == "." + + +def test_uk_tokenizer_handles_final_diacritics(uk_tokenizer): + text = "Хлібі́в не було́. Хлібі́в не було́." + tokens = uk_tokenizer(text) + assert tokens[2].text == "було́" + assert tokens[3].text == "." From 1d5cad0b42c5919dde27a59808ff97f8e15cfaa0 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Tue, 28 Jun 2022 19:42:58 +0200 Subject: [PATCH 032/138] `Example.get_aligned_parse`: Handle unit and zero length vectors correctly (#11026) * `Example.get_aligned_parse`: Do not squeeze gold token idx vector Correctly handle zero-size vectors passed to `np.vectorize` * Add tests * Use `Doc` ctor to initialize attributes * Remove unintended change Co-authored-by: Adriane Boyd * Remove unused import Co-authored-by: Adriane Boyd --- spacy/tests/training/test_training.py | 25 +++++++++++++++++++++++++ spacy/training/example.pyx | 6 +++--- 2 files changed, 28 insertions(+), 3 deletions(-) diff --git a/spacy/tests/training/test_training.py b/spacy/tests/training/test_training.py index 31bf7e07b..4384a796d 100644 --- a/spacy/tests/training/test_training.py +++ b/spacy/tests/training/test_training.py @@ -679,6 +679,31 @@ def test_projectivize(en_tokenizer): assert proj_heads == [3, 2, 3, 3, 3] assert nonproj_heads == [3, 2, 3, 3, 2] + # Test single token documents + doc = en_tokenizer("Conrail") + heads = [0] + deps = ["dep"] + example = Example.from_dict(doc, {"heads": heads, "deps": deps}) + proj_heads, proj_labels = example.get_aligned_parse(projectivize=True) + assert proj_heads == heads + assert proj_labels == deps + + # Test documents with no alignments + doc_a = Doc( + doc.vocab, words=["Double-Jointed"], spaces=[False], deps=["ROOT"], heads=[0] + ) + doc_b = Doc( + doc.vocab, + words=["Double", "-", "Jointed"], + spaces=[True, True, True], + deps=["amod", "punct", "ROOT"], + heads=[2, 2, 2], + ) + example = Example(doc_a, doc_b) + proj_heads, proj_deps = example.get_aligned_parse(projectivize=True) + assert proj_heads == [None] + assert proj_deps == [None] + def test_iob_to_biluo(): good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"] diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx index 473364f93..d592e5a52 100644 --- a/spacy/training/example.pyx +++ b/spacy/training/example.pyx @@ -249,9 +249,9 @@ cdef class Example: # Fetch all aligned gold token incides. if c2g_single_toks.shape == cand_to_gold.lengths.shape: # This the most likely case. - gold_i = cand_to_gold[:].squeeze() + gold_i = cand_to_gold[:] else: - gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0])(c2g_single_toks).squeeze() + gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0], otypes='i')(c2g_single_toks) # Fetch indices of all gold heads for the aligned gold tokens. heads = numpy.asarray(heads, dtype='i') @@ -261,7 +261,7 @@ cdef class Example: # gold tokens (and are aligned to a single candidate token). g2c_len_heads = gold_to_cand.lengths[gold_head_i] g2c_len_heads = numpy.where(g2c_len_heads == 1)[0] - g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0])(gold_head_i[g2c_len_heads]).squeeze() + g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0], otypes='i')(gold_head_i[g2c_len_heads]).squeeze() # Update head/dep alignments with the above. aligned_heads = numpy.full((self.x.length), None) From 24f4908fce4740130fc5355f28e9aa87cadd9817 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 28 Jun 2022 19:50:47 +0200 Subject: [PATCH 033/138] Update vector handling in similarity methods (#11013) Distinguish between vectors that are 0 vs. missing vectors when warning about missing vectors. Update `Doc.has_vector` to match `Span.has_vector` and `Token.has_vector` for cases where the vocab has vectors but none of the tokens in the container have vectors. --- spacy/tests/vocab_vectors/test_similarity.py | 33 +++++++++++++++----- spacy/tests/vocab_vectors/test_vectors.py | 10 +++--- spacy/tokens/doc.pyx | 5 +-- spacy/tokens/span.pyx | 3 +- spacy/tokens/token.pyx | 3 +- 5 files changed, 36 insertions(+), 18 deletions(-) diff --git a/spacy/tests/vocab_vectors/test_similarity.py b/spacy/tests/vocab_vectors/test_similarity.py index 47cd1f060..1efcdd81e 100644 --- a/spacy/tests/vocab_vectors/test_similarity.py +++ b/spacy/tests/vocab_vectors/test_similarity.py @@ -1,6 +1,7 @@ import pytest import numpy from spacy.tokens import Doc +from spacy.vocab import Vocab from ..util import get_cosine, add_vecs_to_vocab @@ -71,19 +72,17 @@ def test_vectors_similarity_DD(vocab, vectors): def test_vectors_similarity_TD(vocab, vectors): [(word1, vec1), (word2, vec2)] = vectors doc = Doc(vocab, words=[word1, word2]) - with pytest.warns(UserWarning): - assert isinstance(doc.similarity(doc[0]), float) - assert isinstance(doc[0].similarity(doc), float) - assert doc.similarity(doc[0]) == doc[0].similarity(doc) + assert isinstance(doc.similarity(doc[0]), float) + assert isinstance(doc[0].similarity(doc), float) + assert doc.similarity(doc[0]) == doc[0].similarity(doc) def test_vectors_similarity_TS(vocab, vectors): [(word1, vec1), (word2, vec2)] = vectors doc = Doc(vocab, words=[word1, word2]) - with pytest.warns(UserWarning): - assert isinstance(doc[:2].similarity(doc[0]), float) - assert isinstance(doc[0].similarity(doc[-2]), float) - assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2]) + assert isinstance(doc[:2].similarity(doc[0]), float) + assert isinstance(doc[0].similarity(doc[:2]), float) + assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2]) def test_vectors_similarity_DS(vocab, vectors): @@ -91,3 +90,21 @@ def test_vectors_similarity_DS(vocab, vectors): doc = Doc(vocab, words=[word1, word2]) assert isinstance(doc.similarity(doc[:2]), float) assert doc.similarity(doc[:2]) == doc[:2].similarity(doc) + + +def test_vectors_similarity_no_vectors(): + vocab = Vocab() + doc1 = Doc(vocab, words=["a", "b"]) + doc2 = Doc(vocab, words=["c", "d", "e"]) + with pytest.warns(UserWarning): + doc1.similarity(doc2) + with pytest.warns(UserWarning): + doc1.similarity(doc2[1]) + with pytest.warns(UserWarning): + doc1.similarity(doc2[:2]) + with pytest.warns(UserWarning): + doc2.similarity(doc1) + with pytest.warns(UserWarning): + doc2[1].similarity(doc1) + with pytest.warns(UserWarning): + doc2[:2].similarity(doc1) diff --git a/spacy/tests/vocab_vectors/test_vectors.py b/spacy/tests/vocab_vectors/test_vectors.py index e3ad206f4..dd2cfc596 100644 --- a/spacy/tests/vocab_vectors/test_vectors.py +++ b/spacy/tests/vocab_vectors/test_vectors.py @@ -318,17 +318,15 @@ def test_vectors_lexeme_doc_similarity(vocab, text): @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_span_similarity(vocab, text): doc = Doc(vocab, words=text) - with pytest.warns(UserWarning): - assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2]) - assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0 + assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2]) + assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_doc_similarity(vocab, text): doc = Doc(vocab, words=text) - with pytest.warns(UserWarning): - assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2]) - assert -1.0 < doc[0:2].similarity(doc) < 1.0 + assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2]) + assert -1.0 < doc[0:2].similarity(doc) < 1.0 @pytest.mark.parametrize( diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index e38de02b4..d9a104ac8 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -607,7 +607,8 @@ cdef class Doc: if self.vocab.vectors.n_keys == 0: warnings.warn(Warnings.W007.format(obj="Doc")) if self.vector_norm == 0 or other.vector_norm == 0: - warnings.warn(Warnings.W008.format(obj="Doc")) + if not self.has_vector or not other.has_vector: + warnings.warn(Warnings.W008.format(obj="Doc")) return 0.0 vector = self.vector xp = get_array_module(vector) @@ -627,7 +628,7 @@ cdef class Doc: if "has_vector" in self.user_hooks: return self.user_hooks["has_vector"](self) elif self.vocab.vectors.size: - return True + return any(token.has_vector for token in self) elif self.tensor.size: return True else: diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index ab888ae95..c3495f497 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -354,7 +354,8 @@ cdef class Span: if self.vocab.vectors.n_keys == 0: warnings.warn(Warnings.W007.format(obj="Span")) if self.vector_norm == 0.0 or other.vector_norm == 0.0: - warnings.warn(Warnings.W008.format(obj="Span")) + if not self.has_vector or not other.has_vector: + warnings.warn(Warnings.W008.format(obj="Span")) return 0.0 vector = self.vector xp = get_array_module(vector) diff --git a/spacy/tokens/token.pyx b/spacy/tokens/token.pyx index d14930348..7fff6b162 100644 --- a/spacy/tokens/token.pyx +++ b/spacy/tokens/token.pyx @@ -206,7 +206,8 @@ cdef class Token: if self.vocab.vectors.n_keys == 0: warnings.warn(Warnings.W007.format(obj="Token")) if self.vector_norm == 0 or other.vector_norm == 0: - warnings.warn(Warnings.W008.format(obj="Token")) + if not self.has_vector or not other.has_vector: + warnings.warn(Warnings.W008.format(obj="Token")) return 0.0 vector = self.vector xp = get_array_module(vector) From dd038b536cf632408080d9a88f3bc4bf2ffdefe4 Mon Sep 17 00:00:00 2001 From: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Date: Tue, 28 Jun 2022 14:42:40 -0400 Subject: [PATCH 034/138] fix to horizontal space (#10994) --- spacy/displacy/render.py | 19 +++++++++++++++---- spacy/displacy/templates.py | 2 +- 2 files changed, 16 insertions(+), 5 deletions(-) diff --git a/spacy/displacy/render.py b/spacy/displacy/render.py index 247ad996b..a730ce522 100644 --- a/spacy/displacy/render.py +++ b/spacy/displacy/render.py @@ -64,8 +64,11 @@ class SpanRenderer: # Set up how the text and labels will be rendered self.direction = DEFAULT_DIR self.lang = DEFAULT_LANG + # These values are in px self.top_offset = options.get("top_offset", 40) - self.top_offset_step = options.get("top_offset_step", 17) + # This is how far under the top offset the span labels appear + self.span_label_offset = options.get("span_label_offset", 20) + self.offset_step = options.get("top_offset_step", 17) # Set up which templates will be used template = options.get("template") @@ -161,8 +164,16 @@ class SpanRenderer: if entities: slices = self._get_span_slices(token["entities"]) starts = self._get_span_starts(token["entities"]) + total_height = ( + self.top_offset + + self.span_label_offset + + (self.offset_step * (len(entities) - 1)) + ) markup += self.span_template.format( - text=token["text"], span_slices=slices, span_starts=starts + text=token["text"], + span_slices=slices, + span_starts=starts, + total_height=total_height, ) else: markup += escape_html(token["text"] + " ") @@ -171,7 +182,7 @@ class SpanRenderer: def _get_span_slices(self, entities: List[Dict]) -> str: """Get the rendered markup of all Span slices""" span_slices = [] - for entity, step in zip(entities, itertools.count(step=self.top_offset_step)): + for entity, step in zip(entities, itertools.count(step=self.offset_step)): color = self.colors.get(entity["label"].upper(), self.default_color) span_slice = self.span_slice_template.format( bg=color, top_offset=self.top_offset + step @@ -182,7 +193,7 @@ class SpanRenderer: def _get_span_starts(self, entities: List[Dict]) -> str: """Get the rendered markup of all Span start tokens""" span_starts = [] - for entity, step in zip(entities, itertools.count(step=self.top_offset_step)): + for entity, step in zip(entities, itertools.count(step=self.offset_step)): color = self.colors.get(entity["label"].upper(), self.default_color) span_start = ( self.span_start_template.format( diff --git a/spacy/displacy/templates.py b/spacy/displacy/templates.py index ff81e7a1d..40f5376b1 100644 --- a/spacy/displacy/templates.py +++ b/spacy/displacy/templates.py @@ -67,7 +67,7 @@ TPL_SPANS = """ """ TPL_SPAN = """ - + {text} {span_slices} {span_starts} From 0ff14aabcecef1003fa3cb6fb6227041bb0df73b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Wed, 29 Jun 2022 12:58:31 +0200 Subject: [PATCH 035/138] vectors: avoid expensive comparisons between numpy ints and Python ints (#10992) * vectors: avoid expensive comparisons between numpy ints and Python ints * vectors: avoid failure on lists of ints * Convert another numpy int to Python --- spacy/vectors.pyx | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/spacy/vectors.pyx b/spacy/vectors.pyx index 93f6818ee..8300220c1 100644 --- a/spacy/vectors.pyx +++ b/spacy/vectors.pyx @@ -336,10 +336,10 @@ cdef class Vectors: xp = get_array_module(self.data) if key is not None: key = get_string_id(key) - return self.key2row.get(key, -1) + return self.key2row.get(int(key), -1) elif keys is not None: keys = [get_string_id(key) for key in keys] - rows = [self.key2row.get(key, -1) for key in keys] + rows = [self.key2row.get(int(key), -1) for key in keys] return xp.asarray(rows, dtype="i") else: row2key = {row: key for key, row in self.key2row.items()} From 4581a4f53f77114cb074d2a76a62068154fa8211 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Wed, 29 Jun 2022 20:03:36 +0200 Subject: [PATCH 036/138] Run mypy for python 3.10 (#11052) --- .github/azure-steps.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index 41f743feb..1f886161a 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -27,7 +27,6 @@ steps: - script: python -m mypy spacy displayName: 'Run mypy' - condition: ne(variables['python_version'], '3.10') - task: DeleteFiles@1 inputs: From be00db66452ef8bb9ea3ffdbbef5a1aac0db048b Mon Sep 17 00:00:00 2001 From: Shen Qin <82353723+shen-qin@users.noreply.github.com> Date: Thu, 30 Jun 2022 17:01:58 +0800 Subject: [PATCH 037/138] Addition of min_max quantifier in matcher {n,m} (#10981) * Min_max_operators 1. Modified API and Usage for spaCy website to include min_max operator 2. Modified matcher.pyx to include min_max function {n,m} and its variants 3. Modified schemas.py to include min_max validation error 4. Added test cases to test_matcher_api.py, test_matcher_logic.py and test_pattern_validation.py * attempt to fix mypy/pydantic compat issue * formatting * Update spacy/tests/matcher/test_pattern_validation.py Co-authored-by: Source-Shen <82353723+Source-Shen@users.noreply.github.com> Co-authored-by: svlandeg Co-authored-by: Adriane Boyd --- spacy/matcher/matcher.pyx | 35 ++++++++++++++++--- spacy/schemas.py | 12 +++++-- spacy/tests/matcher/test_matcher_api.py | 35 +++++++++++++++++++ spacy/tests/matcher/test_matcher_logic.py | 14 +++++++- .../tests/matcher/test_pattern_validation.py | 9 +++++ website/docs/api/matcher.md | 17 +++++---- website/docs/usage/rule-based-matching.md | 16 +++++---- 7 files changed, 117 insertions(+), 21 deletions(-) diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx index 981c5cdd2..5105f69ed 100644 --- a/spacy/matcher/matcher.pyx +++ b/spacy/matcher/matcher.pyx @@ -86,10 +86,14 @@ cdef class Matcher: is a dictionary mapping attribute IDs to values, and optionally a quantifier operator under the key "op". The available quantifiers are: - '!': Negate the pattern, by requiring it to match exactly 0 times. - '?': Make the pattern optional, by allowing it to match 0 or 1 times. - '+': Require the pattern to match 1 or more times. - '*': Allow the pattern to zero or more times. + '!': Negate the pattern, by requiring it to match exactly 0 times. + '?': Make the pattern optional, by allowing it to match 0 or 1 times. + '+': Require the pattern to match 1 or more times. + '*': Allow the pattern to zero or more times. + '{n}': Require the pattern to match exactly _n_ times. + '{n,m}': Require the pattern to match at least _n_ but not more than _m_ times. + '{n,}': Require the pattern to match at least _n_ times. + '{,m}': Require the pattern to match at most _m_ times. The + and * operators return all possible matches (not just the greedy ones). However, the "greedy" argument can filter the final matches @@ -1004,8 +1008,29 @@ def _get_operators(spec): return (ONE,) elif spec["OP"] in lookup: return lookup[spec["OP"]] + #Min_max {n,m} + elif spec["OP"].startswith("{") and spec["OP"].endswith("}"): + # {n} --> {n,n} exactly n ONE,(n) + # {n,m}--> {n,m} min of n, max of m ONE,(n),ZERO_ONE,(m) + # {,m} --> {0,m} min of zero, max of m ZERO_ONE,(m) + # {n,} --> {n,∞} min of n, max of inf ONE,(n),ZERO_PLUS + + min_max = spec["OP"][1:-1] + min_max = min_max if "," in min_max else f"{min_max},{min_max}" + n, m = min_max.split(",") + + #1. Either n or m is a blank string and the other is numeric -->isdigit + #2. Both are numeric and n <= m + if (not n.isdecimal() and not m.isdecimal()) or (n.isdecimal() and m.isdecimal() and int(n) > int(m)): + keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m " + raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys)) + + # if n is empty string, zero would be used + head = tuple(ONE for __ in range(int(n or 0))) + tail = tuple(ZERO_ONE for __ in range(int(m) - int(n or 0))) if m else (ZERO_PLUS,) + return head + tail else: - keys = ", ".join(lookup.keys()) + keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m " raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys)) diff --git a/spacy/schemas.py b/spacy/schemas.py index b284b82e5..658e45268 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -3,12 +3,13 @@ from typing import Iterable, TypeVar, TYPE_CHECKING from .compat import Literal from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator, create_model -from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool +from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool, ConstrainedStr from pydantic.main import ModelMetaclass from thinc.api import Optimizer, ConfigValidationError, Model from thinc.config import Promise from collections import defaultdict import inspect +import re from .attrs import NAMES from .lookups import Lookups @@ -198,13 +199,18 @@ class TokenPatternNumber(BaseModel): return v -class TokenPatternOperator(str, Enum): +class TokenPatternOperatorSimple(str, Enum): plus: StrictStr = StrictStr("+") - start: StrictStr = StrictStr("*") + star: StrictStr = StrictStr("*") question: StrictStr = StrictStr("?") exclamation: StrictStr = StrictStr("!") +class TokenPatternOperatorMinMax(ConstrainedStr): + regex = re.compile("^({\d+}|{\d+,\d*}|{\d*,\d+})$") + + +TokenPatternOperator = Union[TokenPatternOperatorSimple, TokenPatternOperatorMinMax] StringValue = Union[TokenPatternString, StrictStr] NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat] UnderscoreValue = Union[ diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py index e8c3d53e8..2c2af6ce5 100644 --- a/spacy/tests/matcher/test_matcher_api.py +++ b/spacy/tests/matcher/test_matcher_api.py @@ -680,3 +680,38 @@ def test_matcher_ent_iob_key(en_vocab): assert matches[0] == "Maria" assert matches[1] == "Maria Esperanza" assert matches[2] == "Esperanza" + + +def test_matcher_min_max_operator(en_vocab): + # Exactly n matches {n} + doc = Doc( + en_vocab, words=["foo", "bar", "foo", "foo", "bar", + "foo", "foo", "foo", "bar", "bar"] + ) + matcher = Matcher(en_vocab) + pattern = [{"ORTH": "foo", "OP": "{3}"}] + matcher.add("TEST", [pattern]) + + matches1 = [doc[start:end].text for _, start, end in matcher(doc)] + assert len(matches1) == 1 + + # At least n matches {n,} + matcher = Matcher(en_vocab) + pattern = [{"ORTH": "foo", "OP": "{2,}"}] + matcher.add("TEST", [pattern]) + matches2 = [doc[start:end].text for _, start, end in matcher(doc)] + assert len(matches2) == 4 + + # At most m matches {,m} + matcher = Matcher(en_vocab) + pattern = [{"ORTH": "foo", "OP": "{,2}"}] + matcher.add("TEST", [pattern]) + matches3 = [doc[start:end].text for _, start, end in matcher(doc)] + assert len(matches3) == 9 + + # At least n matches and most m matches {n,m} + matcher = Matcher(en_vocab) + pattern = [{"ORTH": "foo", "OP": "{2,3}"}] + matcher.add("TEST", [pattern]) + matches4 = [doc[start:end].text for _, start, end in matcher(doc)] + assert len(matches4) == 4 diff --git a/spacy/tests/matcher/test_matcher_logic.py b/spacy/tests/matcher/test_matcher_logic.py index 3649b07ed..3b65fee23 100644 --- a/spacy/tests/matcher/test_matcher_logic.py +++ b/spacy/tests/matcher/test_matcher_logic.py @@ -699,6 +699,10 @@ def test_matcher_with_alignments_greedy_longest(en_vocab): ("aaaa", "a a a a a?", [0, 1, 2, 3]), ("aaab", "a+ a b", [0, 0, 1, 2]), ("aaab", "a+ a+ b", [0, 0, 1, 2]), + ("aaab", "a{2,} b", [0, 0, 0, 1]), + ("aaab", "a{,3} b", [0, 0, 0, 1]), + ("aaab", "a{2} b", [0, 0, 1]), + ("aaab", "a{2,3} b", [0, 0, 0, 1]), ] for string, pattern_str, result in cases: matcher = Matcher(en_vocab) @@ -711,6 +715,8 @@ def test_matcher_with_alignments_greedy_longest(en_vocab): pattern.append({"ORTH": part[0], "OP": "*"}) elif part.endswith("?"): pattern.append({"ORTH": part[0], "OP": "?"}) + elif part.endswith("}"): + pattern.append({"ORTH": part[0], "OP": part[1:]}) else: pattern.append({"ORTH": part}) matcher.add("PATTERN", [pattern], greedy="LONGEST") @@ -722,7 +728,7 @@ def test_matcher_with_alignments_greedy_longest(en_vocab): assert expected == result, (string, pattern_str, s, e, n_matches) -def test_matcher_with_alignments_nongreedy(en_vocab): +def test_matcher_with_alignments_non_greedy(en_vocab): cases = [ (0, "aaab", "a* b", [[0, 1], [0, 0, 1], [0, 0, 0, 1], [1]]), (1, "baab", "b a* b", [[0, 1, 1, 2]]), @@ -752,6 +758,10 @@ def test_matcher_with_alignments_nongreedy(en_vocab): (15, "aaaa", "a a a a a?", [[0, 1, 2, 3]]), (16, "aaab", "a+ a b", [[0, 1, 2], [0, 0, 1, 2]]), (17, "aaab", "a+ a+ b", [[0, 1, 2], [0, 0, 1, 2]]), + (18, "aaab", "a{2,} b", [[0, 0, 1], [0, 0, 0, 1]]), + (19, "aaab", "a{3} b", [[0, 0, 0, 1]]), + (20, "aaab", "a{2} b", [[0, 0, 1]]), + (21, "aaab", "a{2,3} b", [[0, 0, 1], [0, 0, 0, 1]]), ] for case_id, string, pattern_str, results in cases: matcher = Matcher(en_vocab) @@ -764,6 +774,8 @@ def test_matcher_with_alignments_nongreedy(en_vocab): pattern.append({"ORTH": part[0], "OP": "*"}) elif part.endswith("?"): pattern.append({"ORTH": part[0], "OP": "?"}) + elif part.endswith("}"): + pattern.append({"ORTH": part[0], "OP": part[1:]}) else: pattern.append({"ORTH": part}) diff --git a/spacy/tests/matcher/test_pattern_validation.py b/spacy/tests/matcher/test_pattern_validation.py index 8c265785c..e7eced02c 100644 --- a/spacy/tests/matcher/test_pattern_validation.py +++ b/spacy/tests/matcher/test_pattern_validation.py @@ -14,6 +14,14 @@ TEST_PATTERNS = [ ('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1), ([{"ENT_IOB": "foo"}], 1, 1), ([1, 2, 3], 3, 1), + ([{"TEXT": "foo", "OP": "{,}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{,4}4"}], 1, 1), + ([{"TEXT": "foo", "OP": "{a,3}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{a}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{,a}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{1,2,3}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{1, 3}"}], 1, 1), + ([{"TEXT": "foo", "OP": "{-2}"}], 1, 1), # Bad patterns flagged outside of Matcher ([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 2, 0), # prev: (1, 0) # Bad patterns not flagged with minimal checks @@ -38,6 +46,7 @@ TEST_PATTERNS = [ ([{"SENT_START": True}], 0, 0), ([{"ENT_ID": "STRING"}], 0, 0), ([{"ENT_KB_ID": "STRING"}], 0, 0), + ([{"TEXT": "ha", "OP": "{3}"}], 0, 0), ] diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md index 9daa0658d..ab88c4194 100644 --- a/website/docs/api/matcher.md +++ b/website/docs/api/matcher.md @@ -59,15 +59,20 @@ matched: > [ > {"POS": "ADJ", "OP": "*"}, > {"POS": "NOUN", "OP": "+"} +> {"POS": "PROPN", "OP": "{2}"} > ] > ``` -| OP | Description | -| --- | ---------------------------------------------------------------- | -| `!` | Negate the pattern, by requiring it to match exactly 0 times. | -| `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | -| `+` | Require the pattern to match 1 or more times. | -| `*` | Allow the pattern to match 0 or more times. | +| OP | Description | +|---------|------------------------------------------------------------------------| +| `!` | Negate the pattern, by requiring it to match exactly 0 times. | +| `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | +| `+` | Require the pattern to match 1 or more times. | +| `*` | Allow the pattern to match 0 or more times. | +| `{n}` | Require the pattern to match exactly _n_ times. | +| `{n,m}` | Require the pattern to match at least _n_ but not more than _m_ times. | +| `{n,}` | Require the pattern to match at least _n_ times. | +| `{,m}` | Require the pattern to match at most _m_ times. | Token patterns can also map to a **dictionary of properties** instead of a single value to indicate whether the expected value is a member of a list or how diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md index e4ba4b2af..f096890cb 100644 --- a/website/docs/usage/rule-based-matching.md +++ b/website/docs/usage/rule-based-matching.md @@ -374,12 +374,16 @@ punctuation marks, or specify optional tokens. Note that there are no nested or scoped quantifiers – instead, you can build those behaviors with `on_match` callbacks. -| OP | Description | -| --- | ---------------------------------------------------------------- | -| `!` | Negate the pattern, by requiring it to match exactly 0 times. | -| `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | -| `+` | Require the pattern to match 1 or more times. | -| `*` | Allow the pattern to match zero or more times. | +| OP | Description | +|---------|------------------------------------------------------------------------| +| `!` | Negate the pattern, by requiring it to match exactly 0 times. | +| `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | +| `+` | Require the pattern to match 1 or more times. | +| `*` | Allow the pattern to match zero or more times. | +| `{n}` | Require the pattern to match exactly _n_ times. | +| `{n,m}` | Require the pattern to match at least _n_ but not more than _m_ times. | +| `{n,}` | Require the pattern to match at least _n_ times. | +| `{,m}` | Require the pattern to match at most _m_ times. | > #### Example > From 3bc1fe0a783967cd8dc5f66d9456a2fe3df8e18b Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 30 Jun 2022 11:24:37 +0200 Subject: [PATCH 038/138] Update cupy extras (#11055) * Add cuda116 and cuda117 extras * Revert "remove `cuda116` extra from install widget (#11012)" This reverts commit e7b498fb1f37261393180405aa3a3636ae57c709. * Add cuda117 to quickstart --- setup.cfg | 4 ++++ website/src/widgets/quickstart-install.js | 2 ++ 2 files changed, 6 insertions(+) diff --git a/setup.cfg b/setup.cfg index ba5b46ff0..68d9cdd67 100644 --- a/setup.cfg +++ b/setup.cfg @@ -103,6 +103,10 @@ cuda114 = cupy-cuda114>=5.0.0b4,<11.0.0 cuda115 = cupy-cuda115>=5.0.0b4,<11.0.0 +cuda116 = + cupy-cuda116>=5.0.0b4,<11.0.0 +cuda117 = + cupy-cuda117>=5.0.0b4,<11.0.0 apple = thinc-apple-ops>=0.1.0.dev0,<1.0.0 # Language tokenizers with external dependencies diff --git a/website/src/widgets/quickstart-install.js b/website/src/widgets/quickstart-install.js index ccc6b56d9..61c0678dd 100644 --- a/website/src/widgets/quickstart-install.js +++ b/website/src/widgets/quickstart-install.js @@ -24,6 +24,8 @@ const CUDA = { '11.3': 'cuda113', '11.4': 'cuda114', '11.5': 'cuda115', + '11.6': 'cuda116', + '11.7': 'cuda117', } const LANG_EXTRAS = ['ja'] // only for languages with models From 3fe9f47de4334977e52589a3426fb754389a463f Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 30 Jun 2022 11:24:54 +0200 Subject: [PATCH 039/138] Revert "disable failing test because Stanford servers are down (#11015)" (#11054) This reverts commit f8116078ce2c5760ae218bc1657977ed116fcf18. --- spacy/tests/training/test_readers.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/spacy/tests/training/test_readers.py b/spacy/tests/training/test_readers.py index eb07a52b1..8c5c81625 100644 --- a/spacy/tests/training/test_readers.py +++ b/spacy/tests/training/test_readers.py @@ -60,12 +60,11 @@ def test_readers(): assert isinstance(extra_corpus, Callable) -# TODO: enable IMDB test once Stanford servers are back up and running @pytest.mark.slow @pytest.mark.parametrize( "reader,additional_config", [ - # ("ml_datasets.imdb_sentiment.v1", {"train_limit": 10, "dev_limit": 10}), + ("ml_datasets.imdb_sentiment.v1", {"train_limit": 10, "dev_limit": 10}), ("ml_datasets.dbpedia.v1", {"train_limit": 10, "dev_limit": 10}), ("ml_datasets.cmu_movies.v1", {"limit": 10, "freq_cutoff": 200, "split": 0.8}), ], From eaf66e74314cf5262cee0f41a42c36dc39fc0975 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Thu, 30 Jun 2022 11:28:12 +0200 Subject: [PATCH 040/138] Add NVTX ranges to `TrainablePipe` components (#10965) * `TrainablePipe`: Add NVTX range decorator * Annotate `TrainablePipe` subclasses with NVTX ranges * Export function signature to allow introspection of args in tests * Revert "Annotate `TrainablePipe` subclasses with NVTX ranges" This reverts commit d8684f7372b2590bc603c3681a9679381253f8d6. * Revert "Export function signature to allow introspection of args in tests" This reverts commit f4405ca3ad710835e2861de0a846b8ec974718b0. * Revert "`TrainablePipe`: Add NVTX range decorator" This reverts commit 26536eb6b8508c71784a7606209c9a6664fb1b5e. * Add `spacy.pipes_with_nvtx_range` pipeline callback * Show warnings for all missing user-defined pipe functions that need to be annotated Fix imports, typos * Rename `DEFAULT_ANNOTATABLE_PIPE_METHODS` to `DEFAULT_NVTX_ANNOTATABLE_PIPE_METHODS` Reorder import * Walk model nodes directly whilst applying NVTX ranges Ignore pipe method wrapper when applying range --- spacy/errors.py | 3 ++ spacy/ml/callbacks.py | 122 +++++++++++++++++++++++++++++++++++------- 2 files changed, 105 insertions(+), 20 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index 14010565b..dbebf09bd 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -209,6 +209,9 @@ class Warnings(metaclass=ErrorsWithCodes): "Only the last span group will be loaded under " "Doc.spans['{group_name}']. Skipping span group with values: " "{group_values}") + W121 = ("Attempting to trace non-existent method '{method}' in pipe '{pipe}'") + W122 = ("Couldn't trace method '{method}' in pipe '{pipe}'. This can happen if the pipe class " + "is a Cython extension type.") class Errors(metaclass=ErrorsWithCodes): diff --git a/spacy/ml/callbacks.py b/spacy/ml/callbacks.py index b0d088182..18290b947 100644 --- a/spacy/ml/callbacks.py +++ b/spacy/ml/callbacks.py @@ -1,9 +1,14 @@ -from functools import partial -from typing import Type, Callable, TYPE_CHECKING +from typing import Type, Callable, Dict, TYPE_CHECKING, List, Optional, Set +import functools +import inspect +import types +import warnings from thinc.layers import with_nvtx_range from thinc.model import Model, wrap_model_recursive +from thinc.util import use_nvtx_range +from ..errors import Warnings from ..util import registry if TYPE_CHECKING: @@ -11,29 +16,106 @@ if TYPE_CHECKING: from ..language import Language # noqa: F401 -@registry.callbacks("spacy.models_with_nvtx_range.v1") -def create_models_with_nvtx_range( - forward_color: int = -1, backprop_color: int = -1 -) -> Callable[["Language"], "Language"]: - def models_with_nvtx_range(nlp): - pipes = [ - pipe - for _, pipe in nlp.components - if hasattr(pipe, "is_trainable") and pipe.is_trainable - ] +DEFAULT_NVTX_ANNOTATABLE_PIPE_METHODS = [ + "pipe", + "predict", + "set_annotations", + "update", + "rehearse", + "get_loss", + "initialize", + "begin_update", + "finish_update", + "update", +] - # We need process all models jointly to avoid wrapping callbacks twice. - models = Model( - "wrap_with_nvtx_range", - forward=lambda model, X, is_train: ..., - layers=[pipe.model for pipe in pipes], - ) - for node in models.walk(): +def models_with_nvtx_range(nlp, forward_color: int, backprop_color: int): + pipes = [ + pipe + for _, pipe in nlp.components + if hasattr(pipe, "is_trainable") and pipe.is_trainable + ] + + seen_models: Set[int] = set() + for pipe in pipes: + for node in pipe.model.walk(): + if id(node) in seen_models: + continue + seen_models.add(id(node)) with_nvtx_range( node, forward_color=forward_color, backprop_color=backprop_color ) + return nlp + + +@registry.callbacks("spacy.models_with_nvtx_range.v1") +def create_models_with_nvtx_range( + forward_color: int = -1, backprop_color: int = -1 +) -> Callable[["Language"], "Language"]: + return functools.partial( + models_with_nvtx_range, + forward_color=forward_color, + backprop_color=backprop_color, + ) + + +def nvtx_range_wrapper_for_pipe_method(self, func, *args, **kwargs): + if isinstance(func, functools.partial): + return func(*args, **kwargs) + else: + with use_nvtx_range(f"{self.name} {func.__name__}"): + return func(*args, **kwargs) + + +def pipes_with_nvtx_range( + nlp, additional_pipe_functions: Optional[Dict[str, List[str]]] +): + for _, pipe in nlp.components: + if additional_pipe_functions: + extra_funcs = additional_pipe_functions.get(pipe.name, []) + else: + extra_funcs = [] + + for name in DEFAULT_NVTX_ANNOTATABLE_PIPE_METHODS + extra_funcs: + func = getattr(pipe, name, None) + if func is None: + if name in extra_funcs: + warnings.warn(Warnings.W121.format(method=name, pipe=pipe.name)) + continue + + wrapped_func = functools.partial( + types.MethodType(nvtx_range_wrapper_for_pipe_method, pipe), func + ) + + # Try to preserve the original function signature. + try: + wrapped_func.__signature__ = inspect.signature(func) # type: ignore + except: + pass + + try: + setattr( + pipe, + name, + wrapped_func, + ) + except AttributeError: + warnings.warn(Warnings.W122.format(method=name, pipe=pipe.name)) + + return nlp + + +@registry.callbacks("spacy.models_and_pipes_with_nvtx_range.v1") +def create_models_and_pipes_with_nvtx_range( + forward_color: int = -1, + backprop_color: int = -1, + additional_pipe_functions: Optional[Dict[str, List[str]]] = None, +) -> Callable[["Language"], "Language"]: + def inner(nlp): + nlp = models_with_nvtx_range(nlp, forward_color, backprop_color) + nlp = pipes_with_nvtx_range(nlp, additional_pipe_functions) return nlp - return models_with_nvtx_range + return inner From e8fdbfc65e14d69e16968d84ed90bca1ac2a7581 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Fri, 1 Jul 2022 14:28:03 +0900 Subject: [PATCH 041/138] Minor fix in Lemmatizer docs --- website/docs/api/lemmatizer.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/docs/api/lemmatizer.md b/website/docs/api/lemmatizer.md index 75387305a..422f34040 100644 --- a/website/docs/api/lemmatizer.md +++ b/website/docs/api/lemmatizer.md @@ -118,7 +118,7 @@ shortcut for this and instantiate the component using its string name and | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | _keyword-only_ | | | mode | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `"lookup"`. ~~str~~ | -| overwrite | Whether to overwrite existing lemmas. ~~bool~ | +| overwrite | Whether to overwrite existing lemmas. ~~bool~~ | ## Lemmatizer.\_\_call\_\_ {#call tag="method"} From 7e55a51314e6e59ee64e9802fd34bfdc692c1350 Mon Sep 17 00:00:00 2001 From: explosion-bot Date: Fri, 1 Jul 2022 08:04:32 +0000 Subject: [PATCH 042/138] Auto-format code with black --- spacy/tests/matcher/test_matcher_api.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py index 2c2af6ce5..7c16da9f8 100644 --- a/spacy/tests/matcher/test_matcher_api.py +++ b/spacy/tests/matcher/test_matcher_api.py @@ -685,8 +685,8 @@ def test_matcher_ent_iob_key(en_vocab): def test_matcher_min_max_operator(en_vocab): # Exactly n matches {n} doc = Doc( - en_vocab, words=["foo", "bar", "foo", "foo", "bar", - "foo", "foo", "foo", "bar", "bar"] + en_vocab, + words=["foo", "bar", "foo", "foo", "bar", "foo", "foo", "foo", "bar", "bar"], ) matcher = Matcher(en_vocab) pattern = [{"ORTH": "foo", "OP": "{3}"}] From 59c763eec171e9285b39e793baa2cfbf2ccd48d7 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Mon, 4 Jul 2022 15:04:03 +0200 Subject: [PATCH 043/138] `StringStore`-related optimizations (#10938) * `strings`: More roubust type checking of keys/IDs, coerce `int`-like types to `hash_t` * Preserve existing public API behaviour * Fix return type * Replace `bool` with `bint`, rename to `_try_coerce_to_hash`, replace `id` with `hash` * Avoid unnecessary re-encoding and re-calculation of strings and hashs respectively * Rename variables named `hash` Add comment on early return --- spacy/strings.pxd | 2 +- spacy/strings.pyx | 135 ++++++++++++++++++++++++++++------------------ 2 files changed, 83 insertions(+), 54 deletions(-) diff --git a/spacy/strings.pxd b/spacy/strings.pxd index 370180135..5f03a9a28 100644 --- a/spacy/strings.pxd +++ b/spacy/strings.pxd @@ -26,4 +26,4 @@ cdef class StringStore: cdef public PreshMap _map cdef const Utf8Str* intern_unicode(self, str py_string) - cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length) + cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash) diff --git a/spacy/strings.pyx b/spacy/strings.pyx index 39fc441e9..c5f218342 100644 --- a/spacy/strings.pyx +++ b/spacy/strings.pyx @@ -14,6 +14,13 @@ from .symbols import NAMES as SYMBOLS_BY_INT from .errors import Errors from . import util +# Not particularly elegant, but this is faster than `isinstance(key, numbers.Integral)` +cdef inline bint _try_coerce_to_hash(object key, hash_t* out_hash): + try: + out_hash[0] = key + return True + except: + return False def get_string_id(key): """Get a string ID, handling the reserved symbols correctly. If the key is @@ -22,15 +29,27 @@ def get_string_id(key): This function optimises for convenience over performance, so shouldn't be used in tight loops. """ - if not isinstance(key, str): - return key - elif key in SYMBOLS_BY_STR: - return SYMBOLS_BY_STR[key] - elif not key: - return 0 + cdef hash_t str_hash + if isinstance(key, str): + if len(key) == 0: + return 0 + + symbol = SYMBOLS_BY_STR.get(key, None) + if symbol is not None: + return symbol + else: + chars = key.encode("utf8") + return hash_utf8(chars, len(chars)) + elif _try_coerce_to_hash(key, &str_hash): + # Coerce the integral key to the expected primitive hash type. + # This ensures that custom/overloaded "primitive" data types + # such as those implemented by numpy are not inadvertently used + # downsteam (as these are internally implemented as custom PyObjects + # whose comparison operators can incur a significant overhead). + return str_hash else: - chars = key.encode("utf8") - return hash_utf8(chars, len(chars)) + # TODO: Raise an error instead + return key cpdef hash_t hash_string(str string) except 0: @@ -110,28 +129,36 @@ cdef class StringStore: string_or_id (bytes, str or uint64): The value to encode. Returns (str / uint64): The value to be retrieved. """ - if isinstance(string_or_id, str) and len(string_or_id) == 0: - return 0 - elif string_or_id == 0: - return "" - elif string_or_id in SYMBOLS_BY_STR: - return SYMBOLS_BY_STR[string_or_id] - cdef hash_t key + cdef hash_t str_hash + cdef Utf8Str* utf8str = NULL + if isinstance(string_or_id, str): - key = hash_string(string_or_id) - return key - elif isinstance(string_or_id, bytes): - key = hash_utf8(string_or_id, len(string_or_id)) - return key - elif string_or_id < len(SYMBOLS_BY_INT): - return SYMBOLS_BY_INT[string_or_id] - else: - key = string_or_id - utf8str = self._map.get(key) - if utf8str is NULL: - raise KeyError(Errors.E018.format(hash_value=string_or_id)) + if len(string_or_id) == 0: + return 0 + + # Return early if the string is found in the symbols LUT. + symbol = SYMBOLS_BY_STR.get(string_or_id, None) + if symbol is not None: + return symbol else: - return decode_Utf8Str(utf8str) + return hash_string(string_or_id) + elif isinstance(string_or_id, bytes): + return hash_utf8(string_or_id, len(string_or_id)) + elif _try_coerce_to_hash(string_or_id, &str_hash): + if str_hash == 0: + return "" + elif str_hash < len(SYMBOLS_BY_INT): + return SYMBOLS_BY_INT[str_hash] + else: + utf8str = self._map.get(str_hash) + else: + # TODO: Raise an error instead + utf8str = self._map.get(string_or_id) + + if utf8str is NULL: + raise KeyError(Errors.E018.format(hash_value=string_or_id)) + else: + return decode_Utf8Str(utf8str) def as_int(self, key): """If key is an int, return it; otherwise, get the int value.""" @@ -153,19 +180,22 @@ cdef class StringStore: string (str): The string to add. RETURNS (uint64): The string's hash value. """ + cdef hash_t str_hash if isinstance(string, str): if string in SYMBOLS_BY_STR: return SYMBOLS_BY_STR[string] - key = hash_string(string) - self.intern_unicode(string) + + string = string.encode("utf8") + str_hash = hash_utf8(string, len(string)) + self._intern_utf8(string, len(string), &str_hash) elif isinstance(string, bytes): if string in SYMBOLS_BY_STR: return SYMBOLS_BY_STR[string] - key = hash_utf8(string, len(string)) - self._intern_utf8(string, len(string)) + str_hash = hash_utf8(string, len(string)) + self._intern_utf8(string, len(string), &str_hash) else: raise TypeError(Errors.E017.format(value_type=type(string))) - return key + return str_hash def __len__(self): """The number of strings in the store. @@ -174,30 +204,29 @@ cdef class StringStore: """ return self.keys.size() - def __contains__(self, string not None): - """Check whether a string is in the store. + def __contains__(self, string_or_id not None): + """Check whether a string or ID is in the store. - string (str): The string to check. + string_or_id (str or int): The string to check. RETURNS (bool): Whether the store contains the string. """ - cdef hash_t key - if isinstance(string, int) or isinstance(string, long): - if string == 0: + cdef hash_t str_hash + if isinstance(string_or_id, str): + if len(string_or_id) == 0: return True - key = string - elif len(string) == 0: - return True - elif string in SYMBOLS_BY_STR: - return True - elif isinstance(string, str): - key = hash_string(string) + elif string_or_id in SYMBOLS_BY_STR: + return True + str_hash = hash_string(string_or_id) + elif _try_coerce_to_hash(string_or_id, &str_hash): + pass else: - string = string.encode("utf8") - key = hash_utf8(string, len(string)) - if key < len(SYMBOLS_BY_INT): + # TODO: Raise an error instead + return self._map.get(string_or_id) is not NULL + + if str_hash < len(SYMBOLS_BY_INT): return True else: - return self._map.get(key) is not NULL + return self._map.get(str_hash) is not NULL def __iter__(self): """Iterate over the strings in the store, in order. @@ -272,13 +301,13 @@ cdef class StringStore: cdef const Utf8Str* intern_unicode(self, str py_string): # 0 means missing, but we don't bother offsetting the index. cdef bytes byte_string = py_string.encode("utf8") - return self._intern_utf8(byte_string, len(byte_string)) + return self._intern_utf8(byte_string, len(byte_string), NULL) @cython.final - cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length): + cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash): # TODO: This function's API/behaviour is an unholy mess... # 0 means missing, but we don't bother offsetting the index. - cdef hash_t key = hash_utf8(utf8_string, length) + cdef hash_t key = precalculated_hash[0] if precalculated_hash is not NULL else hash_utf8(utf8_string, length) cdef Utf8Str* value = self._map.get(key) if value is not NULL: return value From 6c036d1e2595afd250829b64dba1ca609f9e536b Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:03:30 +0200 Subject: [PATCH 044/138] remove universe object: spacy_hunspell --- website/meta/universe.json | 26 -------------------------- 1 file changed, 26 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index ab64fe895..2cf12d51e 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -888,32 +888,6 @@ "github": "shigapov" } }, - { - "id": "spacy_hunspell", - "slogan": "Add spellchecking and spelling suggestions to your spaCy pipeline using Hunspell", - "description": "This package uses the [spaCy 2.0 extensions](https://spacy.io/usage/processing-pipelines#extensions) to add [Hunspell](http://hunspell.github.io) support for spellchecking.", - "github": "tokestermw/spacy_hunspell", - "pip": "spacy_hunspell", - "code_example": [ - "import spacy", - "from spacy_hunspell import spaCyHunSpell", - "", - "nlp = spacy.load('en_core_web_sm')", - "hunspell = spaCyHunSpell(nlp, 'mac')", - "nlp.add_pipe(hunspell)", - "doc = nlp('I can haz cheezeburger.')", - "haz = doc[2]", - "haz._.hunspell_spell # False", - "haz._.hunspell_suggest # ['ha', 'haze', 'hazy', 'has', 'hat', 'had', 'hag', 'ham', 'hap', 'hay', 'haw', 'ha z']" - ], - "author": "Motoki Wu", - "author_links": { - "github": "tokestermw", - "twitter": "plusepsilon" - }, - "category": ["pipeline"], - "tags": ["spellcheck"] - }, { "id": "spacy_grammar", "slogan": "Language Tool style grammar handling with spaCy", From 880e7db44e73a3f20d9166039725d3c5e58b5b9e Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:04:06 +0200 Subject: [PATCH 045/138] remove universe object: spacy_grammar --- website/meta/universe.json | 22 ---------------------- 1 file changed, 22 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 2cf12d51e..f51f2cd88 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -888,28 +888,6 @@ "github": "shigapov" } }, - { - "id": "spacy_grammar", - "slogan": "Language Tool style grammar handling with spaCy", - "description": "This packages leverages the [Matcher API](https://spacy.io/docs/usage/rule-based-matching) in spaCy to quickly match on spaCy tokens not dissimilar to regex. It reads a `grammar.yml` file to load up custom patterns and returns the results inside `Doc`, `Span`, and `Token`. It is extensible through adding rules to `grammar.yml` (though currently only the simple string matching is implemented).", - "github": "tokestermw/spacy_grammar", - "code_example": [ - "import spacy", - "from spacy_grammar.grammar import Grammar", - "", - "nlp = spacy.load('en')", - "grammar = Grammar(nlp)", - "nlp.add_pipe(grammar)", - "doc = nlp('I can haz cheeseburger.')", - "doc._.has_grammar_error # True" - ], - "author": "Motoki Wu", - "author_links": { - "github": "tokestermw", - "twitter": "plusepsilon" - }, - "category": ["pipeline"] - }, { "id": "spacy_kenlm", "slogan": "KenLM extension for spaCy 2.0", From b94bcaa62f953c9d77948ba34750718bfef69a9a Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:04:29 +0200 Subject: [PATCH 046/138] remove universe object: spacy-vis --- website/meta/universe.json | 15 --------------- 1 file changed, 15 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index f51f2cd88..9dae02a19 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1274,21 +1274,6 @@ "github": "huggingface" } }, - { - "id": "spacy-vis", - "slogan": "A visualisation tool for spaCy using Hierplane", - "description": "A visualiser for spaCy annotations. This visualisation uses the [Hierplane](https://allenai.github.io/hierplane/) Library to render the dependency parse from spaCy's models. It also includes visualisation of entities and POS tags within nodes.", - "github": "DeNeutoy/spacy-vis", - "url": "http://spacyvis.allennlp.org/spacy-parser", - "thumb": "https://i.imgur.com/DAG9QFd.jpg", - "image": "https://raw.githubusercontent.com/DeNeutoy/spacy-vis/master/img/example.gif", - "author": "Mark Neumann", - "author_links": { - "twitter": "MarkNeumannnn", - "github": "DeNeutoy" - }, - "category": ["visualizers"] - }, { "id": "matcher-explorer", "title": "Rule-based Matcher Explorer", From 9b823fc9e9caad101c7ab32d484eb5babfae382f Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:04:50 +0200 Subject: [PATCH 047/138] remove universe object: NeuroNER --- website/meta/universe.json | 13 ------------- 1 file changed, 13 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 9dae02a19..8697f361d 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -749,19 +749,6 @@ "category": ["standalone", "research"], "tags": ["pytorch"] }, - { - "id": "NeuroNER", - "title": "NeuroNER", - "slogan": "Named-entity recognition using neural networks", - "github": "Franck-Dernoncourt/NeuroNER", - "category": ["models"], - "pip": "pyneuroner[cpu]", - "code_example": [ - "from neuroner import neuromodel", - "nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)" - ], - "tags": ["standalone"] - }, { "id": "NLPre", "title": "NLPre", From a9062ebf17e69f5f8d06098c3f0bb13e985cb0a7 Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:05:11 +0200 Subject: [PATCH 048/138] remove universe object: spacy-lookup --- website/meta/universe.json | 28 ---------------------------- 1 file changed, 28 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 8697f361d..fb6564660 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -967,34 +967,6 @@ }, "category": ["pipeline"] }, - { - "id": "spacy-lookup", - "slogan": "A powerful entity matcher for very large dictionaries, using the FlashText module", - "description": "spaCy v2.0 extension and pipeline component for adding Named Entities metadata to `Doc` objects. Detects Named Entities using dictionaries. The extension sets the custom `Doc`, `Token` and `Span` attributes `._.is_entity`, `._.entity_type`, `._.has_entities` and `._.entities`. Named Entities are matched using the python module `flashtext`, and looked up in the data provided by different dictionaries.", - "github": "mpuig/spacy-lookup", - "pip": "spacy-lookup", - "code_example": [ - "import spacy", - "from spacy_lookup import Entity", - "", - "nlp = spacy.load('en')", - "entity = Entity(keywords_list=['python', 'product manager', 'java platform'])", - "nlp.add_pipe(entity, last=True)", - "", - "doc = nlp(\"I am a product manager for a java and python.\")", - "assert doc._.has_entities == True", - "assert doc[0]._.is_entity == False", - "assert doc[3]._.entity_desc == 'product manager'", - "assert doc[3]._.is_entity == True", - "", - "print([(token.text, token._.canonical) for token in doc if token._.is_entity])" - ], - "author": "Marc Puig", - "author_links": { - "github": "mpuig" - }, - "category": ["pipeline"] - }, { "id": "spacy-iwnlp", "slogan": "German lemmatization with IWNLP", From 224f30c5636e52e7450a610487c523bea4e9491e Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:05:34 +0200 Subject: [PATCH 049/138] remove universe object: spacy-raspberry --- website/meta/universe.json | 14 -------------- 1 file changed, 14 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index fb6564660..fc3548c4a 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2356,20 +2356,6 @@ "category": ["nonpython"], "tags": ["javascript"] }, - { - "id": "spacy-raspberry", - "title": "spacy-raspberry", - "slogan": "64bit Raspberry Pi image for spaCy and neuralcoref", - "github": "boehm-e/spacy-raspberry", - "thumb": "https://i.imgur.com/VCJMrE6.png", - "image": "https://raw.githubusercontent.com/boehm-e/spacy-raspberry/master/imgs/preview.png", - "author": "Erwan Boehm", - "author_links": { - "github": "boehm-e" - }, - "category": ["apis"], - "tags": ["raspberrypi"] - }, { "id": "spacy-wordnet", "title": "spacy-wordnet", From 60a35a2bb2254564e169d91a19142f04cf93ba0e Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:06:02 +0200 Subject: [PATCH 050/138] remove universe object: spacy_kenlm --- website/meta/universe.json | 24 ------------------------ 1 file changed, 24 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index fc3548c4a..c2e06d2af 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -875,30 +875,6 @@ "github": "shigapov" } }, - { - "id": "spacy_kenlm", - "slogan": "KenLM extension for spaCy 2.0", - "github": "tokestermw/spacy_kenlm", - "pip": "spacy_kenlm", - "code_example": [ - "import spacy", - "from spacy_kenlm import spaCyKenLM", - "", - "nlp = spacy.load('en_core_web_sm')", - "spacy_kenlm = spaCyKenLM() # default model from test.arpa", - "nlp.add_pipe(spacy_kenlm)", - "doc = nlp('How are you?')", - "doc._.kenlm_score # doc score", - "doc[:2]._.kenlm_score # span score", - "doc[2]._.kenlm_score # token score" - ], - "author": "Motoki Wu", - "author_links": { - "github": "tokestermw", - "twitter": "plusepsilon" - }, - "category": ["pipeline"] - }, { "id": "spacy_readability", "slogan": "Add text readability meta data to Doc objects", From 5000a08a200cf6304bf83b0e73bb507bdc3c6a29 Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:06:20 +0200 Subject: [PATCH 051/138] remove universe object: adam_qas --- website/meta/universe.json | 23 ----------------------- 1 file changed, 23 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index c2e06d2af..253af126e 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2212,29 +2212,6 @@ "youtube": "8u57WSXVpmw", "category": ["videos"] }, - { - "id": "adam_qas", - "title": "ADAM: Question Answering System", - "slogan": "A question answering system that extracts answers from Wikipedia to questions posed in natural language.", - "github": "5hirish/adam_qas", - "pip": "qas", - "code_example": [ - "git clone https://github.com/5hirish/adam_qas.git", - "cd adam_qas", - "pip install -r requirements.txt", - "python -m qas.adam 'When was linux kernel version 4.0 released ?'" - ], - "code_language": "bash", - "thumb": "https://shirishkadam.files.wordpress.com/2018/04/mini_alleviate.png", - "author": "Shirish Kadam", - "author_links": { - "twitter": "5hirish", - "github": "5hirish", - "website": "https://shirishkadam.com/" - }, - "category": ["standalone"], - "tags": ["question-answering", "elasticsearch"] - }, { "id": "self-attentive-parser", "title": "Berkeley Neural Parser", From 0e4a835468b644c7cc5cb2f13881372705e07618 Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:06:38 +0200 Subject: [PATCH 052/138] remove universe object: num_fh --- website/meta/universe.json | 29 ----------------------------- 1 file changed, 29 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 253af126e..29fda2ae9 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2906,35 +2906,6 @@ ], "author": "Stefan Daniel Dumitrescu, Andrei-Marius Avram" }, - { - "id": "num_fh", - "title": "Numeric Fused-Head", - "slogan": "Numeric Fused-Head Identificaiton and Resolution in English", - "description": "This package provide a wrapper for the Numeric Fused-Head in English. It provides another information layer on numbers that refer to another entity which is not obvious from the syntactic tree.", - "github": "yanaiela/num_fh", - "pip": "num_fh", - "category": ["pipeline", "research"], - "code_example": [ - "import spacy", - "from num_fh import NFH", - "nlp = spacy.load('en_core_web_sm')", - "nfh = NFH(nlp)", - "nlp.add_pipe(nfh, first=False)", - "doc = nlp(\"I told you two, that only one of them is the one who will get 2 or 3 icecreams\")", - "", - "assert doc[16]._.is_nfh == True", - "assert doc[18]._.is_nfh == False", - "assert doc[3]._.is_deter_nfh == True", - "assert doc[16]._.is_deter_nfh == False", - "assert len(doc._.nfh) == 4" - ], - "author": "Yanai Elazar", - "author_links": { - "github": "yanaiela", - "twitter": "yanaiela", - "website": "https://yanaiela.github.io" - } - }, { "id": "Healthsea", "title": "Healthsea", From 4e8a5994df14dd14701d63cd316647dc5d95c2f3 Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:06:58 +0200 Subject: [PATCH 053/138] remove universe object: NLPre --- website/meta/universe.json | 24 ------------------------ 1 file changed, 24 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 29fda2ae9..17619b906 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -749,30 +749,6 @@ "category": ["standalone", "research"], "tags": ["pytorch"] }, - { - "id": "NLPre", - "title": "NLPre", - "slogan": "Natural Language Preprocessing Library for health data and more", - "github": "NIHOPA/NLPre", - "pip": "nlpre", - "code_example": [ - "from nlpre import titlecaps, dedash, identify_parenthetical_phrases", - "from nlpre import replace_acronyms, replace_from_dictionary", - "ABBR = identify_parenthetical_phrases()(text)", - "parsers = [dedash(), titlecaps(), replace_acronyms(ABBR),", - " replace_from_dictionary(prefix='MeSH_')]", - "for f in parsers:", - " text = f(text)", - "print(text)" - ], - "category": ["scientific", "biomedical"], - "author": "Travis Hoppe", - "author_links": { - "github": "thoppe", - "twitter": "metasemantic", - "website": "http://thoppe.github.io/" - } - }, { "id": "Chatterbot", "title": "Chatterbot", From b3165db41b35e2713badf37166f31a6a803f5515 Mon Sep 17 00:00:00 2001 From: schaeran Date: Mon, 4 Jul 2022 16:07:18 +0200 Subject: [PATCH 054/138] remove universe object: spacy-langdetect --- website/meta/universe.json | 29 ----------------------------- 1 file changed, 29 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 17619b906..a6e407e93 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2355,35 +2355,6 @@ "category": ["standalone", "pipeline"], "tags": ["linguistics", "computational linguistics", "conll", "conll-u"] }, - { - "id": "spacy-langdetect", - "title": "spacy-langdetect", - "slogan": "A fully customizable language detection pipeline for spaCy", - "description": "This module allows you to add language detection capabilites to your spaCy pipeline. Also supports custom language detectors!", - "pip": "spacy-langdetect", - "code_example": [ - "import spacy", - "from spacy_langdetect import LanguageDetector", - "nlp = spacy.load('en')", - "nlp.add_pipe(LanguageDetector(), name='language_detector', last=True)", - "text = 'This is an english text.'", - "doc = nlp(text)", - "# document level language detection. Think of it like average language of the document!", - "print(doc._.language)", - "# sentence level language detection", - "for sent in doc.sents:", - " print(sent, sent._.language)" - ], - "code_language": "python", - "author": "Abhijit Balaji", - "author_links": { - "github": "Abhijit-2592", - "website": "https://abhijit-2592.github.io/" - }, - "github": "Abhijit-2592/spacy-langdetect", - "category": ["pipeline"], - "tags": ["language-detection"] - }, { "id": "ludwig", "title": "Ludwig", From e9eb59699f1b80c7a74b9e0f1bb2520d74b7bfd5 Mon Sep 17 00:00:00 2001 From: Raphael Mitsch Date: Mon, 4 Jul 2022 17:05:21 +0200 Subject: [PATCH 055/138] NEL confidence threshold (#11016) * Add base for NEL abstention threshold mechanism. * Add abstention threshold to entity linker. Add test. * Fix entity linking tests. * Changed abstention default threshold from 0 to None. * Fix default values for abstention thresholds. * Fix mypy errors. * Replace assertion with raise of proper error code. * Simplify threshold check. Remove thresholding from EntityLinker_v1. * Rename test. * Update spacy/pipeline/entity_linker.py Co-authored-by: Sofie Van Landeghem * Update spacy/pipeline/entity_linker.py Co-authored-by: Sofie Van Landeghem * Make E1043 configurable. * Update docs. * Rephrase description in docs. Adjusting error code message. Co-authored-by: Sofie Van Landeghem --- spacy/errors.py | 2 + spacy/pipeline/entity_linker.py | 34 ++++++++--- spacy/pipeline/legacy/entity_linker.py | 7 +-- spacy/tests/pipeline/test_entity_linker.py | 67 ++++++++++++++++++++-- website/docs/api/entitylinker.md | 55 +++++++++--------- 5 files changed, 122 insertions(+), 43 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index dbebf09bd..fd412a4da 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -937,6 +937,8 @@ class Errors(metaclass=ErrorsWithCodes): E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}") E1042 = ("Function was called with `{arg1}`={arg1_values} and " "`{arg2}`={arg2_values} but these arguments are conflicting.") + E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got " + "{value}.") # Deprecated model shortcuts, only used in errors and warnings diff --git a/spacy/pipeline/entity_linker.py b/spacy/pipeline/entity_linker.py index aa7985a9c..73a90b268 100644 --- a/spacy/pipeline/entity_linker.py +++ b/spacy/pipeline/entity_linker.py @@ -56,6 +56,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] "overwrite": True, "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"}, "use_gold_ents": True, + "threshold": None, }, default_score_weights={ "nel_micro_f": 1.0, @@ -77,6 +78,7 @@ def make_entity_linker( overwrite: bool, scorer: Optional[Callable], use_gold_ents: bool, + threshold: Optional[float] = None, ): """Construct an EntityLinker component. @@ -91,6 +93,10 @@ def make_entity_linker( get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that produces a list of candidates, given a certain knowledge base and a textual mention. scorer (Optional[Callable]): The scoring method. + use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another + component must provide entity annotations. + threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold, + prediction is discarded. If None, predictions are not filtered by any threshold. """ if not model.attrs.get("include_span_maker", False): @@ -121,6 +127,7 @@ def make_entity_linker( overwrite=overwrite, scorer=scorer, use_gold_ents=use_gold_ents, + threshold=threshold, ) @@ -156,6 +163,7 @@ class EntityLinker(TrainablePipe): overwrite: bool = BACKWARD_OVERWRITE, scorer: Optional[Callable] = entity_linker_score, use_gold_ents: bool, + threshold: Optional[float] = None, ) -> None: """Initialize an entity linker. @@ -174,9 +182,20 @@ class EntityLinker(TrainablePipe): Scorer.score_links. use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another component must provide entity annotations. - + threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the + threshold, prediction is discarded. If None, predictions are not filtered by any threshold. DOCS: https://spacy.io/api/entitylinker#init """ + + if threshold is not None and not (0 <= threshold <= 1): + raise ValueError( + Errors.E1043.format( + range_start=0, + range_end=1, + value=threshold, + ) + ) + self.vocab = vocab self.model = model self.name = name @@ -192,6 +211,7 @@ class EntityLinker(TrainablePipe): self.kb = empty_kb(entity_vector_length)(self.vocab) self.scorer = scorer self.use_gold_ents = use_gold_ents + self.threshold = threshold def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): """Define the KB of this pipe by providing a function that will @@ -424,9 +444,8 @@ class EntityLinker(TrainablePipe): if not candidates: # no prediction possible for this entity - setting to NIL final_kb_ids.append(self.NIL) - elif len(candidates) == 1: + elif len(candidates) == 1 and self.threshold is None: # shortcut for efficiency reasons: take the 1 candidate - # TODO: thresholding final_kb_ids.append(candidates[0].entity_) else: random.shuffle(candidates) @@ -455,10 +474,11 @@ class EntityLinker(TrainablePipe): if sims.shape != prior_probs.shape: raise ValueError(Errors.E161) scores = prior_probs + sims - (prior_probs * sims) - # TODO: thresholding - best_index = scores.argmax().item() - best_candidate = candidates[best_index] - final_kb_ids.append(best_candidate.entity_) + final_kb_ids.append( + candidates[scores.argmax().item()].entity_ + if self.threshold is None or scores.max() >= self.threshold + else EntityLinker.NIL + ) if not (len(final_kb_ids) == entity_count): err = Errors.E147.format( method="predict", msg="result variables not of equal length" diff --git a/spacy/pipeline/legacy/entity_linker.py b/spacy/pipeline/legacy/entity_linker.py index d723bdbe5..2f8a1f8ea 100644 --- a/spacy/pipeline/legacy/entity_linker.py +++ b/spacy/pipeline/legacy/entity_linker.py @@ -7,7 +7,7 @@ from pathlib import Path from itertools import islice import srsly import random -from thinc.api import CosineDistance, Model, Optimizer, Config +from thinc.api import CosineDistance, Model, Optimizer from thinc.api import set_dropout_rate import warnings @@ -20,7 +20,7 @@ from ...language import Language from ...vocab import Vocab from ...training import Example, validate_examples, validate_get_examples from ...errors import Errors, Warnings -from ...util import SimpleFrozenList, registry +from ...util import SimpleFrozenList from ... import util from ...scorer import Scorer @@ -70,7 +70,6 @@ class EntityLinker_v1(TrainablePipe): produces a list of candidates, given a certain knowledge base and a textual mention. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links. - DOCS: https://spacy.io/api/entitylinker#init """ self.vocab = vocab @@ -272,7 +271,6 @@ class EntityLinker_v1(TrainablePipe): final_kb_ids.append(self.NIL) elif len(candidates) == 1: # shortcut for efficiency reasons: take the 1 candidate - # TODO: thresholding final_kb_ids.append(candidates[0].entity_) else: random.shuffle(candidates) @@ -301,7 +299,6 @@ class EntityLinker_v1(TrainablePipe): if sims.shape != prior_probs.shape: raise ValueError(Errors.E161) scores = prior_probs + sims - (prior_probs * sims) - # TODO: thresholding best_index = scores.argmax().item() best_candidate = candidates[best_index] final_kb_ids.append(best_candidate.entity_) diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index a6cfead77..14995d7b8 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -1,4 +1,4 @@ -from typing import Callable, Iterable +from typing import Callable, Iterable, Dict, Any import pytest from numpy.testing import assert_equal @@ -207,7 +207,7 @@ def test_no_entities(): nlp.add_pipe("sentencizer", first=True) # this will run the pipeline on the examples and shouldn't crash - results = nlp.evaluate(train_examples) + nlp.evaluate(train_examples) def test_partial_links(): @@ -1063,7 +1063,7 @@ def test_no_gold_ents(patterns): "entity_linker", config={"use_gold_ents": False}, last=True ) entity_linker.set_kb(create_kb) - assert entity_linker.use_gold_ents == False + assert entity_linker.use_gold_ents is False optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): @@ -1074,7 +1074,7 @@ def test_no_gold_ents(patterns): nlp.add_pipe("sentencizer", first=True) # this will run the pipeline on the examples and shouldn't crash - results = nlp.evaluate(train_examples) + nlp.evaluate(train_examples) @pytest.mark.issue(9575) @@ -1114,4 +1114,61 @@ def test_tokenization_mismatch(): nlp.update(train_examples, sgd=optimizer, losses=losses) nlp.add_pipe("sentencizer", first=True) - results = nlp.evaluate(train_examples) + nlp.evaluate(train_examples) + + +# fmt: off +@pytest.mark.parametrize( + "meet_threshold,config", + [ + (False, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}), + (True, {"@architectures": "spacy.EntityLinker.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL}), + ], +) +# fmt: on +def test_threshold(meet_threshold: bool, config: Dict[str, Any]): + """Tests abstention threshold. + meet_threshold (bool): Whether to configure NEL setup so that confidence threshold is met. + config (Dict[str, Any]): NEL architecture config. + """ + nlp = English() + nlp.add_pipe("sentencizer") + text = "Mahler's Symphony No. 8 was beautiful." + entities = [(0, 6, "PERSON")] + links = {(0, 6): {"Q7304": 1.0}} + sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0] + entity_id = "Q7304" + doc = nlp(text) + train_examples = [ + Example.from_dict( + doc, {"entities": entities, "links": links, "sent_starts": sent_starts} + ) + ] + + def create_kb(vocab): + # create artificial KB + mykb = KnowledgeBase(vocab, entity_vector_length=3) + mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3]) + mykb.add_alias( + alias="Mahler", + entities=[entity_id], + probabilities=[1 if meet_threshold else 0.01], + ) + return mykb + + # Create the Entity Linker component and add it to the pipeline + entity_linker = nlp.add_pipe( + "entity_linker", + last=True, + config={"threshold": 0.99, "model": config}, + ) + entity_linker.set_kb(create_kb) # type: ignore + nlp.initialize(get_examples=lambda: train_examples) + + # Add a custom rule-based component to mimick NER + ruler = nlp.add_pipe("entity_ruler", before="entity_linker") + ruler.add_patterns([{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}]) # type: ignore + doc = nlp(text) + + assert len(doc.ents) == 1 + assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL diff --git a/website/docs/api/entitylinker.md b/website/docs/api/entitylinker.md index 8e0d6087a..a55cce352 100644 --- a/website/docs/api/entitylinker.md +++ b/website/docs/api/entitylinker.md @@ -47,22 +47,24 @@ architectures and their arguments and hyperparameters. > "model": DEFAULT_NEL_MODEL, > "entity_vector_length": 64, > "get_candidates": {'@misc': 'spacy.CandidateGenerator.v1'}, +> "threshold": None, > } > nlp.add_pipe("entity_linker", config=config) > ``` -| Setting | Description | -| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | -| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | -| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | -| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | -| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | -| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ | -| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | -| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | +| Setting | Description | +| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | +| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | +| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | +| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | +| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | +| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ | +| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | +| `threshold` 3.4 | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/entity_linker.py @@ -95,20 +97,21 @@ custom knowledge base, you should either call [`set_kb`](/api/entitylinker#set_kb) or provide a `kb_loader` in the [`initialize`](/api/entitylinker#initialize) call. -| Name | Description | -| ---------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | -| _keyword-only_ | | -| `entity_vector_length` | Size of encoding vectors in the KB. ~~int~~ | -| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | -| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~ | -| `n_sents` | The number of neighbouring sentences to take into account. ~~int~~ | -| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. ~~bool~~ | -| `incl_context` | Whether or not to include the local context in the model. ~~bool~~ | -| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | +| Name | Description | +| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `entity_vector_length` | Size of encoding vectors in the KB. ~~int~~ | +| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~ | +| `n_sents` | The number of neighbouring sentences to take into account. ~~int~~ | +| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. ~~bool~~ | +| `incl_context` | Whether or not to include the local context in the model. ~~bool~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | +| `threshold` 3.4 | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ | ## EntityLinker.\_\_call\_\_ {#call tag="method"} From 5240baccfee33af84c3b92813da827f4c5bbd7fa Mon Sep 17 00:00:00 2001 From: kadarakos Date: Mon, 4 Jul 2022 17:15:33 +0200 Subject: [PATCH 056/138] dont use get_array_module (#11056) --- spacy/pipeline/textcat.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index bc3f127fc..c45f819fc 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -192,7 +192,7 @@ class TextCategorizer(TrainablePipe): if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. tensors = [doc.tensor for doc in docs] - xp = get_array_module(tensors) + xp = self.model.ops.xp scores = xp.zeros((len(list(docs)), len(self.labels))) return scores scores = self.model.predict(docs) From d36d66b7ca491976e2c7da2cde76fdac16229637 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Mon, 4 Jul 2022 18:37:09 +0200 Subject: [PATCH 057/138] Increase test deadline to 30 minutes to prevent spurious test failures (#11070) * Increase test deadline to 30 minutes to prevent spurious test failures * Reduce deadline to 2 minutes --- spacy/tests/conftest.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index db17f1a8f..1117c6cf6 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -1,6 +1,11 @@ import pytest from spacy.util import get_lang_class +from hypothesis import settings +# Functionally disable deadline settings for tests +# to prevent spurious test failures in CI builds. +settings.register_profile("no_deadlines", deadline=2*60*1000) # in ms +settings.load_profile("no_deadlines") def pytest_addoption(parser): try: From 78a84f0d78630a6a2849bb95f7dabfad4a513aea Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 4 Jul 2022 20:50:16 +0200 Subject: [PATCH 058/138] Support env var for num build jobs (#11073) --- setup.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/setup.py b/setup.py index 9023b9fa3..377a7689d 100755 --- a/setup.py +++ b/setup.py @@ -126,6 +126,8 @@ class build_ext_options: class build_ext_subclass(build_ext, build_ext_options): def build_extensions(self): + if not self.parallel: + self.parallel = int(os.environ.get("SPACY_NUM_BUILD_JOBS", 1)) build_ext_options.build_options(self) build_ext.build_extensions(self) From a06cbae70dd96c3f709fa0dadf95c41292b170fb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 5 Jul 2022 10:53:42 +0200 Subject: [PATCH 059/138] precompute_hiddens/Parser: do not look up CPU ops (3.4) (#11069) * precompute_hiddens/Parser: do not look up CPU ops `get_ops("cpu")` is quite expensive. To avoid this, we want to cache the result as in #11068. However, for 3.x we do not want to change the ABI. So we avoid the expensive lookup by using NumpyOps. This should have a minimal impact, since `get_ops("cpu")` was only used when the model ops were `CupyOps`. If the ops are `AppleOps`, we are still passing through the correct BLAS implementation. * _NUMPY_OPS -> NUMPY_OPS --- spacy/ml/parser_model.pyx | 2 +- spacy/pipeline/transition_parser.pyx | 7 +++++-- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/spacy/ml/parser_model.pyx b/spacy/ml/parser_model.pyx index e045dc3b7..961bf4d70 100644 --- a/spacy/ml/parser_model.pyx +++ b/spacy/ml/parser_model.pyx @@ -441,7 +441,7 @@ cdef class precompute_hiddens: cdef CBlas cblas if isinstance(self.ops, CupyOps): - cblas = get_ops("cpu").cblas() + cblas = NUMPY_OPS.cblas() else: cblas = self.ops.cblas() diff --git a/spacy/pipeline/transition_parser.pyx b/spacy/pipeline/transition_parser.pyx index 98628f3c8..1327db2ce 100644 --- a/spacy/pipeline/transition_parser.pyx +++ b/spacy/pipeline/transition_parser.pyx @@ -9,7 +9,7 @@ from libc.stdlib cimport calloc, free import random import srsly -from thinc.api import get_ops, set_dropout_rate, CupyOps +from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps from thinc.extra.search cimport Beam import numpy.random import numpy @@ -30,6 +30,9 @@ from ..errors import Errors, Warnings from .. import util +NUMPY_OPS = NumpyOps() + + cdef class Parser(TrainablePipe): """ Base class of the DependencyParser and EntityRecognizer. @@ -262,7 +265,7 @@ cdef class Parser(TrainablePipe): ops = self.model.ops cdef CBlas cblas if isinstance(ops, CupyOps): - cblas = get_ops("cpu").cblas() + cblas = NUMPY_OPS.cblas() else: cblas = ops.cblas() self._ensure_labels_are_added(docs) From 7b220afc29ae5eec25adef258a36abdc118636ba Mon Sep 17 00:00:00 2001 From: Kenneth Enevoldsen Date: Thu, 7 Jul 2022 06:25:25 +0200 Subject: [PATCH 060/138] Added asent to spacy universe (#11078) * Added asent to spacy universe * Update addition of asent following correction --- website/meta/universe.json | 40 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index a6e407e93..01ed91c67 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1120,6 +1120,46 @@ "category": ["pipeline", "models", "training"], "tags": ["pipeline", "models", "transformers"] }, + { + "id": "asent", + "title": "Asent", + "slogan": "Fast, flexible and transparent sentiment analysis", + "description": "Asent is a rule-based sentiment analysis library for Python made using spaCy. It is inspired by VADER, but uses a more modular ruleset, that allows the user to change e.g. the method for finding negations. Furthermore it includes visualisers to visualize the model predictions, making the model easily interpretable.", + "github": "kennethenevoldsen/asent", + "pip": "aseny", + "code_example": [ + "import spacy", + "import asent", + "", + "# load spacy pipeline", + "nlp = spacy.blank('en')", + "nlp.add_pipe('sentencizer')", + "", + "# add the rule-based sentiment model", + "nlp.add_pipe('asent_en_v1')", + "", + "# try an example", + "text = 'I am not very happy, but I am also not especially sad'", + "doc = nlp(text)", + "", + "# print polarity of document, scaled to be between -1, and 1", + "print(doc._.polarity)", + "# neg=0.0 neu=0.631 pos=0.369 compound=0.7526", + "", + "# Naturally, a simple score can be quite unsatisfying, thus Asent implements a series of visualizer to interpret the results:", + "asent.visualize(doc, style='prediction')", + " # or", + "asent.visualize(doc[:5], style='analysis')" + ], + "thumb": "https://github.com/KennethEnevoldsen/asent/raw/main/docs/img/logo_black_font.png?raw=true", + "author": "Kenneth Enevoldsen", + "author_links": { + "github": "KennethEnevoldsen", + "website": "https://www.kennethenevoldsen.com" + }, + "category": ["pipeline", "models"], + "tags": ["pipeline", "models", "sentiment"] + }, { "id": "textdescriptives", "title": "TextDescriptives", From bb3e11b9a10699dda1e38b0384176c8df04caa2a Mon Sep 17 00:00:00 2001 From: Nipun Sadvilkar Date: Thu, 7 Jul 2022 17:50:30 +0530 Subject: [PATCH 061/138] Github Action for spaCy universe project alert (#11090) --- .github/spacy_universe_alert.py | 67 ++++++++++++++++++++++ .github/workflows/spacy_universe_alert.yml | 30 ++++++++++ website/meta/universe.json | 1 + 3 files changed, 98 insertions(+) create mode 100644 .github/spacy_universe_alert.py create mode 100644 .github/workflows/spacy_universe_alert.yml diff --git a/.github/spacy_universe_alert.py b/.github/spacy_universe_alert.py new file mode 100644 index 000000000..99ffabe93 --- /dev/null +++ b/.github/spacy_universe_alert.py @@ -0,0 +1,67 @@ +import os +import sys +import json +from datetime import datetime + +from slack_sdk.web.client import WebClient + +CHANNEL = "#alerts-universe" +SLACK_TOKEN = os.environ.get("SLACK_BOT_TOKEN", "ENV VAR not available!") +DATETIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ" + +client = WebClient(SLACK_TOKEN) +github_context = json.loads(sys.argv[1]) + +event = github_context['event'] +pr_title = event['pull_request']["title"] +pr_link = event['pull_request']["patch_url"].replace(".patch", "") +pr_author_url = event['sender']["html_url"] +pr_author_name = pr_author_url.rsplit('/')[-1] +pr_created_at_dt = datetime.strptime( + event['pull_request']["created_at"], + DATETIME_FORMAT +) +pr_created_at = pr_created_at_dt.strftime("%c") +pr_updated_at_dt = datetime.strptime( + event['pull_request']["updated_at"], + DATETIME_FORMAT +) +pr_updated_at = pr_updated_at_dt.strftime("%c") + +blocks = [ + { + "type": "section", + "text": { + "type": "mrkdwn", + "text": "📣 New spaCy Universe Project Alert ✨" + } + }, + { + "type": "section", + "fields": [ + { + "type": "mrkdwn", + "text": f"*Pull Request:*\n<{pr_link}|{pr_title}>" + }, + { + "type": "mrkdwn", + "text": f"*Author:*\n<{pr_author_url}|{pr_author_name}>" + }, + { + "type": "mrkdwn", + "text": f"*Created at:*\n {pr_created_at}" + }, + { + "type": "mrkdwn", + "text": f"*Last Updated:*\n {pr_updated_at}" + } + ] + } + ] + + +client.chat_postMessage( + channel=CHANNEL, + text="spaCy universe project PR alert", + blocks=blocks +) diff --git a/.github/workflows/spacy_universe_alert.yml b/.github/workflows/spacy_universe_alert.yml new file mode 100644 index 000000000..e02d93985 --- /dev/null +++ b/.github/workflows/spacy_universe_alert.yml @@ -0,0 +1,30 @@ +name: spaCy universe project alert + +on: + pull_request: + paths: + - "website/meta/universe.json" + +jobs: + build: + runs-on: ubuntu-latest + + steps: + - name: Dump GitHub context + env: + GITHUB_CONTEXT: ${{ toJson(github) }} + PR_NUMBER: ${{github.event.number}} + run: | + echo "$GITHUB_CONTEXT" + + - uses: actions/checkout@v1 + - uses: actions/setup-python@v1 + - name: Install Bernadette app dependency and send an alert + env: + SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }} + GITHUB_CONTEXT: ${{ toJson(github) }} + CHANNEL: "#alerts-universe" + run: | + pip install slack-sdk==3.17.2 aiohttp==3.8.1 + echo "$CHANNEL" + python .github/spacy_universe_alert.py "$GITHUB_CONTEXT" diff --git a/website/meta/universe.json b/website/meta/universe.json index 01ed91c67..b11d829ec 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2983,6 +2983,7 @@ "from pysbd.utils import PySBDFactory", "", "nlp = spacy.blank('en')", + "# Caution: works with spaCy<=2.x.x", "nlp.add_pipe(PySBDFactory(nlp))", "", "doc = nlp('My name is Jonas E. Smith. Please turn to p. 55.')", From 86ee26e3c29aae7a5bb56517de1e1c4ec98f41be Mon Sep 17 00:00:00 2001 From: Nipun Sadvilkar Date: Thu, 7 Jul 2022 19:43:50 +0530 Subject: [PATCH 062/138] Use `pull_request_target` event for spaCy universe GA trigger (#11097) --- .github/workflows/spacy_universe_alert.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/spacy_universe_alert.yml b/.github/workflows/spacy_universe_alert.yml index e02d93985..cbbf14c6e 100644 --- a/.github/workflows/spacy_universe_alert.yml +++ b/.github/workflows/spacy_universe_alert.yml @@ -1,7 +1,7 @@ name: spaCy universe project alert on: - pull_request: + pull_request_target: paths: - "website/meta/universe.json" From e7fd06bdbe45ea406df437ab0f0cb6a3c85193f0 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 8 Jul 2022 18:43:25 +0900 Subject: [PATCH 063/138] Auto-format code with black (#11099) Co-authored-by: explosion-bot --- spacy/tests/conftest.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index 1117c6cf6..eb643ec2f 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -4,9 +4,10 @@ from hypothesis import settings # Functionally disable deadline settings for tests # to prevent spurious test failures in CI builds. -settings.register_profile("no_deadlines", deadline=2*60*1000) # in ms +settings.register_profile("no_deadlines", deadline=2 * 60 * 1000) # in ms settings.load_profile("no_deadlines") + def pytest_addoption(parser): try: parser.addoption("--slow", action="store_true", help="include slow tests") From be9e17c0e41988ddd53a68f5239cc182026ad499 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 8 Jul 2022 11:45:56 +0200 Subject: [PATCH 064/138] Add docs for compiling with build constraints (#11081) --- website/docs/usage/index.md | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/website/docs/usage/index.md b/website/docs/usage/index.md index d2aa08d73..2dfe2acaa 100644 --- a/website/docs/usage/index.md +++ b/website/docs/usage/index.md @@ -195,6 +195,42 @@ How to install compilers and related build tools: [Visual Studio Express](https://www.visualstudio.com/vs/visual-studio-express/) that matches the version that was used to compile your Python interpreter. +#### Using build constraints when compiling from source + +If you install spaCy from source or with `pip` for platforms where there are not +binary wheels on PyPI, you may need to use build constraints if any package in +your environment requires an older version of `numpy`. + +If `numpy` gets downgraded from the most recent release at any point after +you've compiled `spacy`, you might see an error that looks like this: + +```none +numpy.ndarray size changed, may indicate binary incompatibility. +``` + +To fix this, create a new virtual environment and install `spacy` and all of its +dependencies using build constraints. +[Build constraints](https://pip.pypa.io/en/stable/user_guide/#constraints-files) +specify an older version of `numpy` that is only used while compiling `spacy`, +and then your runtime environment can use any newer version of `numpy` and still +be compatible. In addition, use `--no-cache-dir` to ignore any previously cached +wheels so that all relevant packages are recompiled from scratch: + +```shell +PIP_CONSTRAINT=https://raw.githubusercontent.com/explosion/spacy/master/build-constraints.txt \ +pip install spacy --no-cache-dir +``` + +Our build constraints currently specify the oldest supported `numpy` available +on PyPI for `x86_64` and `aarch64`. Depending on your platform and environment, +you may want to customize the specific versions of `numpy`. For other platforms, +you can have a look at SciPy's +[`oldest-supported-numpy`](https://github.com/scipy/oldest-supported-numpy/blob/main/setup.cfg) +package to see what the oldest recommended versions of `numpy` are. + +(_Warning_: don't use `pip install -c constraints.txt` instead of +`PIP_CONSTRAINT`, since this isn't applied to the isolated build environments.) + #### Additional options for developers {#source-developers} Some additional options may be useful for spaCy developers who are editing the From f38aff4ec9a5022dad0f216e1b6cd74699b1d8a6 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Fri, 8 Jul 2022 13:36:12 +0200 Subject: [PATCH 065/138] Add examples for new explosion bot commands (#11082) * Add examples for new explosion bot commands * Update extra/DEVELOPER_DOCS/ExplosionBot.md Co-authored-by: Sofie Van Landeghem Co-authored-by: Sofie Van Landeghem --- extra/DEVELOPER_DOCS/ExplosionBot.md | 44 ++++++++++++++++++++-------- 1 file changed, 32 insertions(+), 12 deletions(-) diff --git a/extra/DEVELOPER_DOCS/ExplosionBot.md b/extra/DEVELOPER_DOCS/ExplosionBot.md index eebec1a06..791b1f229 100644 --- a/extra/DEVELOPER_DOCS/ExplosionBot.md +++ b/extra/DEVELOPER_DOCS/ExplosionBot.md @@ -16,21 +16,41 @@ To summon the robot, write a github comment on the issue/PR you wish to test. Th Some things to note: -* The `@explosion-bot please` must be the beginning of the command - you cannot add anything in front of this or else the robot won't know how to parse it. Adding anything at the end aside from the test name will also confuse the robot, so keep it simple! -* The command name (such as `test_gpu`) must be one of the tests that the bot knows how to run. The available commands are documented in the bot's [workflow config](https://github.com/explosion/spaCy/blob/master/.github/workflows/explosionbot.yml#L26) and must match exactly one of the commands listed there. -* The robot can't do multiple things at once, so if you want it to run multiple tests, you'll have to summon it with one comment per test. -* For the `test_gpu` command, you can specify an optional thinc branch (from the spaCy repo) or a spaCy branch (from the thinc repo) with either the `--thinc-branch` or `--spacy-branch` flags. By default, the bot will pull in the PR branch from the repo where the command was issued, and the main branch of the other repository. However, if you need to run against another branch, you can say (for example): +- The `@explosion-bot please` must be the beginning of the command - you cannot add anything in front of this or else the robot won't know how to parse it. Adding anything at the end aside from the test name will also confuse the robot, so keep it simple! +- The command name (such as `test_gpu`) must be one of the tests that the bot knows how to run. The available commands are documented in the bot's [workflow config](https://github.com/explosion/spaCy/blob/master/.github/workflows/explosionbot.yml#L26) and must match exactly one of the commands listed there. +- The robot can't do multiple things at once, so if you want it to run multiple tests, you'll have to summon it with one comment per test. -``` -@explosion-bot please test_gpu --thinc-branch develop -``` -You can also specify a branch from an unmerged PR: -``` -@explosion-bot please test_gpu --thinc-branch refs/pull/633/head -``` +### Examples + +- Execute spaCy slow GPU tests with a custom thinc branch from a spaCy PR: + + ``` + @explosion-bot please test_slow_gpu --thinc-branch + ``` + + `branch_name` can either be a named branch, e.g: `develop`, or an unmerged PR, e.g: `refs/pull//head`. + +- Execute spaCy Transformers GPU tests from a spaCy PR: + + ``` + @explosion-bot please test_gpu --run-on spacy-transformers --run-on-branch master --spacy-branch current_pr + ``` + + This will launch the GPU pipeline for the `spacy-transformers` repo on its `master` branch, using the current spaCy PR's branch to build spaCy. + +- General info about supported commands. + + ``` + @explosion-bot please info + ``` + +- Help text for a specific command + ``` + @explosion-bot please --help + ``` ## Troubleshooting -If the robot isn't responding to commands as expected, you can check its logs in the [Github Action](https://github.com/explosion/spaCy/actions/workflows/explosionbot.yml). +If the robot isn't responding to commands as expected, you can check its logs in the [Github Action](https://github.com/explosion/spaCy/actions/workflows/explosionbot.yml). For each command sent to the bot, there should be a run of the `explosion-bot` workflow. In the `Install and run explosion-bot` step, towards the ends of the logs you should see info about the configuration that the bot was run with, as well as any errors that the bot encountered. From 397197ec0e6ad73c2878c29bf525e3fca7604d6d Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 8 Jul 2022 14:58:01 +0200 Subject: [PATCH 066/138] Extend to mypy<0.970 (#11100) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 3b77140f6..2d0c91f67 100644 --- a/requirements.txt +++ b/requirements.txt @@ -30,7 +30,7 @@ pytest-timeout>=1.3.0,<2.0.0 mock>=2.0.0,<3.0.0 flake8>=3.8.0,<3.10.0 hypothesis>=3.27.0,<7.0.0 -mypy>=0.910,<=0.960 +mypy>=0.910,<0.970 types-dataclasses>=0.1.3; python_version < "3.7" types-mock>=0.1.1 types-requests From 66d6461c8ff01d5691a62a8eafb31efef90cf91d Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 8 Jul 2022 17:52:41 +0200 Subject: [PATCH 067/138] Use thinc v8.1 (#11101) --- pyproject.toml | 2 +- requirements.txt | 2 +- setup.cfg | 4 ++-- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 4e388e54f..317c5fdbe 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ requires = [ "cymem>=2.0.2,<2.1.0", "preshed>=3.0.2,<3.1.0", "murmurhash>=0.28.0,<1.1.0", - "thinc>=8.1.0.dev3,<8.2.0", + "thinc>=8.1.0,<8.2.0", "pathy", "numpy>=1.15.0", ] diff --git a/requirements.txt b/requirements.txt index 2d0c91f67..f81a8f631 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,7 +3,7 @@ spacy-legacy>=3.0.9,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 -thinc>=8.1.0.dev3,<8.2.0 +thinc>=8.1.0,<8.2.0 ml_datasets>=0.2.0,<0.3.0 murmurhash>=0.28.0,<1.1.0 wasabi>=0.9.1,<1.1.0 diff --git a/setup.cfg b/setup.cfg index 68d9cdd67..61bf36f8a 100644 --- a/setup.cfg +++ b/setup.cfg @@ -38,7 +38,7 @@ setup_requires = cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 murmurhash>=0.28.0,<1.1.0 - thinc>=8.1.0.dev3,<8.2.0 + thinc>=8.1.0,<8.2.0 install_requires = # Our libraries spacy-legacy>=3.0.9,<3.1.0 @@ -46,7 +46,7 @@ install_requires = murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 - thinc>=8.1.0.dev3,<8.2.0 + thinc>=8.1.0,<8.2.0 wasabi>=0.9.1,<1.1.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 From dc38a0f07979c5148e8278c79c63ccf6f797ed22 Mon Sep 17 00:00:00 2001 From: Richard Hudson Date: Fri, 8 Jul 2022 19:19:48 +0200 Subject: [PATCH 068/138] Change demo URL (#11102) --- website/meta/universe.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index b11d829ec..29d436ec4 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2695,7 +2695,7 @@ "slogan": "Information extraction from English and German texts based on predicate logic", "github": "explosion/holmes-extractor", "url": "https://github.com/explosion/holmes-extractor", - "description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://demo.holmes.prod.demos.explosion.services).", + "description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://holmes-demo.explosion.services).", "pip": "holmes-extractor", "category": ["pipeline", "standalone"], "tags": ["chatbots", "text-processing"], From 36cb2029a9accea40285f62c4af365cb974b2ccd Mon Sep 17 00:00:00 2001 From: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Date: Fri, 8 Jul 2022 13:20:13 -0400 Subject: [PATCH 069/138] displaCy Spans Vertical Alignment Fix 2 (#11092) * add in span render slot fix * fix spacing off by one * rm demo * adjust comments * fix whitespace and overlap issue --- spacy/displacy/render.py | 61 ++++++++++++++++++++++++++++++++++------ 1 file changed, 53 insertions(+), 8 deletions(-) diff --git a/spacy/displacy/render.py b/spacy/displacy/render.py index a730ce522..50dc3466c 100644 --- a/spacy/displacy/render.py +++ b/spacy/displacy/render.py @@ -130,26 +130,56 @@ class SpanRenderer: title (str / None): Document title set in Doc.user_data['title']. """ per_token_info = [] + # we must sort so that we can correctly describe when spans need to "stack" + # which is determined by their start token, then span length (longer spans on top), + # then break any remaining ties with the span label + spans = sorted( + spans, + key=lambda s: ( + s["start_token"], + -(s["end_token"] - s["start_token"]), + s["label"], + ), + ) + for s in spans: + # this is the vertical 'slot' that the span will be rendered in + # vertical_position = span_label_offset + (offset_step * (slot - 1)) + s["render_slot"] = 0 for idx, token in enumerate(tokens): # Identify if a token belongs to a Span (and which) and if it's a # start token of said Span. We'll use this for the final HTML render token_markup: Dict[str, Any] = {} token_markup["text"] = token + concurrent_spans = 0 entities = [] for span in spans: ent = {} if span["start_token"] <= idx < span["end_token"]: + concurrent_spans += 1 + span_start = idx == span["start_token"] ent["label"] = span["label"] - ent["is_start"] = True if idx == span["start_token"] else False + ent["is_start"] = span_start + if span_start: + # When the span starts, we need to know how many other + # spans are on the 'span stack' and will be rendered. + # This value becomes the vertical render slot for this entire span + span["render_slot"] = concurrent_spans + ent["render_slot"] = span["render_slot"] kb_id = span.get("kb_id", "") kb_url = span.get("kb_url", "#") ent["kb_link"] = ( TPL_KB_LINK.format(kb_id=kb_id, kb_url=kb_url) if kb_id else "" ) entities.append(ent) + else: + # We don't specifically need to do this since we loop + # over tokens and spans sorted by their start_token, + # so we'll never use a span again after the last token it appears in, + # but if we were to use these spans again we'd want to make sure + # this value was reset correctly. + span["render_slot"] = 0 token_markup["entities"] = entities per_token_info.append(token_markup) - markup = self._render_markup(per_token_info) markup = TPL_SPANS.format(content=markup, dir=self.direction) if title: @@ -160,8 +190,12 @@ class SpanRenderer: """Render the markup from per-token information""" markup = "" for token in per_token_info: - entities = sorted(token["entities"], key=lambda d: d["label"]) - if entities: + entities = sorted(token["entities"], key=lambda d: d["render_slot"]) + # Whitespace tokens disrupt the vertical space (no line height) so that the + # span indicators get misaligned. We don't render them as individual + # tokens anyway, so we'll just not display a span indicator either. + is_whitespace = token["text"].strip() == "" + if entities and not is_whitespace: slices = self._get_span_slices(token["entities"]) starts = self._get_span_starts(token["entities"]) total_height = ( @@ -182,10 +216,18 @@ class SpanRenderer: def _get_span_slices(self, entities: List[Dict]) -> str: """Get the rendered markup of all Span slices""" span_slices = [] - for entity, step in zip(entities, itertools.count(step=self.offset_step)): + for entity in entities: + # rather than iterate over multiples of offset_step, we use entity['render_slot'] + # to determine the vertical position, since that tells where + # the span starts vertically so we can extend it horizontally, + # past other spans that might have already ended color = self.colors.get(entity["label"].upper(), self.default_color) + top_offset = self.top_offset + ( + self.offset_step * (entity["render_slot"] - 1) + ) span_slice = self.span_slice_template.format( - bg=color, top_offset=self.top_offset + step + bg=color, + top_offset=top_offset, ) span_slices.append(span_slice) return "".join(span_slices) @@ -193,12 +235,15 @@ class SpanRenderer: def _get_span_starts(self, entities: List[Dict]) -> str: """Get the rendered markup of all Span start tokens""" span_starts = [] - for entity, step in zip(entities, itertools.count(step=self.offset_step)): + for entity in entities: color = self.colors.get(entity["label"].upper(), self.default_color) + top_offset = self.top_offset + ( + self.offset_step * (entity["render_slot"] - 1) + ) span_start = ( self.span_start_template.format( bg=color, - top_offset=self.top_offset + step, + top_offset=top_offset, label=entity["label"], kb_link=entity["kb_link"], ) From 3701039c1f688b2296499944087a581e02fc041a Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 8 Jul 2022 19:21:17 +0200 Subject: [PATCH 070/138] Tweak build jobs setting, update install docs (#11077) * Restrict SPACY_NUM_BUILD_JOBS to only override if set * Update install docs --- setup.py | 10 +++++++--- website/docs/usage/index.md | 30 +++++++++++++++++++----------- 2 files changed, 26 insertions(+), 14 deletions(-) diff --git a/setup.py b/setup.py index 377a7689d..ec1bd35fa 100755 --- a/setup.py +++ b/setup.py @@ -126,8 +126,8 @@ class build_ext_options: class build_ext_subclass(build_ext, build_ext_options): def build_extensions(self): - if not self.parallel: - self.parallel = int(os.environ.get("SPACY_NUM_BUILD_JOBS", 1)) + if self.parallel is None and os.environ.get("SPACY_NUM_BUILD_JOBS") is not None: + self.parallel = int(os.environ.get("SPACY_NUM_BUILD_JOBS")) build_ext_options.build_options(self) build_ext.build_extensions(self) @@ -208,7 +208,11 @@ def setup_package(): for name in MOD_NAMES: mod_path = name.replace(".", "/") + ".pyx" ext = Extension( - name, [mod_path], language="c++", include_dirs=include_dirs, extra_compile_args=["-std=c++11"] + name, + [mod_path], + language="c++", + include_dirs=include_dirs, + extra_compile_args=["-std=c++11"], ) ext_modules.append(ext) print("Cythonizing sources") diff --git a/website/docs/usage/index.md b/website/docs/usage/index.md index 2dfe2acaa..1f4869606 100644 --- a/website/docs/usage/index.md +++ b/website/docs/usage/index.md @@ -130,8 +130,8 @@ grateful to use the work of Chainer's [CuPy](https://cupy.chainer.org) module, which provides a numpy-compatible interface for GPU arrays. spaCy can be installed for a CUDA-compatible GPU by specifying `spacy[cuda]`, -`spacy[cuda102]`, `spacy[cuda112]`, `spacy[cuda113]`, etc. If you know your -CUDA version, using the more explicit specifier allows CuPy to be installed via +`spacy[cuda102]`, `spacy[cuda112]`, `spacy[cuda113]`, etc. If you know your CUDA +version, using the more explicit specifier allows CuPy to be installed via wheel, saving some compilation time. The specifiers should install [`cupy`](https://cupy.chainer.org). @@ -236,24 +236,32 @@ package to see what the oldest recommended versions of `numpy` are. Some additional options may be useful for spaCy developers who are editing the source code and recompiling frequently. -- Install in editable mode. Changes to `.py` files will be reflected as soon as - the files are saved, but edits to Cython files (`.pxd`, `.pyx`) will require - the `pip install` or `python setup.py build_ext` command below to be run - again. Before installing in editable mode, be sure you have removed any - previous installs with `pip uninstall spacy`, which you may need to run - multiple times to remove all traces of earlier installs. +- Install in editable mode. Changes to `.py` files will be reflected as soon + as the files are saved, but edits to Cython files (`.pxd`, `.pyx`) will + require the `pip install` command below to be run again. Before installing in + editable mode, be sure you have removed any previous installs with + `pip uninstall spacy`, which you may need to run multiple times to remove all + traces of earlier installs. ```bash $ pip install -r requirements.txt $ pip install --no-build-isolation --editable . ``` -- Build in parallel using `N` CPUs to speed up compilation and then install in - editable mode: +- Build in parallel. Starting in v3.4.0, you can specify the number of + build jobs with the environment variable `SPACY_NUM_BUILD_JOBS`: ```bash $ pip install -r requirements.txt - $ python setup.py build_ext --inplace -j N + $ SPACY_NUM_BUILD_JOBS=4 pip install --no-build-isolation --editable . + ``` + +- For editable mode and parallel builds with `python setup.py` instead of `pip` + (no longer recommended): + + ```bash + $ pip install -r requirements.txt + $ python setup.py build_ext --inplace -j 4 $ python setup.py develop ``` From 5cb6f1ae51118cc200c09fa225c053bd78376db9 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 11 Jul 2022 12:20:00 +0200 Subject: [PATCH 071/138] CI: Install with two parallel build jobs (#11111) --- .github/azure-steps.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index 1f886161a..5d865b452 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -40,7 +40,7 @@ steps: - bash: | ${{ parameters.prefix }} SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1) - ${{ parameters.prefix }} python -m pip install dist/$SDIST + ${{ parameters.prefix }} SPACY_NUM_BUILD_JOBS=2 python -m pip install dist/$SDIST displayName: "Install from sdist" - script: | From d583626a826c00dfba55f42dc7911d1a4b0b7032 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 11 Jul 2022 13:29:35 +0200 Subject: [PATCH 072/138] Update build setup for aarch64 (#11112) * Extend build constraints for aarch64 * Skip mypy for aarch64 --- build-constraints.txt | 6 ++++-- requirements.txt | 2 +- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/build-constraints.txt b/build-constraints.txt index cf5fe3284..956973abf 100644 --- a/build-constraints.txt +++ b/build-constraints.txt @@ -1,6 +1,8 @@ # build version constraints for use with wheelwright + multibuild -numpy==1.15.0; python_version<='3.7' -numpy==1.17.3; python_version=='3.8' +numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64' +numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64' +numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64' +numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64' numpy==1.19.3; python_version=='3.9' numpy==1.21.3; python_version=='3.10' numpy; python_version>='3.11' diff --git a/requirements.txt b/requirements.txt index f81a8f631..437dd415a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -30,7 +30,7 @@ pytest-timeout>=1.3.0,<2.0.0 mock>=2.0.0,<3.0.0 flake8>=3.8.0,<3.10.0 hypothesis>=3.27.0,<7.0.0 -mypy>=0.910,<0.970 +mypy>=0.910,<0.970; platform_machine!='aarch64' types-dataclasses>=0.1.3; python_version < "3.7" types-mock>=0.1.1 types-requests From 11f859c1323e0e1889c59dfabfd207946bf5207b Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 11 Jul 2022 15:36:31 +0200 Subject: [PATCH 073/138] Docs for v3.4 (#11057) * Add draft of v3.4 usage * Add Croatian models * Add Matcher min/max * Update release notes * Minor edits * Add updates, tables * Update pydantic/mypy versions * Update version in README * Fix sidebar --- README.md | 2 +- website/docs/usage/v3-4.md | 143 +++++++++++++++++++++++++++++++++ website/meta/languages.json | 7 +- website/meta/sidebars.json | 4 +- website/src/templates/index.js | 4 +- 5 files changed, 155 insertions(+), 5 deletions(-) create mode 100644 website/docs/usage/v3-4.md diff --git a/README.md b/README.md index bcdf0f844..d9ef83e01 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the MIT license. -💫 **Version 3.3.1 out now!** +💫 **Version 3.4.0 out now!** [Check out the release notes here.](https://github.com/explosion/spaCy/releases) [![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8) diff --git a/website/docs/usage/v3-4.md b/website/docs/usage/v3-4.md new file mode 100644 index 000000000..7cc4570d5 --- /dev/null +++ b/website/docs/usage/v3-4.md @@ -0,0 +1,143 @@ +--- +title: What's New in v3.4 +teaser: New features and how to upgrade +menu: + - ['New Features', 'features'] + - ['Upgrading Notes', 'upgrading'] +--- + +## New features {#features hidden="true"} + +spaCy v3.4 brings typing and speed improvements along with new vectors for +English CNN pipelines and new trained pipelines for Croatian. This release also +includes prebuilt linux aarch64 wheels for all spaCy dependencies distributed by +Explosion. + +### Typing improvements {#typing} + +spaCy v3.4 supports pydantic v1.9 and mypy 0.950+ through extensive updates to +types in Thinc v8.1. + +### Speed improvements {#speed} + +- For the parser, use C `saxpy`/`sgemm` provided by the `Ops` implementation in + order to use Accelerate through `thinc-apple-ops`. +- Improved speed of vector lookups. +- Improved speed for `Example.get_aligned_parse` and `Example.get_aligned`. + +## Additional features and improvements + +- Min/max `{n,m}` operator for `Matcher` patterns. +- Language updates: + - Improve tokenization for Cyrillic combining diacritics. + - Improve English tokenizer exceptions for contractions with + this/that/these/those. +- Updated `spacy project clone` to try both `main` and `master` branches by + default. +- Added confidence threshold for named entity linker. +- Improved handling of Typer optional default values for `init_config_cli`. +- Added cycle detection in parser projectivization methods. +- Added counts for NER labels in `debug data`. +- Support for adding NVTX ranges to `TrainablePipe` components. +- Support env variable `SPACY_NUM_BUILD_JOBS` to specify the number of build + jobs to run in parallel with `pip`. + +## Trained pipelines {#pipelines} + +### New trained pipelines {#new-pipelines} + +v3.4 introduces new CPU/CNN pipelines for Croatian, which use the trainable +lemmatizer and [floret vectors](https://github.com/explosion/floret). Due to the +use of [Bloom embeddings](https://explosion.ai/blog/bloom-embeddings) and +subwords, the pipelines have compact vectors with no out-of-vocabulary words. + +| Package | UPOS | Parser LAS | NER F | +| ----------------------------------------------- | ---: | ---------: | ----: | +| [`hr_core_news_sm`](/models/hr#hr_core_news_sm) | 96.6 | 77.5 | 76.1 | +| [`hr_core_news_md`](/models/hr#hr_core_news_md) | 97.3 | 80.1 | 81.8 | +| [`hr_core_news_lg`](/models/hr#hr_core_news_lg) | 97.5 | 80.4 | 83.0 | + +### Pipeline updates {#pipeline-updates} + +All CNN pipelines have been extended with whitespace augmentation. + +The English CNN pipelines have new word vectors: + +| Package | Model Version | TAG | Parser LAS | NER F | +| ----------------------------------------------- | ------------- | ---: | ---------: | ----: | +| [`en_core_news_md`](/models/en#en_core_news_md) | v3.3.0 | 97.3 | 90.1 | 84.6 | +| [`en_core_news_md`](/models/en#en_core_news_lg) | v3.4.0 | 97.2 | 90.3 | 85.5 | +| [`en_core_news_lg`](/models/en#en_core_news_md) | v3.3.0 | 97.4 | 90.1 | 85.3 | +| [`en_core_news_lg`](/models/en#en_core_news_lg) | v3.4.0 | 97.3 | 90.2 | 85.6 | + +## Notes about upgrading from v3.3 {#upgrading} + +### Doc.has_vector + +`Doc.has_vector` now matches `Token.has_vector` and `Span.has_vector`: it +returns `True` if at least one token in the doc has a vector rather than +checking only whether the vocab contains vectors. + +### Using trained pipelines with floret vectors + +If you're using a trained pipeline for Croatian, Finnish, Korean or Swedish with +new texts and working with `Doc` objects, you shouldn't notice any difference +between floret vectors and default vectors. + +If you use vectors for similarity comparisons, there are a few differences, +mainly because a floret pipeline doesn't include any kind of frequency-based +word list similar to the list of in-vocabulary vector keys with default vectors. + +- If your workflow iterates over the vector keys, you should use an external + word list instead: + + ```diff + - lexemes = [nlp.vocab[orth] for orth in nlp.vocab.vectors] + + lexemes = [nlp.vocab[word] for word in external_word_list] + ``` + +- `Vectors.most_similar` is not supported because there's no fixed list of + vectors to compare your vectors to. + +### Pipeline package version compatibility {#version-compat} + +> #### Using legacy implementations +> +> In spaCy v3, you'll still be able to load and reference legacy implementations +> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the +> components or architectures change and newer versions are available in the +> core library. + +When you're loading a pipeline package trained with an earlier version of spaCy +v3, you will see a warning telling you that the pipeline may be incompatible. +This doesn't necessarily have to be true, but we recommend running your +pipelines against your test suite or evaluation data to make sure there are no +unexpected results. + +If you're using one of the [trained pipelines](/models) we provide, you should +run [`spacy download`](/api/cli#download) to update to the latest version. To +see an overview of all installed packages and their compatibility, you can run +[`spacy validate`](/api/cli#validate). + +If you've trained your own custom pipeline and you've confirmed that it's still +working as expected, you can update the spaCy version requirements in the +[`meta.json`](/api/data-formats#meta): + +```diff +- "spacy_version": ">=3.3.0,<3.4.0", ++ "spacy_version": ">=3.3.0,<3.5.0", +``` + +### Updating v3.3 configs + +To update a config from spaCy v3.3 with the new v3.4 settings, run +[`init fill-config`](/api/cli#init-fill-config): + +```cli +$ python -m spacy init fill-config config-v3.3.cfg config-v3.4.cfg +``` + +In many cases ([`spacy train`](/api/cli#train), +[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in +automatically, but you'll need to fill in the new settings to run +[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data). diff --git a/website/meta/languages.json b/website/meta/languages.json index 64ca7a082..6bc2309ed 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -162,7 +162,12 @@ { "code": "hr", "name": "Croatian", - "has_examples": true + "has_examples": true, + "models": [ + "hr_core_news_sm", + "hr_core_news_md", + "hr_core_news_lg" + ] }, { "code": "hsb", diff --git a/website/meta/sidebars.json b/website/meta/sidebars.json index 1bc395a66..1b743636c 100644 --- a/website/meta/sidebars.json +++ b/website/meta/sidebars.json @@ -12,7 +12,9 @@ { "text": "New in v3.0", "url": "/usage/v3" }, { "text": "New in v3.1", "url": "/usage/v3-1" }, { "text": "New in v3.2", "url": "/usage/v3-2" }, - { "text": "New in v3.3", "url": "/usage/v3-3" } + { "text": "New in v3.2", "url": "/usage/v3-2" }, + { "text": "New in v3.3", "url": "/usage/v3-3" }, + { "text": "New in v3.4", "url": "/usage/v3-4" } ] }, { diff --git a/website/src/templates/index.js b/website/src/templates/index.js index bdbdbd431..a0ba4503e 100644 --- a/website/src/templates/index.js +++ b/website/src/templates/index.js @@ -120,8 +120,8 @@ const AlertSpace = ({ nightly, legacy }) => { } const navAlert = ( - - 💥 Out now: spaCy v3.3 + + 💥 Out now: spaCy v3.4 ) From 2fa983aa2e746bbd71ac9935483ab99c6322d85e Mon Sep 17 00:00:00 2001 From: Nicolai Bjerre Pedersen Date: Tue, 12 Jul 2022 13:47:35 +0200 Subject: [PATCH 074/138] Fix span typings (#11119) Add id, id_ to span.pyi. --- spacy/tokens/span.pyi | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/spacy/tokens/span.pyi b/spacy/tokens/span.pyi index 4a4149652..617e3d19d 100644 --- a/spacy/tokens/span.pyi +++ b/spacy/tokens/span.pyi @@ -120,6 +120,10 @@ class Span: ent_id: int ent_id_: str @property + def id(self) -> int: ... + @property + def id_(self) -> str: ... + @property def orth_(self) -> str: ... @property def lemma_(self) -> str: ... From 2235e3520c763fd3e25118e6cc104def3f75330f Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 12 Jul 2022 15:20:33 +0200 Subject: [PATCH 075/138] Update binder version in docs (#11124) --- website/meta/site.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/meta/site.json b/website/meta/site.json index 97051011f..360a72178 100644 --- a/website/meta/site.json +++ b/website/meta/site.json @@ -28,7 +28,7 @@ }, "binderUrl": "explosion/spacy-io-binder", "binderBranch": "spacy.io", - "binderVersion": "3.0", + "binderVersion": "3.4", "sections": [ { "id": "usage", "title": "Usage Documentation", "theme": "blue" }, { "id": "models", "title": "Models Documentation", "theme": "blue" }, From ba18d2913d0cbab62fac71cf6e3f316caaf2fb2a Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Fri, 15 Jul 2022 11:14:08 +0200 Subject: [PATCH 076/138] `Morphology`/`Morphologizer` optimizations and refactoring (#11024) * `Morphology`: Refactor to use C types, reduce allocations, remove unused code * `Morphologzier`: Avoid unnecessary sorting of morpho features * `Morphologizer`: Remove execessive reallocations of labels, improve hash lookups of labels, coerce `numpy` numeric types to native ints Update docs * Remove unused method * Replace `unique_ptr` usage with `shared_ptr` * Add type annotations to internal Python methods, rename `hash` variable, fix typos * Add comment to clarify implementation detail * Fix return type * `Morphology`: Stop early when splitting fields and values --- spacy/morphology.pxd | 44 +++-- spacy/morphology.pyx | 267 ++++++++++++++++++------------ spacy/pipeline/morphologizer.pyx | 29 ++-- spacy/structs.pxd | 8 - spacy/tokens/morphanalysis.pxd | 7 +- spacy/tokens/morphanalysis.pyx | 36 ++-- spacy/tokens/token.pyx | 3 +- website/docs/api/morphologizer.md | 2 +- 8 files changed, 235 insertions(+), 161 deletions(-) diff --git a/spacy/morphology.pxd b/spacy/morphology.pxd index 8d449d065..63faab5be 100644 --- a/spacy/morphology.pxd +++ b/spacy/morphology.pxd @@ -1,23 +1,41 @@ -from cymem.cymem cimport Pool -from preshed.maps cimport PreshMap cimport numpy as np -from libc.stdint cimport uint64_t +from libc.stdint cimport uint32_t, uint64_t +from libcpp.unordered_map cimport unordered_map +from libcpp.vector cimport vector +from libcpp.memory cimport shared_ptr -from .structs cimport MorphAnalysisC from .strings cimport StringStore from .typedefs cimport attr_t, hash_t +cdef cppclass Feature: + hash_t field + hash_t value + + __init__(): + this.field = 0 + this.value = 0 + + +cdef cppclass MorphAnalysisC: + hash_t key + vector[Feature] features + + __init__(): + this.key = 0 + cdef class Morphology: - cdef readonly Pool mem cdef readonly StringStore strings - cdef PreshMap tags # Keyed by hash, value is pointer to tag + cdef unordered_map[hash_t, shared_ptr[MorphAnalysisC]] tags - cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except * - cdef int insert(self, MorphAnalysisC tag) except -1 + cdef shared_ptr[MorphAnalysisC] _lookup_tag(self, hash_t tag_hash) + cdef void _intern_morph_tag(self, hash_t tag_key, feats) + cdef hash_t _add(self, features) + cdef str _normalize_features(self, features) + cdef str get_morph_str(self, hash_t morph_key) + cdef shared_ptr[MorphAnalysisC] get_morph_c(self, hash_t morph_key) - -cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil -cdef list list_features(const MorphAnalysisC* morph) -cdef np.ndarray get_by_field(const MorphAnalysisC* morph, attr_t field) -cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t field) nogil +cdef int check_feature(const shared_ptr[MorphAnalysisC] morph, attr_t feature) nogil +cdef list list_features(const shared_ptr[MorphAnalysisC] morph) +cdef np.ndarray get_by_field(const shared_ptr[MorphAnalysisC] morph, attr_t field) +cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph, attr_t field) nogil diff --git a/spacy/morphology.pyx b/spacy/morphology.pyx index c3ffc46a1..2c3be7b46 100644 --- a/spacy/morphology.pyx +++ b/spacy/morphology.pyx @@ -1,10 +1,10 @@ # cython: infer_types import numpy import warnings +from typing import Union, Tuple, List, Dict, Optional +from cython.operator cimport dereference as deref +from libcpp.memory cimport shared_ptr -from .attrs cimport POS - -from .parts_of_speech import IDS as POS_IDS from .errors import Warnings from . import symbols @@ -24,134 +24,187 @@ cdef class Morphology: EMPTY_MORPH = symbols.NAMES[symbols._] def __init__(self, StringStore strings): - self.mem = Pool() self.strings = strings - self.tags = PreshMap() def __reduce__(self): tags = set([self.get(self.strings[s]) for s in self.strings]) tags -= set([""]) return (unpickle_morphology, (self.strings, sorted(tags)), None, None) - def add(self, features): + cdef shared_ptr[MorphAnalysisC] _lookup_tag(self, hash_t tag_hash): + match = self.tags.find(tag_hash) + if match != self.tags.const_end(): + return deref(match).second + else: + return shared_ptr[MorphAnalysisC]() + + def _normalize_attr(self, attr_key : Union[int, str], attr_value : Union[int, str]) -> Optional[Tuple[str, Union[str, List[str]]]]: + if isinstance(attr_key, (int, str)) and isinstance(attr_value, (int, str)): + attr_key = self.strings.as_string(attr_key) + attr_value = self.strings.as_string(attr_value) + + # Preserve multiple values as a list + if self.VALUE_SEP in attr_value: + values = attr_value.split(self.VALUE_SEP) + values.sort() + attr_value = values + else: + warnings.warn(Warnings.W100.format(feature={attr_key: attr_value})) + return None + + return attr_key, attr_value + + def _str_to_normalized_feat_dict(self, feats: str) -> Dict[str, str]: + if not feats or feats == self.EMPTY_MORPH: + return {} + + out = [] + for feat in feats.split(self.FEATURE_SEP): + field, values = feat.split(self.FIELD_SEP, 1) + normalized_attr = self._normalize_attr(field, values) + if normalized_attr is None: + continue + out.append((normalized_attr[0], normalized_attr[1])) + out.sort(key=lambda x: x[0]) + return dict(out) + + def _dict_to_normalized_feat_dict(self, feats: Dict[Union[int, str], Union[int, str]]) -> Dict[str, str]: + out = [] + for field, values in feats.items(): + normalized_attr = self._normalize_attr(field, values) + if normalized_attr is None: + continue + out.append((normalized_attr[0], normalized_attr[1])) + out.sort(key=lambda x: x[0]) + return dict(out) + + + def _normalized_feat_dict_to_str(self, feats: Dict[str, str]) -> str: + norm_feats_string = self.FEATURE_SEP.join([ + self.FIELD_SEP.join([field, self.VALUE_SEP.join(values) if isinstance(values, list) else values]) + for field, values in feats.items() + ]) + return norm_feats_string or self.EMPTY_MORPH + + + cdef hash_t _add(self, features): """Insert a morphological analysis in the morphology table, if not already present. The morphological analysis may be provided in the UD FEATS format as a string or in the tag map dict format. Returns the hash of the new analysis. """ - cdef MorphAnalysisC* tag_ptr + cdef hash_t tag_hash = 0 + cdef shared_ptr[MorphAnalysisC] tag if isinstance(features, str): if features == "": features = self.EMPTY_MORPH - tag_ptr = self.tags.get(self.strings[features]) - if tag_ptr != NULL: - return tag_ptr.key - features = self.feats_to_dict(features) - if not isinstance(features, dict): + + tag_hash = self.strings[features] + tag = self._lookup_tag(tag_hash) + if tag: + return deref(tag).key + + features = self._str_to_normalized_feat_dict(features) + elif isinstance(features, dict): + features = self._dict_to_normalized_feat_dict(features) + else: warnings.warn(Warnings.W100.format(feature=features)) features = {} - string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()} - # intified ("Field", "Field=Value") pairs - field_feature_pairs = [] - for field in sorted(string_features): - values = string_features[field] - for value in values.split(self.VALUE_SEP): - field_feature_pairs.append(( - self.strings.add(field), - self.strings.add(field + self.FIELD_SEP + value), - )) - cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs) + # the hash key for the tag is either the hash of the normalized UFEATS # string or the hash of an empty placeholder - norm_feats_string = self.normalize_features(features) - tag.key = self.strings.add(norm_feats_string) - self.insert(tag) - return tag.key + norm_feats_string = self._normalized_feat_dict_to_str(features) + tag_hash = self.strings.add(norm_feats_string) + tag = self._lookup_tag(tag_hash) + if tag: + return deref(tag).key - def normalize_features(self, features): + self._intern_morph_tag(tag_hash, features) + return tag_hash + + cdef void _intern_morph_tag(self, hash_t tag_key, feats): + # intified ("Field", "Field=Value") pairs where fields with multiple values have + # been split into individual tuples, e.g.: + # [("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"), + # ("Field2", "Field2=Value3")] + field_feature_pairs = [] + + # Feat dict is normalized at this point. + for field, values in feats.items(): + field_key = self.strings.add(field) + if isinstance(values, list): + for value in values: + value_key = self.strings.add(field + self.FIELD_SEP + value) + field_feature_pairs.append((field_key, value_key)) + else: + # We could box scalar values into a list and use a common + # code path to generate features but that incurs a small + # but measurable allocation/iteration overhead (as this + # branch is taken often enough). + value_key = self.strings.add(field + self.FIELD_SEP + values) + field_feature_pairs.append((field_key, value_key)) + + num_features = len(field_feature_pairs) + cdef shared_ptr[MorphAnalysisC] tag = shared_ptr[MorphAnalysisC](new MorphAnalysisC()) + deref(tag).key = tag_key + deref(tag).features.resize(num_features) + + for i in range(num_features): + deref(tag).features[i].field = field_feature_pairs[i][0] + deref(tag).features[i].value = field_feature_pairs[i][1] + + self.tags[tag_key] = tag + + cdef str get_morph_str(self, hash_t morph_key): + cdef shared_ptr[MorphAnalysisC] tag = self._lookup_tag(morph_key) + if not tag: + return "" + else: + return self.strings[deref(tag).key] + + cdef shared_ptr[MorphAnalysisC] get_morph_c(self, hash_t morph_key): + return self._lookup_tag(morph_key) + + cdef str _normalize_features(self, features): """Create a normalized FEATS string from a features string or dict. features (Union[dict, str]): Features as dict or UFEATS string. RETURNS (str): Features as normalized UFEATS string. """ if isinstance(features, str): - features = self.feats_to_dict(features) - if not isinstance(features, dict): + features = self._str_to_normalized_feat_dict(features) + elif isinstance(features, dict): + features = self._dict_to_normalized_feat_dict(features) + else: warnings.warn(Warnings.W100.format(feature=features)) features = {} - features = self.normalize_attrs(features) - string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()} - # normalized UFEATS string with sorted fields and values - norm_feats_string = self.FEATURE_SEP.join(sorted([ - self.FIELD_SEP.join([field, values]) - for field, values in string_features.items() - ])) - return norm_feats_string or self.EMPTY_MORPH - def normalize_attrs(self, attrs): - """Convert attrs dict so that POS is always by ID, other features are - by string. Values separated by VALUE_SEP are sorted. - """ - out = {} - attrs = dict(attrs) - for key, value in attrs.items(): - # convert POS value to ID - if key == POS or (isinstance(key, str) and key.upper() == "POS"): - if isinstance(value, str) and value.upper() in POS_IDS: - value = POS_IDS[value.upper()] - elif isinstance(value, int) and value not in POS_IDS.values(): - warnings.warn(Warnings.W100.format(feature={key: value})) - continue - out[POS] = value - # accept any string or ID fields and values and convert to strings - elif isinstance(key, (int, str)) and isinstance(value, (int, str)): - key = self.strings.as_string(key) - value = self.strings.as_string(value) - # sort values - if self.VALUE_SEP in value: - value = self.VALUE_SEP.join(sorted(value.split(self.VALUE_SEP))) - out[key] = value - else: - warnings.warn(Warnings.W100.format(feature={key: value})) - return out + return self._normalized_feat_dict_to_str(features) - cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *: - """Creates a MorphAnalysisC from a list of intified - ("Field", "Field=Value") tuples where fields with multiple values have - been split into individual tuples, e.g.: - [("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"), - ("Field2", "Field2=Value3")] - """ - cdef MorphAnalysisC tag - tag.length = len(field_feature_pairs) - if tag.length > 0: - tag.fields = self.mem.alloc(tag.length, sizeof(attr_t)) - tag.features = self.mem.alloc(tag.length, sizeof(attr_t)) - for i, (field, feature) in enumerate(field_feature_pairs): - tag.fields[i] = field - tag.features[i] = feature - return tag + def add(self, features): + return self._add(features) - cdef int insert(self, MorphAnalysisC tag) except -1: - cdef hash_t key = tag.key - if self.tags.get(key) == NULL: - tag_ptr = self.mem.alloc(1, sizeof(MorphAnalysisC)) - tag_ptr[0] = tag - self.tags.set(key, tag_ptr) + def get(self, morph_key): + return self.get_morph_str(morph_key) - def get(self, hash_t morph): - tag = self.tags.get(morph) - if tag == NULL: - return "" - else: - return self.strings[tag.key] + def normalize_features(self, features): + return self._normalize_features(features) @staticmethod - def feats_to_dict(feats): + def feats_to_dict(feats, *, sort_values=True): if not feats or feats == Morphology.EMPTY_MORPH: return {} - return {field: Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP))) for field, values in - [feat.split(Morphology.FIELD_SEP) for feat in feats.split(Morphology.FEATURE_SEP)]} + + out = {} + for feat in feats.split(Morphology.FEATURE_SEP): + field, values = feat.split(Morphology.FIELD_SEP, 1) + if sort_values: + values = values.split(Morphology.VALUE_SEP) + values.sort() + values = Morphology.VALUE_SEP.join(values) + + out[field] = values + return out @staticmethod def dict_to_feats(feats_dict): @@ -160,34 +213,34 @@ cdef class Morphology: return Morphology.FEATURE_SEP.join(sorted([Morphology.FIELD_SEP.join([field, Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP)))]) for field, values in feats_dict.items()])) -cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil: +cdef int check_feature(const shared_ptr[MorphAnalysisC] morph, attr_t feature) nogil: cdef int i - for i in range(morph.length): - if morph.features[i] == feature: + for i in range(deref(morph).features.size()): + if deref(morph).features[i].value == feature: return True return False -cdef list list_features(const MorphAnalysisC* morph): +cdef list list_features(const shared_ptr[MorphAnalysisC] morph): cdef int i features = [] - for i in range(morph.length): - features.append(morph.features[i]) + for i in range(deref(morph).features.size()): + features.append(deref(morph).features[i].value) return features -cdef np.ndarray get_by_field(const MorphAnalysisC* morph, attr_t field): - cdef np.ndarray results = numpy.zeros((morph.length,), dtype="uint64") +cdef np.ndarray get_by_field(const shared_ptr[MorphAnalysisC] morph, attr_t field): + cdef np.ndarray results = numpy.zeros((deref(morph).features.size(),), dtype="uint64") n = get_n_by_field(results.data, morph, field) return results[:n] -cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t field) nogil: +cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph, attr_t field) nogil: cdef int n_results = 0 cdef int i - for i in range(morph.length): - if morph.fields[i] == field: - results[n_results] = morph.features[i] + for i in range(deref(morph).features.size()): + if deref(morph).features[i].field == field: + results[n_results] = deref(morph).features[i].value n_results += 1 return n_results diff --git a/spacy/pipeline/morphologizer.pyx b/spacy/pipeline/morphologizer.pyx index 24f98508f..eec1e42e1 100644 --- a/spacy/pipeline/morphologizer.pyx +++ b/spacy/pipeline/morphologizer.pyx @@ -127,8 +127,8 @@ class Morphologizer(Tagger): @property def labels(self): - """RETURNS (Tuple[str]): The labels currently added to the component.""" - return tuple(self.cfg["labels_morph"].keys()) + """RETURNS (Iterable[str]): The labels currently added to the component.""" + return self.cfg["labels_morph"].keys() @property def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]: @@ -151,7 +151,7 @@ class Morphologizer(Tagger): # normalize label norm_label = self.vocab.morphology.normalize_features(label) # extract separate POS and morph tags - label_dict = Morphology.feats_to_dict(label) + label_dict = Morphology.feats_to_dict(label, sort_values=False) pos = label_dict.get(self.POS_FEAT, "") if self.POS_FEAT in label_dict: label_dict.pop(self.POS_FEAT) @@ -189,7 +189,7 @@ class Morphologizer(Tagger): continue morph = str(token.morph) # create and add the combined morph+POS label - morph_dict = Morphology.feats_to_dict(morph) + morph_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: morph_dict[self.POS_FEAT] = pos norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)] @@ -206,7 +206,7 @@ class Morphologizer(Tagger): for i, token in enumerate(example.reference): pos = token.pos_ morph = str(token.morph) - morph_dict = Morphology.feats_to_dict(morph) + morph_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: morph_dict[self.POS_FEAT] = pos norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)] @@ -231,26 +231,29 @@ class Morphologizer(Tagger): cdef Vocab vocab = self.vocab cdef bint overwrite = self.cfg["overwrite"] cdef bint extend = self.cfg["extend"] - labels = self.labels + + # We require random access for the upcoming ops, so we need + # to allocate a compatible container out of the iterable. + labels = tuple(self.labels) for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): - morph = labels[tag_id] + morph = labels[int(tag_id)] # set morph if doc.c[j].morph == 0 or overwrite or extend: if overwrite and extend: # morphologizer morph overwrites any existing features # while extending - extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph]) - extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0))) + extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False) + extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False)) doc.c[j].morph = self.vocab.morphology.add(extended_morph) elif extend: # existing features are preserved and any new features # are added - extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0)) - extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph])) + extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False) + extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False)) doc.c[j].morph = self.vocab.morphology.add(extended_morph) else: # clobber @@ -270,7 +273,7 @@ class Morphologizer(Tagger): DOCS: https://spacy.io/api/morphologizer#get_loss """ validate_examples(examples, "Morphologizer.get_loss") - loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False) + loss_func = SequenceCategoricalCrossentropy(names=tuple(self.labels), normalize=False) truths = [] for eg in examples: eg_truths = [] @@ -291,7 +294,7 @@ class Morphologizer(Tagger): label = None # Otherwise, generate the combined label else: - label_dict = Morphology.feats_to_dict(morph) + label_dict = Morphology.feats_to_dict(morph, sort_values=False) if pos: label_dict[self.POS_FEAT] = pos label = self.vocab.strings[self.vocab.morphology.add(label_dict)] diff --git a/spacy/structs.pxd b/spacy/structs.pxd index 86d5b67ed..b9b6f6ba8 100644 --- a/spacy/structs.pxd +++ b/spacy/structs.pxd @@ -58,14 +58,6 @@ cdef struct TokenC: hash_t ent_id -cdef struct MorphAnalysisC: - hash_t key - int length - - attr_t* fields - attr_t* features - - # Internal struct, for storage and disambiguation of entities. cdef struct KBEntryC: diff --git a/spacy/tokens/morphanalysis.pxd b/spacy/tokens/morphanalysis.pxd index 9510875c9..f866488ec 100644 --- a/spacy/tokens/morphanalysis.pxd +++ b/spacy/tokens/morphanalysis.pxd @@ -1,9 +1,12 @@ from ..vocab cimport Vocab from ..typedefs cimport hash_t -from ..structs cimport MorphAnalysisC +from ..morphology cimport MorphAnalysisC +from libcpp.memory cimport shared_ptr cdef class MorphAnalysis: cdef readonly Vocab vocab cdef readonly hash_t key - cdef MorphAnalysisC c + cdef shared_ptr[MorphAnalysisC] c + + cdef void _init_c(self, hash_t key) diff --git a/spacy/tokens/morphanalysis.pyx b/spacy/tokens/morphanalysis.pyx index a7d1f2e44..af0067f4e 100644 --- a/spacy/tokens/morphanalysis.pyx +++ b/spacy/tokens/morphanalysis.pyx @@ -5,7 +5,12 @@ from ..errors import Errors from ..morphology import Morphology from ..vocab cimport Vocab from ..typedefs cimport hash_t, attr_t -from ..morphology cimport list_features, check_feature, get_by_field +from ..morphology cimport list_features, check_feature, get_by_field, MorphAnalysisC +from libcpp.memory cimport shared_ptr +from cython.operator cimport dereference as deref + + +cdef shared_ptr[MorphAnalysisC] EMPTY_MORPH_TAG = shared_ptr[MorphAnalysisC](new MorphAnalysisC()) cdef class MorphAnalysis: @@ -13,39 +18,38 @@ cdef class MorphAnalysis: def __init__(self, Vocab vocab, features=dict()): self.vocab = vocab self.key = self.vocab.morphology.add(features) - analysis = self.vocab.morphology.tags.get(self.key) - if analysis is not NULL: - self.c = analysis[0] + self._init_c(self.key) + + cdef void _init_c(self, hash_t key): + cdef shared_ptr[MorphAnalysisC] analysis = self.vocab.morphology.get_morph_c(key) + if analysis: + self.c = analysis else: - memset(&self.c, 0, sizeof(self.c)) + self.c = EMPTY_MORPH_TAG @classmethod def from_id(cls, Vocab vocab, hash_t key): """Create a morphological analysis from a given ID.""" - cdef MorphAnalysis morph = MorphAnalysis.__new__(MorphAnalysis, vocab) + cdef MorphAnalysis morph = MorphAnalysis(vocab) morph.vocab = vocab morph.key = key - analysis = vocab.morphology.tags.get(key) - if analysis is not NULL: - morph.c = analysis[0] - else: - memset(&morph.c, 0, sizeof(morph.c)) + morph._init_c(key) return morph def __contains__(self, feature): """Test whether the morphological analysis contains some feature.""" cdef attr_t feat_id = self.vocab.strings.as_int(feature) - return check_feature(&self.c, feat_id) + return check_feature(self.c, feat_id) def __iter__(self): """Iterate over the features in the analysis.""" cdef attr_t feature - for feature in list_features(&self.c): + for feature in list_features(self.c): yield self.vocab.strings[feature] def __len__(self): """The number of features in the analysis.""" - return self.c.length + return deref(self.c).features.size() def __hash__(self): return self.key @@ -61,7 +65,7 @@ cdef class MorphAnalysis: def get(self, field): """Retrieve feature values by field.""" cdef attr_t field_id = self.vocab.strings.as_int(field) - cdef np.ndarray results = get_by_field(&self.c, field_id) + cdef np.ndarray results = get_by_field(self.c, field_id) features = [self.vocab.strings[result] for result in results] return [f.split(Morphology.FIELD_SEP)[1] for f in features] @@ -69,7 +73,7 @@ cdef class MorphAnalysis: """Produce a json serializable representation as a UD FEATS-style string. """ - morph_string = self.vocab.strings[self.c.key] + morph_string = self.vocab.strings[deref(self.c).key] if morph_string == self.vocab.morphology.EMPTY_MORPH: return "" return morph_string diff --git a/spacy/tokens/token.pyx b/spacy/tokens/token.pyx index d14930348..77906b83e 100644 --- a/spacy/tokens/token.pyx +++ b/spacy/tokens/token.pyx @@ -22,6 +22,7 @@ from .. import parts_of_speech from ..errors import Errors, Warnings from ..attrs import IOB_STRINGS from .underscore import Underscore, get_ext_args +from cython.operator cimport dereference as deref cdef class Token: @@ -230,7 +231,7 @@ cdef class Token: # Check that the morph has the same vocab if self.vocab != morph.vocab: raise ValueError(Errors.E1013) - self.c.morph = morph.c.key + self.c.morph = deref(morph.c).key def set_morph(self, features): cdef hash_t key diff --git a/website/docs/api/morphologizer.md b/website/docs/api/morphologizer.md index 434c56833..67a4f23b7 100644 --- a/website/docs/api/morphologizer.md +++ b/website/docs/api/morphologizer.md @@ -401,7 +401,7 @@ coarse-grained POS as the feature `POS`. | Name | Description | | ----------- | ------------------------------------------------------ | -| **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ | +| **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ | ## Morphologizer.label_data {#label_data tag="property" new="3"} From 1caa2d1d16babb43b346e3eebcf229367bcc47f5 Mon Sep 17 00:00:00 2001 From: Maarten Grootendorst Date: Tue, 19 Jul 2022 12:37:18 +0200 Subject: [PATCH 077/138] Added BERTopic to Spacy Universe (#11159) * Added BERTopic to Spacy Universe * Fix no render of visualization --- website/meta/universe.json | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index 29d436ec4..53cc53024 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -544,6 +544,37 @@ "website": "https://koaning.io" } }, + { + "id": "bertopic", + "title": "BERTopic", + "slogan": "Leveraging BERT and c-TF-IDF to create easily interpretable topics.", + "description": "BERTopic is a topic modeling technique that leverages embedding models and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, (semi-) supervised, hierarchical, and dynamic topic modeling.", + "github": "maartengr/bertopic", + "pip": "bertopic", + "thumb": "https://i.imgur.com/Rx2LfBm.png", + "image": "https://raw.githubusercontent.com/MaartenGr/BERTopic/master/images/topic_visualization.gif", + "code_example": [ + "import spacy", + "from bertopic import BERTopic", + "from sklearn.datasets import fetch_20newsgroups", + "", + "docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']", + "nlp = spacy.load('en_core_web_md', exclude=['tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer'])", + "", + "topic_model = BERTopic(embedding_model=nlp)", + "topics, probs = topic_model.fit_transform(docs)", + "", + "fig = topic_model.visualize_topics()", + "fig.show()" + ], + "category": ["visualizers", "training"], + "author": "Maarten Grootendorst", + "author_links": { + "twitter": "maartengr", + "github": "maartengr", + "website": "https://maartengrootendorst.com" + } + }, { "id": "tokenwiser", "title": "tokenwiser", From 7ff52c02a11ba80128e55a98b3213d6c9f5aa80a Mon Sep 17 00:00:00 2001 From: Lucas Terriel <44713216+Lucaterre@users.noreply.github.com> Date: Sun, 24 Jul 2022 10:10:29 +0200 Subject: [PATCH 078/138] Update meta for spacyfishing in spaCy Universe (#11185) * add new logo for spacyfishing to update spacy universe * change logo location --- website/meta/universe.json | 1 + 1 file changed, 1 insertion(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index 53cc53024..6a981e9f0 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -22,6 +22,7 @@ "## Set parameter `extra_info` to `True` and check also span._.description, span._.src_description, span._.normal_term, span._.other_ids" ], "category": ["models", "pipeline"], + "image": "https://raw.githubusercontent.com/Lucaterre/spacyfishing/main/docs/spacyfishing-logo-resized.png", "tags": ["NER", "NEL"], "author": "Lucas Terriel", "author_links": { From a5aa3a818fba61cffa7b5738ec24a03700f18468 Mon Sep 17 00:00:00 2001 From: Dan Radenkovic Date: Sun, 24 Jul 2022 10:16:36 +0200 Subject: [PATCH 079/138] fix docs (#11123) --- website/docs/api/matcher.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md index ab88c4194..8cc446c6a 100644 --- a/website/docs/api/matcher.md +++ b/website/docs/api/matcher.md @@ -199,7 +199,7 @@ will be overwritten. > [{"LOWER": "hello"}, {"LOWER": "world"}], > [{"ORTH": "Google"}, {"ORTH": "Maps"}] > ] -> matcher.add("TEST_PATTERNS", patterns) +> matcher.add("TEST_PATTERNS", patterns, on_match=on_match) > doc = nlp("HELLO WORLD on Google Maps.") > matches = matcher(doc) > ``` From 93960dc4b59510b011c12079fbba09eb8219f74e Mon Sep 17 00:00:00 2001 From: 0xpeIpeI <63499912+lll-lll-lll-lll@users.noreply.github.com> Date: Sun, 24 Jul 2022 19:01:04 +0900 Subject: [PATCH 080/138] [universe project] create English interpretation project (#11184) * [add] my universe project setting * [modify] A few adjustments * [Modify] change package description --- website/meta/universe.json | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index 6a981e9f0..3c8afbd9a 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -4023,6 +4023,37 @@ "description": "Episodes about spaCy or interviews with the spaCy team" } ] + }, + { + "id": "sent-pattern", + "title": "English Interpretation Sentence Pattern", + "slogan": "English interpretation for accurate translation from English to Japanese", + "description": "This package categorizes English sentences into one of five basic sentence patterns and identifies the subject, verb, object, and other components. The five basic sentence patterns are based on C. T. Onions's Advanced English Syntax and are frequently used when teaching English in Japan.", + "github": "lll-lll-lll-lll/sent-pattern", + "pip": "sent-pattern", + "code_example": [ + "import spacy", + "nlp = spacy.load('en_core_web_lg')", + "", + "nlp.add_pipe('sent_pattern')", + "text = 'he gives me something'", + "pattern = doc._.sentpattern", + "", + "print(pattern)", + "# FourthSentencePattern (class)", + "print(pattern.subject.root)", + "# he (Token)", + "print(pattern.verb.root)", + "# give (Token)" + ], + "code_language": "python", + "author": "Shunpei Nakayama", + "author_links": { + "twitter": "ExZ79575296", + "github": "lll-lll-lll-lll" + }, + "category": ["pipeline"], + "tags": ["interpretation", "ja"] } ] } From 7a99fe3c65074eb70bfac96d1f0c83cbdb7ec2c7 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 25 Jul 2022 09:14:50 +0200 Subject: [PATCH 081/138] Move sent-patterns to correct section of universe.json (#11192) --- website/meta/universe.json | 46 +++++++++++++------------------------- 1 file changed, 15 insertions(+), 31 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 3c8afbd9a..a128f0795 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -3935,6 +3935,21 @@ }, "category": ["biomedical", "scientific", "research", "pipeline"], "tags": ["clinical"] + }, + { + "id": "sent-pattern", + "title": "English Interpretation Sentence Pattern", + "slogan": "English interpretation for accurate translation from English to Japanese", + "description": "This package categorizes English sentences into one of five basic sentence patterns and identifies the subject, verb, object, and other components. The five basic sentence patterns are based on C. T. Onions's Advanced English Syntax and are frequently used when teaching English in Japan.", + "github": "lll-lll-lll-lll/sent-pattern", + "pip": "sent-pattern", + "author": "Shunpei Nakayama", + "author_links": { + "twitter": "ExZ79575296", + "github": "lll-lll-lll-lll" + }, + "category": ["pipeline"], + "tags": ["interpretation", "ja"] } ], @@ -4023,37 +4038,6 @@ "description": "Episodes about spaCy or interviews with the spaCy team" } ] - }, - { - "id": "sent-pattern", - "title": "English Interpretation Sentence Pattern", - "slogan": "English interpretation for accurate translation from English to Japanese", - "description": "This package categorizes English sentences into one of five basic sentence patterns and identifies the subject, verb, object, and other components. The five basic sentence patterns are based on C. T. Onions's Advanced English Syntax and are frequently used when teaching English in Japan.", - "github": "lll-lll-lll-lll/sent-pattern", - "pip": "sent-pattern", - "code_example": [ - "import spacy", - "nlp = spacy.load('en_core_web_lg')", - "", - "nlp.add_pipe('sent_pattern')", - "text = 'he gives me something'", - "pattern = doc._.sentpattern", - "", - "print(pattern)", - "# FourthSentencePattern (class)", - "print(pattern.subject.root)", - "# he (Token)", - "print(pattern.verb.root)", - "# give (Token)" - ], - "code_language": "python", - "author": "Shunpei Nakayama", - "author_links": { - "twitter": "ExZ79575296", - "github": "lll-lll-lll-lll" - }, - "category": ["pipeline"], - "tags": ["interpretation", "ja"] } ] } From 1c12812d1a218f505ccfcd4d958f88ab895ed83e Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Mon, 25 Jul 2022 16:39:34 +0900 Subject: [PATCH 082/138] Replace link to old label (#11188) --- website/src/templates/universe.js | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/website/src/templates/universe.js b/website/src/templates/universe.js index 10f2520d9..48ffa3add 100644 --- a/website/src/templates/universe.js +++ b/website/src/templates/universe.js @@ -142,10 +142,10 @@ const UniverseContent = ({ content = [], categories, theme, pageContext, mdxComp The Universe database is open-source and collected in a simple JSON file. For more details on the formats and available fields, see the documentation. Looking for inspiration your own spaCy plugin or extension? Check out the - - project idea + + project idea - label on the issue tracker. + section in Discussions.

From e5990db71358a4d5f3ad146faf6b33b87d0c231f Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 25 Jul 2022 18:12:18 +0200 Subject: [PATCH 083/138] Revert "Temporarily skip tests that require models/compat" This reverts commit d9320db7db74b970b3751e38ed6f14de5b7d16d5. --- .github/azure-steps.yml | 34 +++++++++++++++++----------------- spacy/tests/test_cli.py | 2 -- 2 files changed, 17 insertions(+), 19 deletions(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index 5d865b452..aae08c7f3 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -63,12 +63,12 @@ steps: displayName: "Run GPU tests" condition: eq(${{ parameters.gpu }}, true) -# - script: | -# python -m spacy download ca_core_news_sm -# python -m spacy download ca_core_news_md -# python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')" -# displayName: 'Test download CLI' -# condition: eq(variables['python_version'], '3.8') + - script: | + python -m spacy download ca_core_news_sm + python -m spacy download ca_core_news_md + python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')" + displayName: 'Test download CLI' + condition: eq(variables['python_version'], '3.8') - script: | python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json . @@ -92,17 +92,17 @@ steps: displayName: 'Test train CLI' condition: eq(variables['python_version'], '3.8') -# - script: | -# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')" -# PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir -# displayName: 'Test assemble CLI' -# condition: eq(variables['python_version'], '3.8') -# -# - script: | -# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')" -# python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113 -# displayName: 'Test assemble CLI vectors warning' -# condition: eq(variables['python_version'], '3.8') + - script: | + python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')" + PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir + displayName: 'Test assemble CLI' + condition: eq(variables['python_version'], '3.8') + + - script: | + python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')" + python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113 + displayName: 'Test assemble CLI vectors warning' + condition: eq(variables['python_version'], '3.8') - script: | python .github/validate_universe_json.py website/meta/universe.json diff --git a/spacy/tests/test_cli.py b/spacy/tests/test_cli.py index fe8b3a8a1..838e00369 100644 --- a/spacy/tests/test_cli.py +++ b/spacy/tests/test_cli.py @@ -589,7 +589,6 @@ def test_string_to_list_intify(value): assert string_to_list(value, intify=True) == [1, 2, 3] -@pytest.mark.skip(reason="Temporarily skip for dev version") def test_download_compatibility(): spec = SpecifierSet("==" + about.__version__) spec.prereleases = False @@ -600,7 +599,6 @@ def test_download_compatibility(): assert get_minor_version(about.__version__) == get_minor_version(version) -@pytest.mark.skip(reason="Temporarily skip for dev version") def test_validate_compatibility_table(): spec = SpecifierSet("==" + about.__version__) spec.prereleases = False From 4ee8a061497ed24ded0fdcaf9b89ba4b28f49e96 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 26 Jul 2022 10:52:01 +0200 Subject: [PATCH 084/138] Fix compatibility with CuPy 9.x (#11194) After the precomputable affine table of shape [nB, nF, nO, nP] is computed, padding with shape [1, nF, nO, nP] is assigned to the first row of the precomputed affine table. However, when we are indexing the precomputed table, we get a row of shape [nF, nO, nP]. CuPy versions before 10.0 cannot paper over this shape difference. This change fixes compatibility with CuPy < 10.0 by squeezing the first dimension of the padding before assignment. --- spacy/ml/_precomputable_affine.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/spacy/ml/_precomputable_affine.py b/spacy/ml/_precomputable_affine.py index 7a25e7574..1c20c622b 100644 --- a/spacy/ml/_precomputable_affine.py +++ b/spacy/ml/_precomputable_affine.py @@ -26,7 +26,11 @@ def forward(model, X, is_train): Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False) model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:]) Yf = Yf.reshape((Yf.shape[0], nF, nO, nP)) - Yf[0] = model.get_param("pad") + + # Set padding. Padding has shape (1, nF, nO, nP). Unfortunately, we cannot + # change its shape to (nF, nO, nP) without breaking existing models. So + # we'll squeeze the first dimension here. + Yf[0] = model.ops.xp.squeeze(model.get_param("pad"), 0) def backward(dY_ids): # This backprop is particularly tricky, because we get back a different From c8f5b752bb00e4d83a92e4919ec2688d47b9aada Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 26 Jul 2022 10:56:53 +0200 Subject: [PATCH 085/138] Add link to developer docs code conventions (#11171) --- CONTRIBUTING.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ddd833be1..1f396bd71 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -271,7 +271,8 @@ except: # noqa: E722 ### Python conventions -All Python code must be written **compatible with Python 3.6+**. +All Python code must be written **compatible with Python 3.6+**. More detailed +code conventions can be found in the [developer docs](https://github.com/explosion/spaCy/blob/master/extra/DEVELOPER_DOCS/Code%20Conventions.md). #### I/O and handling paths From 5c2a00cef04b8c6e93e81cd1ca1d752f320c6e5d Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 26 Jul 2022 12:52:38 +0200 Subject: [PATCH 086/138] Set version to v3.4.1 (#11209) --- spacy/about.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/about.py b/spacy/about.py index ef0358e1a..843c15aba 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -1,6 +1,6 @@ # fmt: off __title__ = "spacy" -__version__ = "3.4.0" +__version__ = "3.4.1" __download_url__ = "https://github.com/explosion/spacy-models/releases/download" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __projects__ = "https://github.com/explosion/projects" From 360a702ecdf468bcdc7e14906d09cdfe1860e764 Mon Sep 17 00:00:00 2001 From: Edward <43848523+thomashacker@users.noreply.github.com> Date: Tue, 26 Jul 2022 14:35:18 +0200 Subject: [PATCH 087/138] Add parent argument (#11210) --- spacy/cli/pretrain.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spacy/cli/pretrain.py b/spacy/cli/pretrain.py index fe3ce0dad..381d589cf 100644 --- a/spacy/cli/pretrain.py +++ b/spacy/cli/pretrain.py @@ -61,7 +61,7 @@ def pretrain_cli( # TODO: What's the solution here? How do we handle optional blocks? msg.fail("The [pretraining] block in your config is empty", exits=1) if not output_dir.exists(): - output_dir.mkdir() + output_dir.mkdir(parents=True) msg.good(f"Created output directory: {output_dir}") # Save non-interpolated config raw_config.to_disk(output_dir / "config.cfg") From 1829d7120a86c85f440d753a89e5e60d1faea1f0 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Wed, 27 Jul 2022 07:24:22 +0200 Subject: [PATCH 088/138] `ExplosionBot`: Add note about case-sensitivity (#11211) --- extra/DEVELOPER_DOCS/ExplosionBot.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/extra/DEVELOPER_DOCS/ExplosionBot.md b/extra/DEVELOPER_DOCS/ExplosionBot.md index 791b1f229..606fe93a0 100644 --- a/extra/DEVELOPER_DOCS/ExplosionBot.md +++ b/extra/DEVELOPER_DOCS/ExplosionBot.md @@ -36,7 +36,7 @@ Some things to note: @explosion-bot please test_gpu --run-on spacy-transformers --run-on-branch master --spacy-branch current_pr ``` - This will launch the GPU pipeline for the `spacy-transformers` repo on its `master` branch, using the current spaCy PR's branch to build spaCy. + This will launch the GPU pipeline for the `spacy-transformers` repo on its `master` branch, using the current spaCy PR's branch to build spaCy. The name of the repository passed to `--run-on` is case-sensitive, e.g: use `spaCy` instead of `spacy`. - General info about supported commands. From 95a1b8aca626f4a4825af7b7aed79489c4d451b4 Mon Sep 17 00:00:00 2001 From: ninjalu <46543912+ninjalu@users.noreply.github.com> Date: Wed, 27 Jul 2022 12:16:44 +0100 Subject: [PATCH 089/138] add additional REL_OP (#10371) * add additional REL_OP * change to condition and new rel_op symbols * add operators to docs * add the anchor while we're in here * add tests Co-authored-by: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> --- spacy/matcher/dependencymatcher.pyx | 20 +++++++++++++++++++ .../tests/matcher/test_dependency_matcher.py | 14 +++++++++++++ website/docs/api/dependencymatcher.md | 7 ++++++- 3 files changed, 40 insertions(+), 1 deletion(-) diff --git a/spacy/matcher/dependencymatcher.pyx b/spacy/matcher/dependencymatcher.pyx index a602ba737..74c2d002f 100644 --- a/spacy/matcher/dependencymatcher.pyx +++ b/spacy/matcher/dependencymatcher.pyx @@ -82,6 +82,10 @@ cdef class DependencyMatcher: "$-": self._imm_left_sib, "$++": self._right_sib, "$--": self._left_sib, + ">++": self._right_child, + ">--": self._left_child, + "<++": self._right_parent, + "<--": self._left_parent, } def __reduce__(self): @@ -423,6 +427,22 @@ cdef class DependencyMatcher: def _left_sib(self, doc, node): return [doc[child.i] for child in doc[node].head.children if child.i < node] + def _right_child(self, doc, node): + return [doc[child.i] for child in doc[node].children if child.i > node] + + def _left_child(self, doc, node): + return [doc[child.i] for child in doc[node].children if child.i < node] + + def _right_parent(self, doc, node): + if doc[node].head.i > node: + return [doc[node].head] + return [] + + def _left_parent(self, doc, node): + if doc[node].head.i < node: + return [doc[node].head] + return [] + def _normalize_key(self, key): if isinstance(key, str): return self.vocab.strings.add(key) diff --git a/spacy/tests/matcher/test_dependency_matcher.py b/spacy/tests/matcher/test_dependency_matcher.py index 1728c82af..b4e19d69d 100644 --- a/spacy/tests/matcher/test_dependency_matcher.py +++ b/spacy/tests/matcher/test_dependency_matcher.py @@ -316,6 +316,20 @@ def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches): ("the", "brown", "$--", 0), ("brown", "the", "$--", 1), ("brown", "brown", "$--", 0), + ("quick", "fox", "<++", 1), + ("quick", "over", "<++", 0), + ("over", "jumped", "<++", 0), + ("the", "fox", "<++", 2), + ("brown", "fox", "<--", 0), + ("fox", "jumped", "<--", 0), + ("fox", "over", "<--", 1), + ("jumped", "over", ">++", 1), + ("fox", "lazy", ">++", 0), + ("over", "the", ">++", 0), + ("brown", "fox", ">--", 0), + ("fox", "brown", ">--", 1), + ("jumped", "fox", ">--", 1), + ("fox", "the", ">--", 2), ], ) def test_dependency_matcher_ops(en_vocab, doc, left, right, op, num_matches): diff --git a/website/docs/api/dependencymatcher.md b/website/docs/api/dependencymatcher.md index 356adcda7..cae4221bf 100644 --- a/website/docs/api/dependencymatcher.md +++ b/website/docs/api/dependencymatcher.md @@ -62,7 +62,7 @@ of relations, see the usage guide on
-### Operators +### Operators {#operators} The following operators are supported by the `DependencyMatcher`, most of which come directly from @@ -82,6 +82,11 @@ come directly from | `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | | `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | | `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | +| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i` _(not in Semgrex)_. | +| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i` _(not in Semgrex)_. | +| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i` _(not in Semgrex)_. | +| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i` _(not in Semgrex)_. | + ## DependencyMatcher.\_\_init\_\_ {#init tag="method"} From 2d89dd9db898e66058bf965e1b483b0019ce1b35 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Thu, 28 Jul 2022 14:45:02 +0900 Subject: [PATCH 090/138] Update natto-py version spec (#11222) * Update natto-py version spec * Update setup.cfg Co-authored-by: Adriane Boyd Co-authored-by: Adriane Boyd --- setup.cfg | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.cfg b/setup.cfg index 61bf36f8a..708300b04 100644 --- a/setup.cfg +++ b/setup.cfg @@ -114,7 +114,7 @@ ja = sudachipy>=0.5.2,!=0.6.1 sudachidict_core>=20211220 ko = - natto-py==0.9.0 + natto-py>=0.9.0 th = pythainlp>=2.0 From e581eeac347b93e9436ff0af3443bdb2e75d5c9a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Fri, 29 Jul 2022 15:12:19 +0200 Subject: [PATCH 091/138] precompute_hiddens/Parser: look up CPU ops once (v4) (#11068) * precompute_hiddens/Parser: look up CPU ops once * precompute_hiddens: make cpu_ops private --- spacy/ml/parser_model.pyx | 8 +++----- spacy/pipeline/transition_parser.pxd | 1 + spacy/pipeline/transition_parser.pyx | 8 ++------ 3 files changed, 6 insertions(+), 11 deletions(-) diff --git a/spacy/ml/parser_model.pyx b/spacy/ml/parser_model.pyx index 961bf4d70..055fa0bad 100644 --- a/spacy/ml/parser_model.pyx +++ b/spacy/ml/parser_model.pyx @@ -347,6 +347,7 @@ cdef class precompute_hiddens: cdef bint _is_synchronized cdef public object ops cdef public object numpy_ops + cdef public object _cpu_ops cdef np.ndarray _features cdef np.ndarray _cached cdef np.ndarray bias @@ -377,6 +378,7 @@ cdef class precompute_hiddens: self.nO = cached.shape[2] self.ops = lower_model.ops self.numpy_ops = NumpyOps() + self._cpu_ops = get_ops("cpu") if isinstance(self.ops, CupyOps) else self.ops assert activation in (None, "relu", "maxout") self.activation = activation self._is_synchronized = False @@ -439,11 +441,7 @@ cdef class precompute_hiddens: # - Output from backward on GPU bp_hiddens = self._bp_hiddens - cdef CBlas cblas - if isinstance(self.ops, CupyOps): - cblas = NUMPY_OPS.cblas() - else: - cblas = self.ops.cblas() + cdef CBlas cblas = self._cpu_ops.cblas() feat_weights = self.get_feat_weights() cdef int[:, ::1] ids = token_ids diff --git a/spacy/pipeline/transition_parser.pxd b/spacy/pipeline/transition_parser.pxd index 1521fde60..f20e69a6e 100644 --- a/spacy/pipeline/transition_parser.pxd +++ b/spacy/pipeline/transition_parser.pxd @@ -12,6 +12,7 @@ cdef class Parser(TrainablePipe): cdef public object _rehearsal_model cdef readonly TransitionSystem moves cdef public object _multitasks + cdef object _cpu_ops cdef void _parseC(self, CBlas cblas, StateC** states, WeightsC weights, SizesC sizes) nogil diff --git a/spacy/pipeline/transition_parser.pyx b/spacy/pipeline/transition_parser.pyx index 1327db2ce..340334b1a 100644 --- a/spacy/pipeline/transition_parser.pyx +++ b/spacy/pipeline/transition_parser.pyx @@ -123,6 +123,7 @@ cdef class Parser(TrainablePipe): self._rehearsal_model = None self.scorer = scorer + self._cpu_ops = get_ops("cpu") if isinstance(self.model.ops, CupyOps) else self.model.ops def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" @@ -262,12 +263,7 @@ cdef class Parser(TrainablePipe): def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state - ops = self.model.ops - cdef CBlas cblas - if isinstance(ops, CupyOps): - cblas = NUMPY_OPS.cblas() - else: - cblas = ops.cblas() + cdef CBlas cblas = self._cpu_ops.cblas() self._ensure_labels_are_added(docs) set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) From d0578c2ede80890ed610573c95f11ad30b2f8cd2 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Wed, 3 Aug 2022 16:41:20 +0200 Subject: [PATCH 092/138] Add scorer to textcat API docs config settings (#11263) --- website/docs/api/textcategorizer.md | 1 + 1 file changed, 1 insertion(+) diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md index 2ff569bad..5bc40fa9e 100644 --- a/website/docs/api/textcategorizer.md +++ b/website/docs/api/textcategorizer.md @@ -84,6 +84,7 @@ architectures and their arguments and hyperparameters. | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | | `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/textcat.py From d993df41e5af01a2524fa436d27bc349ecb212b3 Mon Sep 17 00:00:00 2001 From: Lj Miranda <12949683+ljvmiranda921@users.noreply.github.com> Date: Wed, 3 Aug 2022 22:53:02 +0800 Subject: [PATCH 093/138] Update docs for pipeline initialize() methods (#11221) * Update documentation for dependency parser * Update documentation for trainable_lemmatizer * Update documentation for entity_linker * Update documentation for ner * Update documentation for morphologizer * Update documentation for senter * Update documentation for spancat * Update documentation for tagger * Update documentation for textcat * Update documentation for tok2vec * Run prettier on edited files * Apply similar changes in transformer docs * Remove need to say annotated example explicitly I removed the need to say "Must contain at least one annotated Example" because it's often a given that Examples will contain some gold-standard annotation. * Run prettier on transformer docs --- website/docs/api/dependencyparser.md | 12 ++++++------ website/docs/api/edittreelemmatizer.md | 12 ++++++------ website/docs/api/entitylinker.md | 22 +++++++++++----------- website/docs/api/entityrecognizer.md | 12 ++++++------ website/docs/api/morphologizer.md | 12 ++++++------ website/docs/api/sentencerecognizer.md | 20 ++++++++++---------- website/docs/api/spancategorizer.md | 16 ++++++++-------- website/docs/api/tagger.md | 12 ++++++------ website/docs/api/textcategorizer.md | 12 ++++++------ website/docs/api/tok2vec.md | 20 ++++++++++---------- website/docs/api/transformer.md | 20 ++++++++++---------- 11 files changed, 85 insertions(+), 85 deletions(-) diff --git a/website/docs/api/dependencyparser.md b/website/docs/api/dependencyparser.md index 103e0826e..27e315592 100644 --- a/website/docs/api/dependencyparser.md +++ b/website/docs/api/dependencyparser.md @@ -158,10 +158,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/dependencyparser#call) and ## DependencyParser.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -179,7 +179,7 @@ This method was previously called `begin_training`. > > ```python > parser = nlp.add_pipe("parser") -> parser.initialize(lambda: [], nlp=nlp) +> parser.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -193,7 +193,7 @@ This method was previously called `begin_training`. | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ | diff --git a/website/docs/api/edittreelemmatizer.md b/website/docs/api/edittreelemmatizer.md index 99a705f5e..63e4bf910 100644 --- a/website/docs/api/edittreelemmatizer.md +++ b/website/docs/api/edittreelemmatizer.md @@ -141,10 +141,10 @@ and [`pipe`](/api/edittreelemmatizer#pipe) delegate to the ## EditTreeLemmatizer.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -156,7 +156,7 @@ config. > > ```python > lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer") -> lemmatizer.initialize(lambda: [], nlp=nlp) +> lemmatizer.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -170,7 +170,7 @@ config. | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ | diff --git a/website/docs/api/entitylinker.md b/website/docs/api/entitylinker.md index a55cce352..43e08a39c 100644 --- a/website/docs/api/entitylinker.md +++ b/website/docs/api/entitylinker.md @@ -185,10 +185,10 @@ with the current vocab. ## EntityLinker.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize). @@ -208,15 +208,15 @@ This method was previously called `begin_training`. > > ```python > entity_linker = nlp.add_pipe("entity_linker") -> entity_linker.initialize(lambda: [], nlp=nlp, kb_loader=my_kb) +> entity_linker.initialize(lambda: examples, nlp=nlp, kb_loader=my_kb) > ``` -| Name | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | -| _keyword-only_ | | -| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | -| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ | +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | +| _keyword-only_ | | +| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | +| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ | ## EntityLinker.predict {#predict tag="method"} diff --git a/website/docs/api/entityrecognizer.md b/website/docs/api/entityrecognizer.md index 7c153f064..a535e8316 100644 --- a/website/docs/api/entityrecognizer.md +++ b/website/docs/api/entityrecognizer.md @@ -154,10 +154,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and ## EntityRecognizer.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -175,7 +175,7 @@ This method was previously called `begin_training`. > > ```python > ner = nlp.add_pipe("ner") -> ner.initialize(lambda: [], nlp=nlp) +> ner.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -189,7 +189,7 @@ This method was previously called `begin_training`. | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ | diff --git a/website/docs/api/morphologizer.md b/website/docs/api/morphologizer.md index 434c56833..f874e8bea 100644 --- a/website/docs/api/morphologizer.md +++ b/website/docs/api/morphologizer.md @@ -147,10 +147,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and ## Morphologizer.initialize {#initialize tag="method"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -162,7 +162,7 @@ config. > > ```python > morphologizer = nlp.add_pipe("morphologizer") -> morphologizer.initialize(lambda: [], nlp=nlp) +> morphologizer.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -176,7 +176,7 @@ config. | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[dict]~~ | diff --git a/website/docs/api/sentencerecognizer.md b/website/docs/api/sentencerecognizer.md index 29bf10393..2f50350ae 100644 --- a/website/docs/api/sentencerecognizer.md +++ b/website/docs/api/sentencerecognizer.md @@ -132,10 +132,10 @@ and [`pipe`](/api/sentencerecognizer#pipe) delegate to the ## SentenceRecognizer.initialize {#initialize tag="method"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize). @@ -144,14 +144,14 @@ by [`Language.initialize`](/api/language#initialize). > > ```python > senter = nlp.add_pipe("senter") -> senter.initialize(lambda: [], nlp=nlp) +> senter.initialize(lambda: examples, nlp=nlp) > ``` -| Name | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | -| _keyword-only_ | | -| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | +| _keyword-only_ | | +| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | ## SentenceRecognizer.predict {#predict tag="method"} diff --git a/website/docs/api/spancategorizer.md b/website/docs/api/spancategorizer.md index f09ac8bdb..58a06bcf5 100644 --- a/website/docs/api/spancategorizer.md +++ b/website/docs/api/spancategorizer.md @@ -56,7 +56,7 @@ architectures and their arguments and hyperparameters. | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | | `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ | -| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | +| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | | `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | | `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ | @@ -93,7 +93,7 @@ shortcut for this and instantiate the component using its string name and | `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | _keyword-only_ | | -| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | +| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | | `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | @@ -147,10 +147,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/spancategorizer#call) and ## SpanCategorizer.initialize {#initialize tag="method"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -162,7 +162,7 @@ config. > > ```python > spancat = nlp.add_pipe("spancat") -> spancat.initialize(lambda: [], nlp=nlp) +> spancat.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -176,7 +176,7 @@ config. | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ | diff --git a/website/docs/api/tagger.md b/website/docs/api/tagger.md index b51864d3a..90a49b197 100644 --- a/website/docs/api/tagger.md +++ b/website/docs/api/tagger.md @@ -130,10 +130,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/tagger#call) and ## Tagger.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -151,7 +151,7 @@ This method was previously called `begin_training`. > > ```python > tagger = nlp.add_pipe("tagger") -> tagger.initialize(lambda: [], nlp=nlp) +> tagger.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -165,7 +165,7 @@ This method was previously called `begin_training`. | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ | diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md index 5bc40fa9e..042b4ab76 100644 --- a/website/docs/api/textcategorizer.md +++ b/website/docs/api/textcategorizer.md @@ -176,10 +176,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and ## TextCategorizer.initialize {#initialize tag="method" new="3"} Initialize the component for training. `get_examples` should be a function that -returns an iterable of [`Example`](/api/example) objects. The data examples are -used to **initialize the model** of the component and can either be the full -training data or a representative sample. Initialization includes validating the -network, +returns an iterable of [`Example`](/api/example) objects. **At least one example +should be supplied.** The data examples are used to **initialize the model** of +the component and can either be the full training data or a representative +sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize @@ -197,7 +197,7 @@ This method was previously called `begin_training`. > > ```python > textcat = nlp.add_pipe("textcat") -> textcat.initialize(lambda: [], nlp=nlp) +> textcat.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini @@ -212,7 +212,7 @@ This method was previously called `begin_training`. | Name | Description | | ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ | diff --git a/website/docs/api/tok2vec.md b/website/docs/api/tok2vec.md index 70c352b4d..2dcb1a013 100644 --- a/website/docs/api/tok2vec.md +++ b/website/docs/api/tok2vec.md @@ -127,10 +127,10 @@ and [`set_annotations`](/api/tok2vec#set_annotations) methods. Initialize the component for training and return an [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a -function that returns an iterable of [`Example`](/api/example) objects. The data -examples are used to **initialize the model** of the component and can either be -the full training data or a representative sample. Initialization includes -validating the network, +function that returns an iterable of [`Example`](/api/example) objects. **At +least one example should be supplied.** The data examples are used to +**initialize the model** of the component and can either be the full training +data or a representative sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize). @@ -139,14 +139,14 @@ by [`Language.initialize`](/api/language#initialize). > > ```python > tok2vec = nlp.add_pipe("tok2vec") -> tok2vec.initialize(lambda: [], nlp=nlp) +> tok2vec.initialize(lambda: examples, nlp=nlp) > ``` -| Name | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | -| _keyword-only_ | | -| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | +| _keyword-only_ | | +| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | ## Tok2Vec.predict {#predict tag="method"} diff --git a/website/docs/api/transformer.md b/website/docs/api/transformer.md index b1673cdbe..e747ad383 100644 --- a/website/docs/api/transformer.md +++ b/website/docs/api/transformer.md @@ -175,10 +175,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/transformer#call) and Initialize the component for training and return an [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a -function that returns an iterable of [`Example`](/api/example) objects. The data -examples are used to **initialize the model** of the component and can either be -the full training data or a representative sample. Initialization includes -validating the network, +function that returns an iterable of [`Example`](/api/example) objects. **At +least one example should be supplied.** The data examples are used to +**initialize the model** of the component and can either be the full training +data or a representative sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize). @@ -187,14 +187,14 @@ by [`Language.initialize`](/api/language#initialize). > > ```python > trf = nlp.add_pipe("transformer") -> trf.initialize(lambda: iter([]), nlp=nlp) +> trf.initialize(lambda: examples, nlp=nlp) > ``` -| Name | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- | -| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | -| _keyword-only_ | | -| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | +| _keyword-only_ | | +| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | ## Transformer.predict {#predict tag="method"} From cd09614ab2be485a796a572274d336c1c47ca4a9 Mon Sep 17 00:00:00 2001 From: Jules Belveze <32683010+JulesBelveze@users.noreply.github.com> Date: Thu, 4 Aug 2022 08:42:38 +0200 Subject: [PATCH 094/138] chore: add 'concepCy' to spacy universe (#11255) * chore: add 'concepCy' to spacy universe * docs: add 'slogan' to concepCy --- website/meta/universe.json | 42 ++++++++++++++++++++++++++++++++++---- 1 file changed, 38 insertions(+), 4 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index a128f0795..6c8caa6a6 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,39 @@ { "resources": [ + { + "id": "concepcy", + "title": "concepCy", + "slogan": "A multilingual knowledge graph in spaCy", + "description": "A spaCy wrapper for ConceptNet, a freely-available semantic network designed to help computers understand the meaning of words.", + "github": "JulesBelveze/concepcy", + "pip": "concepcy", + "code_example": [ + "import spacy", + "import concepcy", + "", + "nlp = spacy.load('en_core_web_sm')", + "# Using default concepCy configuration", + "nlp.add_pipe('concepcy')", + "", + "doc = nlp('WHO is a lovely company')", + "", + "# Access all the 'RelatedTo' relations from the Doc", + "for word, relations in doc._.relatedto.items():", + " print(f'Word: {word}\n{relations}')", + "", + "# Access the 'RelatedTo' relations word by word", + "for token in doc:", + " print(f'Word: {token}\n{token._.relatedto}')" + ], + "category": ["pipeline"], + "image": "https://github.com/JulesBelveze/concepcy/blob/main/figures/concepcy.png", + "tags": ["semantic", "ConceptNet"], + "author": "Jules Belveze", + "author_links": { + "github": "JulesBelveze", + "website": "https://www.linkedin.com/in/jules-belveze/" + } + }, { "id": "spacyfishing", "title": "spaCy fishing", @@ -2604,7 +2638,7 @@ " Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes.", " Later, add some oranges and chickens.\"\"\"", "", - "# use any model that has internal spacy embeddings", + "# use any model that has internal spacy embeddings", "nlp = spacy.load('en_core_web_lg')", "nlp.add_pipe(\"concise_concepts\", ", " config={\"data\": data}", @@ -2650,7 +2684,7 @@ " At that location, Nissin was founded.", " Many students survived by eating these noodles, but they don't even know him.\"\"\"", "", - "# use any model that has internal spacy embeddings", + "# use any model that has internal spacy embeddings", "nlp = spacy.load('en_core_web_sm')", "nlp.add_pipe(", " \"xx_coref\", config={\"chunk_size\": 2500, \"chunk_overlap\": 2, \"device\": 0})", @@ -2833,7 +2867,7 @@ "doc = nlp(\"AE died in Princeton in 1955.\")", "", "print(doc._.clauses)", - "# Output:", + "# Output:", "# ", "", "propositions = doc._.clauses[0].to_propositions(as_text=True)", @@ -3599,7 +3633,7 @@ "", "#Lexico Semantic (LxSem) Features", "TTRF = LingFeat.TTRF_() #Type Token Ratio Features", - "VarF = LingFeat.VarF_() #Noun/Verb/Adj/Adv Variation Features", + "VarF = LingFeat.VarF_() #Noun/Verb/Adj/Adv Variation Features", "PsyF = LingFeat.PsyF_() #Psycholinguistic Difficulty of Words (AoA Kuperman)", "WoLF = LingFeat.WorF_() #Word Familiarity from Frequency Count (SubtlexUS)", "", From b07708d5d073bf1af55d0b50eb11760e48221500 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 4 Aug 2022 15:14:19 +0200 Subject: [PATCH 095/138] Support full prerelease versions in the compat table (#11228) * Support full prerelease versions in the compat table * Fix types --- spacy/cli/download.py | 6 +++++- spacy/util.py | 9 +++++++++ 2 files changed, 14 insertions(+), 1 deletion(-) diff --git a/spacy/cli/download.py b/spacy/cli/download.py index 4ea9a8f0e..b7de88729 100644 --- a/spacy/cli/download.py +++ b/spacy/cli/download.py @@ -7,6 +7,7 @@ import typer from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX from .. import about from ..util import is_package, get_minor_version, run_command +from ..util import is_prerelease_version from ..errors import OLD_MODEL_SHORTCUTS @@ -74,7 +75,10 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) - def get_compatibility() -> dict: - version = get_minor_version(about.__version__) + if is_prerelease_version(about.__version__): + version: Optional[str] = about.__version__ + else: + version = get_minor_version(about.__version__) r = requests.get(about.__compatibility__) if r.status_code != 200: msg.fail( diff --git a/spacy/util.py b/spacy/util.py index 4f21d618a..d170fc15b 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -795,6 +795,15 @@ def get_model_lower_version(constraint: str) -> Optional[str]: return None +def is_prerelease_version(version: str) -> bool: + """Check whether a version is a prerelease version. + + version (str): The version, e.g. "3.0.0.dev1". + RETURNS (bool): Whether the version is a prerelease version. + """ + return Version(version).is_prerelease + + def get_base_version(version: str) -> str: """Generate the base version without any prerelease identifiers. From b64243ed557a1cc591a2f436449072b27f432de7 Mon Sep 17 00:00:00 2001 From: Luka Dragar Date: Fri, 5 Aug 2022 10:10:18 +0200 Subject: [PATCH 096/138] Updates to Slovenian language (#11162) * Added examples for Slovene * Update spacy/lang/sl/examples.py Co-authored-by: Adriane Boyd * Corrected a typo in one of the sentences * Updated support for Slovenian * Some minor changes to corrections * Added forint currency * Corrected HYPHENS_PERMITTED regex and some formatting * Minor changes * Un-xfail tokenizer test * Format Co-authored-by: Luka Dragar Co-authored-by: Adriane Boyd --- spacy/lang/sl/__init__.py | 8 + spacy/lang/sl/lex_attrs.py | 145 ++++++++++ spacy/lang/sl/punctuation.py | 84 ++++++ spacy/lang/sl/stop_words.py | 394 +++++--------------------- spacy/lang/sl/tokenizer_exceptions.py | 272 ++++++++++++++++++ spacy/tests/lang/sl/test_text.py | 1 - 6 files changed, 585 insertions(+), 319 deletions(-) create mode 100644 spacy/lang/sl/lex_attrs.py create mode 100644 spacy/lang/sl/punctuation.py create mode 100644 spacy/lang/sl/tokenizer_exceptions.py diff --git a/spacy/lang/sl/__init__.py b/spacy/lang/sl/__init__.py index 9ddd676bf..0070e9fa1 100644 --- a/spacy/lang/sl/__init__.py +++ b/spacy/lang/sl/__init__.py @@ -1,9 +1,17 @@ +from .lex_attrs import LEX_ATTRS +from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES from .stop_words import STOP_WORDS +from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from ...language import Language, BaseDefaults class SlovenianDefaults(BaseDefaults): stop_words = STOP_WORDS + tokenizer_exceptions = TOKENIZER_EXCEPTIONS + prefixes = TOKENIZER_PREFIXES + infixes = TOKENIZER_INFIXES + suffixes = TOKENIZER_SUFFIXES + lex_attr_getters = LEX_ATTRS class Slovenian(Language): diff --git a/spacy/lang/sl/lex_attrs.py b/spacy/lang/sl/lex_attrs.py new file mode 100644 index 000000000..958152e37 --- /dev/null +++ b/spacy/lang/sl/lex_attrs.py @@ -0,0 +1,145 @@ +from ...attrs import LIKE_NUM +from ...attrs import IS_CURRENCY +import unicodedata + + +_num_words = set( + """ + nula ničla nič ena dva tri štiri pet šest sedem osem + devet deset enajst dvanajst trinajst štirinajst petnajst + šestnajst sedemnajst osemnajst devetnajst dvajset trideset štirideset + petdeset šestdest sedemdeset osemdeset devedeset sto tisoč + milijon bilijon trilijon kvadrilijon nešteto + + en eden enega enemu ennem enim enih enima enimi ene eni eno + dveh dvema dvem dvoje trije treh trem tremi troje štirje štirih štirim štirimi + petih petim petimi šestih šestim šestimi sedmih sedmim sedmimi osmih osmim osmimi + devetih devetim devetimi desetih desetim desetimi enajstih enajstim enajstimi + dvanajstih dvanajstim dvanajstimi trinajstih trinajstim trinajstimi + šestnajstih šestnajstim šestnajstimi petnajstih petnajstim petnajstimi + sedemnajstih sedemnajstim sedemnajstimi osemnajstih osemnajstim osemnajstimi + devetnajstih devetnajstim devetnajstimi dvajsetih dvajsetim dvajsetimi + """.split() +) + +_ordinal_words = set( + """ + prvi drugi tretji četrti peti šesti sedmi osmi + deveti deseti enajsti dvanajsti trinajsti štirinajsti + petnajsti šestnajsti sedemnajsti osemnajsti devetnajsti + dvajseti trideseti štirideseti petdeseti šestdeseti sedemdeseti + osemdeseti devetdeseti stoti tisoči milijonti bilijonti + trilijonti kvadrilijonti nešteti + + prva druga tretja četrta peta šesta sedma osma + deveta deseta enajsta dvanajsta trinajsta štirnajsta + petnajsta šestnajsta sedemnajsta osemnajsta devetnajsta + dvajseta trideseta štirideseta petdeseta šestdeseta sedemdeseta + osemdeseta devetdeseta stota tisoča milijonta bilijonta + trilijonta kvadrilijonta nešteta + + prvo drugo tretje četrto peto šestro sedmo osmo + deveto deseto enajsto dvanajsto trinajsto štirnajsto + petnajsto šestnajsto sedemnajsto osemnajsto devetnajsto + dvajseto trideseto štirideseto petdeseto šestdeseto sedemdeseto + osemdeseto devetdeseto stoto tisočo milijonto bilijonto + trilijonto kvadrilijonto nešteto + + prvega drugega tretjega četrtega petega šestega sedmega osmega + devega desetega enajstega dvanajstega trinajstega štirnajstega + petnajstega šestnajstega sedemnajstega osemnajstega devetnajstega + dvajsetega tridesetega štiridesetega petdesetega šestdesetega sedemdesetega + osemdesetega devetdesetega stotega tisočega milijontega bilijontega + trilijontega kvadrilijontega neštetega + + prvemu drugemu tretjemu četrtemu petemu šestemu sedmemu osmemu devetemu desetemu + enajstemu dvanajstemu trinajstemu štirnajstemu petnajstemu šestnajstemu sedemnajstemu + osemnajstemu devetnajstemu dvajsetemu tridesetemu štiridesetemu petdesetemu šestdesetemu + sedemdesetemu osemdesetemu devetdesetemu stotemu tisočemu milijontemu bilijontemu + trilijontemu kvadrilijontemu neštetemu + + prvem drugem tretjem četrtem petem šestem sedmem osmem devetem desetem + enajstem dvanajstem trinajstem štirnajstem petnajstem šestnajstem sedemnajstem + osemnajstem devetnajstem dvajsetem tridesetem štiridesetem petdesetem šestdesetem + sedemdesetem osemdesetem devetdesetem stotem tisočem milijontem bilijontem + trilijontem kvadrilijontem neštetem + + prvim drugim tretjim četrtim petim šestim sedtim osmim devetim desetim + enajstim dvanajstim trinajstim štirnajstim petnajstim šestnajstim sedemnajstim + osemnajstim devetnajstim dvajsetim tridesetim štiridesetim petdesetim šestdesetim + sedemdesetim osemdesetim devetdesetim stotim tisočim milijontim bilijontim + trilijontim kvadrilijontim neštetim + + prvih drugih tretjih četrthih petih šestih sedmih osmih deveth desetih + enajstih dvanajstih trinajstih štirnajstih petnajstih šestnajstih sedemnajstih + osemnajstih devetnajstih dvajsetih tridesetih štiridesetih petdesetih šestdesetih + sedemdesetih osemdesetih devetdesetih stotih tisočih milijontih bilijontih + trilijontih kvadrilijontih nešteth + + prvima drugima tretjima četrtima petima šestima sedmima osmima devetima desetima + enajstima dvanajstima trinajstima štirnajstima petnajstima šestnajstima sedemnajstima + osemnajstima devetnajstima dvajsetima tridesetima štiridesetima petdesetima šestdesetima + sedemdesetima osemdesetima devetdesetima stotima tisočima milijontima bilijontima + trilijontima kvadrilijontima neštetima + + prve druge četrte pete šeste sedme osme devete desete + enajste dvanajste trinajste štirnajste petnajste šestnajste sedemnajste + osemnajste devetnajste dvajsete tridesete štiridesete petdesete šestdesete + sedemdesete osemdesete devetdesete stote tisoče milijonte bilijonte + trilijonte kvadrilijonte neštete + + prvimi drugimi tretjimi četrtimi petimi šestimi sedtimi osmimi devetimi desetimi + enajstimi dvanajstimi trinajstimi štirnajstimi petnajstimi šestnajstimi sedemnajstimi + osemnajstimi devetnajstimi dvajsetimi tridesetimi štiridesetimi petdesetimi šestdesetimi + sedemdesetimi osemdesetimi devetdesetimi stotimi tisočimi milijontimi bilijontimi + trilijontimi kvadrilijontimi neštetimi + """.split() +) + +_currency_words = set( + """ + evro evra evru evrom evrov evroma evrih evrom evre evri evr eur + cent centa centu cenom centov centoma centih centom cente centi + dolar dolarja dolarji dolarju dolarjem dolarjev dolarjema dolarjih dolarje usd + tolar tolarja tolarji tolarju tolarjem tolarjev tolarjema tolarjih tolarje tol + dinar dinarja dinarji dinarju dinarjem dinarjev dinarjema dinarjih dinarje din + funt funta funti funtu funtom funtov funtoma funtih funte gpb + forint forinta forinti forintu forintom forintov forintoma forintih forinte + zlot zlota zloti zlotu zlotom zlotov zlotoma zlotih zlote + rupij rupija rupiji rupiju rupijem rupijev rupijema rupijih rupije + jen jena jeni jenu jenom jenov jenoma jenih jene + kuna kuni kune kuno kun kunama kunah kunam kunami + marka marki marke markama markah markami + """.split() +) + + +def like_num(text): + if text.startswith(("+", "-", "±", "~")): + text = text[1:] + text = text.replace(",", "").replace(".", "") + if text.isdigit(): + return True + if text.count("/") == 1: + num, denom = text.split("/") + if num.isdigit() and denom.isdigit(): + return True + text_lower = text.lower() + if text_lower in _num_words: + return True + if text_lower in _ordinal_words: + return True + return False + + +def is_currency(text): + text_lower = text.lower() + if text in _currency_words: + return True + for char in text: + if unicodedata.category(char) != "Sc": + return False + return True + + +LEX_ATTRS = {LIKE_NUM: like_num, IS_CURRENCY: is_currency} diff --git a/spacy/lang/sl/punctuation.py b/spacy/lang/sl/punctuation.py new file mode 100644 index 000000000..b6ca1830e --- /dev/null +++ b/spacy/lang/sl/punctuation.py @@ -0,0 +1,84 @@ +from ..char_classes import ( + LIST_ELLIPSES, + LIST_ICONS, + HYPHENS, + LIST_PUNCT, + LIST_QUOTES, + CURRENCY, + UNITS, + PUNCT, + LIST_CURRENCY, + CONCAT_QUOTES, +) +from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA +from ..char_classes import merge_chars +from ..punctuation import TOKENIZER_PREFIXES as BASE_TOKENIZER_PREFIXES + + +INCLUDE_SPECIAL = ["\\+", "\\/", "\\•", "\\¯", "\\=", "\\×"] + HYPHENS.split("|") + +_prefixes = INCLUDE_SPECIAL + BASE_TOKENIZER_PREFIXES + +_suffixes = ( + INCLUDE_SPECIAL + + LIST_PUNCT + + LIST_ELLIPSES + + LIST_QUOTES + + LIST_ICONS + + [ + r"(?<=°[FfCcKk])\.", + r"(?<=[0-9])(?:{c})".format(c=CURRENCY), + r"(?<=[0-9])(?:{u})".format(u=UNITS), + r"(?<=[{al}{e}{p}(?:{q})])\.".format( + al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, p=PUNCT + ), + r"(?<=[{au}][{au}])\.".format(au=ALPHA_UPPER), + # split initials like J.K. Rowling + r"(?<=[A-Z]\.)(?:[A-Z].)", + ] +) + +# a list of all suffixes following a hyphen that are shouldn't split (eg. BTC-jev) +# source: Obeliks tokenizer - https://github.com/clarinsi/obeliks/blob/master/obeliks/res/TokRulesPart1.txt +CONCAT_QUOTES = CONCAT_QUOTES.replace("'", "") +HYPHENS_PERMITTED = ( + "((a)|(evemu)|(evskega)|(i)|(jevega)|(jevska)|(jevskimi)|(jinemu)|(oma)|(ovim)|" + "(ovski)|(e)|(evi)|(evskem)|(ih)|(jevem)|(jevske)|(jevsko)|(jini)|(ov)|(ovima)|" + "(ovskih)|(em)|(evih)|(evskemu)|(ja)|(jevemu)|(jevskega)|(ji)|(jinih)|(ova)|" + "(ovimi)|(ovskim)|(ema)|(evim)|(evski)|(je)|(jevi)|(jevskem)|(jih)|(jinim)|" + "(ove)|(ovo)|(ovskima)|(ev)|(evima)|(evskih)|(jem)|(jevih)|(jevskemu)|(jin)|" + "(jinima)|(ovega)|(ovska)|(ovskimi)|(eva)|(evimi)|(evskim)|(jema)|(jevim)|" + "(jevski)|(jina)|(jinimi)|(ovem)|(ovske)|(ovsko)|(eve)|(evo)|(evskima)|(jev)|" + "(jevima)|(jevskih)|(jine)|(jino)|(ovemu)|(ovskega)|(u)|(evega)|(evska)|" + "(evskimi)|(jeva)|(jevimi)|(jevskim)|(jinega)|(ju)|(ovi)|(ovskem)|(evem)|" + "(evske)|(evsko)|(jeve)|(jevo)|(jevskima)|(jinem)|(om)|(ovih)|(ovskemu)|" + "(ovec)|(ovca)|(ovcu)|(ovcem)|(ovcev)|(ovcema)|(ovcih)|(ovci)|(ovce)|(ovcimi)|" + "(evec)|(evca)|(evcu)|(evcem)|(evcev)|(evcema)|(evcih)|(evci)|(evce)|(evcimi)|" + "(jevec)|(jevca)|(jevcu)|(jevcem)|(jevcev)|(jevcema)|(jevcih)|(jevci)|(jevce)|" + "(jevcimi)|(ovka)|(ovke)|(ovki)|(ovko)|(ovk)|(ovkama)|(ovkah)|(ovkam)|(ovkami)|" + "(evka)|(evke)|(evki)|(evko)|(evk)|(evkama)|(evkah)|(evkam)|(evkami)|(jevka)|" + "(jevke)|(jevki)|(jevko)|(jevk)|(jevkama)|(jevkah)|(jevkam)|(jevkami)|(timi)|" + "(im)|(ima)|(a)|(imi)|(e)|(o)|(ega)|(ti)|(em)|(tih)|(emu)|(tim)|(i)|(tima)|" + "(ih)|(ta)|(te)|(to)|(tega)|(tem)|(temu))" +) + +_infixes = ( + LIST_ELLIPSES + + LIST_ICONS + + [ + r"(?<=[0-9])[+\-\*^](?=[0-9-])", + r"(?<=[{al}{q}])\.(?=[{au}{q}])".format( + al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES + ), + r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA), + r"(?<=[{a}0-9])(?:{h})(?!{hp}$)(?=[{a}])".format( + a=ALPHA, h=HYPHENS, hp=HYPHENS_PERMITTED + ), + r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA), + ] +) + + +TOKENIZER_PREFIXES = _prefixes +TOKENIZER_SUFFIXES = _suffixes +TOKENIZER_INFIXES = _infixes diff --git a/spacy/lang/sl/stop_words.py b/spacy/lang/sl/stop_words.py index c9004ed5d..8491efcb5 100644 --- a/spacy/lang/sl/stop_words.py +++ b/spacy/lang/sl/stop_words.py @@ -1,326 +1,84 @@ # Source: https://github.com/stopwords-iso/stopwords-sl -# Removed various words that are not normally considered stop words, such as months. STOP_WORDS = set( """ -a -ali -b -bi -bil -bila -bile -bili -bilo -biti -blizu -bo -bodo -bolj -bom -bomo -boste -bova -boš -brez -c -cel -cela -celi -celo -d -da -daleč -dan -danes -do -dober -dobra -dobri -dobro -dokler -dol -dovolj -e -eden -en -ena -ene -eni -enkrat -eno -etc. +a ali + +b bi bil bila bile bili bilo biti blizu bo bodo bojo bolj bom bomo +boste bova boš brez + +c cel cela celi celo + +č če često četrta četrtek četrti četrto čez čigav + +d da daleč dan danes datum deset deseta deseti deseto devet +deveta deveti deveto do dober dobra dobri dobro dokler dol dolg +dolga dolgi dovolj drug druga drugi drugo dva dve + +e eden en ena ene eni enkrat eno etc. + f -g -g. -ga -ga. -gor -gospa -gospod -h -halo -i -idr. -ii -iii -in -iv -ix -iz -j -jaz -je -ji -jih -jim -jo -k -kadarkoli -kaj -kajti -kako -kakor -kamor -kamorkoli -kar -karkoli -katerikoli -kdaj -kdo -kdorkoli -ker -ki -kje -kjer -kjerkoli -ko -koderkoli -koga -komu -kot -l -le -lep -lepa -lepe -lepi -lepo -m -manj -me -med -medtem -mene -mi -midva -midve -mnogo -moj -moja -moje -mora -morajo -moram -moramo -morate -moraš -morem -mu -n -na -nad -naj -najina -najino -najmanj -naju -največ -nam -nas -nato -nazaj -naš -naša -naše -ne -nedavno -nek -neka -nekaj -nekatere -nekateri -nekatero -nekdo -neke -nekega -neki -nekje -neko -nekoga -nekoč -ni -nikamor -nikdar -nikjer -nikoli -nič -nje -njega -njegov -njegova -njegovo -njej -njemu -njen -njena -njeno -nji -njih -njihov -njihova -njihovo -njiju -njim -njo -njun -njuna -njuno -no -nocoj -npr. -o -ob -oba -obe -oboje -od -okoli -on -onadva -one -oni -onidve -oz. -p -pa -po -pod -pogosto -poleg -ponavadi -ponovno -potem -povsod -prbl. -precej -pred -prej -preko -pri -pribl. -približno -proti -r -redko -res -s -saj -sam -sama -same -sami -samo -se -sebe -sebi -sedaj -sem -seveda -si -sicer -skoraj -skozi -smo -so -spet -sta -ste -sva -t -ta -tak -taka -take -taki -tako -takoj -tam -te -tebe -tebi -tega -ti -tista -tiste -tisti -tisto -tj. -tja -to -toda -tu -tudi -tukaj -tvoj -tvoja -tvoje + +g g. ga ga. gor gospa gospod + +h halo + +i idr. ii iii in iv ix iz + +j jaz je ji jih jim jo jutri + +k kadarkoli kaj kajti kako kakor kamor kamorkoli kar karkoli +katerikoli kdaj kdo kdorkoli ker ki kje kjer kjerkoli +ko koder koderkoli koga komu kot kratek kratka kratke kratki + +l lahka lahke lahki lahko le lep lepa lepe lepi lepo leto + +m majhen majhna majhni malce malo manj me med medtem mene +mesec mi midva midve mnogo moj moja moje mora morajo moram +moramo morate moraš morem mu + +n na nad naj najina najino najmanj naju največ nam narobe +nas nato nazaj naš naša naše ne nedavno nedelja nek neka +nekaj nekatere nekateri nekatero nekdo neke nekega neki +nekje neko nekoga nekoč ni nikamor nikdar nikjer nikoli +nič nje njega njegov njegova njegovo njej njemu njen +njena njeno nji njih njihov njihova njihovo njiju njim +njo njun njuna njuno no nocoj npr. + +o ob oba obe oboje od odprt odprta odprti okoli on +onadva one oni onidve osem osma osmi osmo oz. + +p pa pet peta petek peti peto po pod pogosto poleg poln +polna polni polno ponavadi ponedeljek ponovno potem +povsod pozdravljen pozdravljeni prav prava prave pravi +pravo prazen prazna prazno prbl. precej pred prej preko +pri pribl. približno primer pripravljen pripravljena +pripravljeni proti prva prvi prvo + +r ravno redko res reč + +s saj sam sama same sami samo se sebe sebi sedaj sedem +sedma sedmi sedmo sem seveda si sicer skoraj skozi slab sm +so sobota spet sreda srednja srednji sta ste stran stvar sva + +š šest šesta šesti šesto štiri + +t ta tak taka take taki tako takoj tam te tebe tebi tega +težak težka težki težko ti tista tiste tisti tisto tj. +tja to toda torek tretja tretje tretji tri tu tudi tukaj +tvoj tvoja tvoje + u -v -vaju -vam -vas -vaš -vaša -vaše -ve -vedno -vendar -ves -več -vi -vidva -vii -viii -vsa -vsaj -vsak -vsaka -vsakdo -vsake -vsaki -vsakomur -vse -vsega -vsi -vso -včasih -x -z -za -zadaj -zadnji -zakaj -zdaj -zelo -zunaj -č -če -često -čez -čigav -š -ž -že + +v vaju vam vas vaš vaša vaše ve vedno velik velika veliki +veliko vendar ves več vi vidva vii viii visok visoka visoke +visoki vsa vsaj vsak vsaka vsakdo vsake vsaki vsakomur vse +vsega vsi vso včasih včeraj + +x + +z za zadaj zadnji zakaj zaprta zaprti zaprto zdaj zelo zunaj + +ž že """.split() ) diff --git a/spacy/lang/sl/tokenizer_exceptions.py b/spacy/lang/sl/tokenizer_exceptions.py new file mode 100644 index 000000000..3d4109228 --- /dev/null +++ b/spacy/lang/sl/tokenizer_exceptions.py @@ -0,0 +1,272 @@ +from typing import Dict, List +from ..tokenizer_exceptions import BASE_EXCEPTIONS +from ...symbols import ORTH, NORM +from ...util import update_exc + +_exc: Dict[str, List[Dict]] = {} + +_other_exc = { + "t.i.": [{ORTH: "t.", NORM: "tako"}, {ORTH: "i.", NORM: "imenovano"}], + "t.j.": [{ORTH: "t.", NORM: "to"}, {ORTH: "j.", NORM: "je"}], + "T.j.": [{ORTH: "T.", NORM: "to"}, {ORTH: "j.", NORM: "je"}], + "d.o.o.": [ + {ORTH: "d.", NORM: "družba"}, + {ORTH: "o.", NORM: "omejeno"}, + {ORTH: "o.", NORM: "odgovornostjo"}, + ], + "D.O.O.": [ + {ORTH: "D.", NORM: "družba"}, + {ORTH: "O.", NORM: "omejeno"}, + {ORTH: "O.", NORM: "odgovornostjo"}, + ], + "d.n.o.": [ + {ORTH: "d.", NORM: "družba"}, + {ORTH: "n.", NORM: "neomejeno"}, + {ORTH: "o.", NORM: "odgovornostjo"}, + ], + "D.N.O.": [ + {ORTH: "D.", NORM: "družba"}, + {ORTH: "N.", NORM: "neomejeno"}, + {ORTH: "O.", NORM: "odgovornostjo"}, + ], + "d.d.": [{ORTH: "d.", NORM: "delniška"}, {ORTH: "d.", NORM: "družba"}], + "D.D.": [{ORTH: "D.", NORM: "delniška"}, {ORTH: "D.", NORM: "družba"}], + "s.p.": [{ORTH: "s.", NORM: "samostojni"}, {ORTH: "p.", NORM: "podjetnik"}], + "S.P.": [{ORTH: "S.", NORM: "samostojni"}, {ORTH: "P.", NORM: "podjetnik"}], + "l.r.": [{ORTH: "l.", NORM: "lastno"}, {ORTH: "r.", NORM: "ročno"}], + "le-te": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "te"}], + "Le-te": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "te"}], + "le-ti": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "ti"}], + "Le-ti": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "ti"}], + "le-to": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "to"}], + "Le-to": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "to"}], + "le-ta": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "ta"}], + "Le-ta": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "ta"}], + "le-tega": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "tega"}], + "Le-tega": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "tega"}], +} + +_exc.update(_other_exc) + + +for exc_data in [ + {ORTH: "adm.", NORM: "administracija"}, + {ORTH: "aer.", NORM: "aeronavtika"}, + {ORTH: "agr.", NORM: "agronomija"}, + {ORTH: "amer.", NORM: "ameriško"}, + {ORTH: "anat.", NORM: "anatomija"}, + {ORTH: "angl.", NORM: "angleški"}, + {ORTH: "ant.", NORM: "antonim"}, + {ORTH: "antr.", NORM: "antropologija"}, + {ORTH: "apr.", NORM: "april"}, + {ORTH: "arab.", NORM: "arabsko"}, + {ORTH: "arheol.", NORM: "arheologija"}, + {ORTH: "arhit.", NORM: "arhitektura"}, + {ORTH: "avg.", NORM: "avgust"}, + {ORTH: "avstr.", NORM: "avstrijsko"}, + {ORTH: "avt.", NORM: "avtomobilizem"}, + {ORTH: "bibl.", NORM: "biblijsko"}, + {ORTH: "biokem.", NORM: "biokemija"}, + {ORTH: "biol.", NORM: "biologija"}, + {ORTH: "bolg.", NORM: "bolgarski"}, + {ORTH: "bot.", NORM: "botanika"}, + {ORTH: "cit.", NORM: "citat"}, + {ORTH: "daj.", NORM: "dajalnik"}, + {ORTH: "del.", NORM: "deležnik"}, + {ORTH: "ed.", NORM: "ednina"}, + {ORTH: "etn.", NORM: "etnografija"}, + {ORTH: "farm.", NORM: "farmacija"}, + {ORTH: "filat.", NORM: "filatelija"}, + {ORTH: "filoz.", NORM: "filozofija"}, + {ORTH: "fin.", NORM: "finančništvo"}, + {ORTH: "fiz.", NORM: "fizika"}, + {ORTH: "fot.", NORM: "fotografija"}, + {ORTH: "fr.", NORM: "francoski"}, + {ORTH: "friz.", NORM: "frizerstvo"}, + {ORTH: "gastr.", NORM: "gastronomija"}, + {ORTH: "geogr.", NORM: "geografija"}, + {ORTH: "geol.", NORM: "geologija"}, + {ORTH: "geom.", NORM: "geometrija"}, + {ORTH: "germ.", NORM: "germanski"}, + {ORTH: "gl.", NORM: "glej"}, + {ORTH: "glag.", NORM: "glagolski"}, + {ORTH: "glasb.", NORM: "glasba"}, + {ORTH: "gled.", NORM: "gledališče"}, + {ORTH: "gost.", NORM: "gostinstvo"}, + {ORTH: "gozd.", NORM: "gozdarstvo"}, + {ORTH: "gr.", NORM: "grški"}, + {ORTH: "grad.", NORM: "gradbeništvo"}, + {ORTH: "hebr.", NORM: "hebrejsko"}, + {ORTH: "hrv.", NORM: "hrvaško"}, + {ORTH: "ide.", NORM: "indoevropsko"}, + {ORTH: "igr.", NORM: "igre"}, + {ORTH: "im.", NORM: "imenovalnik"}, + {ORTH: "iron.", NORM: "ironično"}, + {ORTH: "it.", NORM: "italijanski"}, + {ORTH: "itd.", NORM: "in tako dalje"}, + {ORTH: "itn.", NORM: "in tako naprej"}, + {ORTH: "ipd.", NORM: "in podobno"}, + {ORTH: "jap.", NORM: "japonsko"}, + {ORTH: "jul.", NORM: "julij"}, + {ORTH: "jun.", NORM: "junij"}, + {ORTH: "kit.", NORM: "kitajsko"}, + {ORTH: "knj.", NORM: "knjižno"}, + {ORTH: "knjiž.", NORM: "knjižno"}, + {ORTH: "kor.", NORM: "koreografija"}, + {ORTH: "lat.", NORM: "latinski"}, + {ORTH: "les.", NORM: "lesna stroka"}, + {ORTH: "lingv.", NORM: "lingvistika"}, + {ORTH: "lit.", NORM: "literarni"}, + {ORTH: "ljubk.", NORM: "ljubkovalno"}, + {ORTH: "lov.", NORM: "lovstvo"}, + {ORTH: "m.", NORM: "moški"}, + {ORTH: "mak.", NORM: "makedonski"}, + {ORTH: "mar.", NORM: "marec"}, + {ORTH: "mat.", NORM: "matematika"}, + {ORTH: "med.", NORM: "medicina"}, + {ORTH: "meh.", NORM: "mehiško"}, + {ORTH: "mest.", NORM: "mestnik"}, + {ORTH: "mdr.", NORM: "med drugim"}, + {ORTH: "min.", NORM: "mineralogija"}, + {ORTH: "mitol.", NORM: "mitologija"}, + {ORTH: "mn.", NORM: "množina"}, + {ORTH: "mont.", NORM: "montanistika"}, + {ORTH: "muz.", NORM: "muzikologija"}, + {ORTH: "nam.", NORM: "namenilnik"}, + {ORTH: "nar.", NORM: "narečno"}, + {ORTH: "nav.", NORM: "navadno"}, + {ORTH: "nedol.", NORM: "nedoločnik"}, + {ORTH: "nedov.", NORM: "nedovršni"}, + {ORTH: "neprav.", NORM: "nepravilno"}, + {ORTH: "nepreh.", NORM: "neprehodno"}, + {ORTH: "neskl.", NORM: "nesklonljiv(o)"}, + {ORTH: "nestrok.", NORM: "nestrokovno"}, + {ORTH: "num.", NORM: "numizmatika"}, + {ORTH: "npr.", NORM: "na primer"}, + {ORTH: "obrt.", NORM: "obrtništvo"}, + {ORTH: "okt.", NORM: "oktober"}, + {ORTH: "or.", NORM: "orodnik"}, + {ORTH: "os.", NORM: "oseba"}, + {ORTH: "otr.", NORM: "otroško"}, + {ORTH: "oz.", NORM: "oziroma"}, + {ORTH: "pal.", NORM: "paleontologija"}, + {ORTH: "papir.", NORM: "papirništvo"}, + {ORTH: "ped.", NORM: "pedagogika"}, + {ORTH: "pisar.", NORM: "pisarniško"}, + {ORTH: "pog.", NORM: "pogovorno"}, + {ORTH: "polit.", NORM: "politika"}, + {ORTH: "polj.", NORM: "poljsko"}, + {ORTH: "poljud.", NORM: "poljudno"}, + {ORTH: "preg.", NORM: "pregovor"}, + {ORTH: "preh.", NORM: "prehodno"}, + {ORTH: "pren.", NORM: "preneseno"}, + {ORTH: "prid.", NORM: "pridevnik"}, + {ORTH: "prim.", NORM: "primerjaj"}, + {ORTH: "prisl.", NORM: "prislov"}, + {ORTH: "psih.", NORM: "psihologija"}, + {ORTH: "psiht.", NORM: "psihiatrija"}, + {ORTH: "rad.", NORM: "radiotehnika"}, + {ORTH: "rač.", NORM: "računalništvo"}, + {ORTH: "rib.", NORM: "ribištvo"}, + {ORTH: "rod.", NORM: "rodilnik"}, + {ORTH: "rus.", NORM: "rusko"}, + {ORTH: "s.", NORM: "srednji"}, + {ORTH: "sam.", NORM: "samostalniški"}, + {ORTH: "sed.", NORM: "sedanjik"}, + {ORTH: "sep.", NORM: "september"}, + {ORTH: "slabš.", NORM: "slabšalno"}, + {ORTH: "slovan.", NORM: "slovansko"}, + {ORTH: "slovaš.", NORM: "slovaško"}, + {ORTH: "srb.", NORM: "srbsko"}, + {ORTH: "star.", NORM: "starinsko"}, + {ORTH: "stil.", NORM: "stilno"}, + {ORTH: "sv.", NORM: "svet(i)"}, + {ORTH: "teh.", NORM: "tehnika"}, + {ORTH: "tisk.", NORM: "tiskarstvo"}, + {ORTH: "tj.", NORM: "to je"}, + {ORTH: "tož.", NORM: "tožilnik"}, + {ORTH: "trg.", NORM: "trgovina"}, + {ORTH: "ukr.", NORM: "ukrajinski"}, + {ORTH: "um.", NORM: "umetnost"}, + {ORTH: "vel.", NORM: "velelnik"}, + {ORTH: "vet.", NORM: "veterina"}, + {ORTH: "vez.", NORM: "veznik"}, + {ORTH: "vn.", NORM: "visokonemško"}, + {ORTH: "voj.", NORM: "vojska"}, + {ORTH: "vrtn.", NORM: "vrtnarstvo"}, + {ORTH: "vulg.", NORM: "vulgarno"}, + {ORTH: "vznes.", NORM: "vzneseno"}, + {ORTH: "zal.", NORM: "založništvo"}, + {ORTH: "zastar.", NORM: "zastarelo"}, + {ORTH: "zgod.", NORM: "zgodovina"}, + {ORTH: "zool.", NORM: "zoologija"}, + {ORTH: "čeb.", NORM: "čebelarstvo"}, + {ORTH: "češ.", NORM: "češki"}, + {ORTH: "člov.", NORM: "človeškost"}, + {ORTH: "šah.", NORM: "šahovski"}, + {ORTH: "šalj.", NORM: "šaljivo"}, + {ORTH: "šp.", NORM: "španski"}, + {ORTH: "špan.", NORM: "špansko"}, + {ORTH: "šport.", NORM: "športni"}, + {ORTH: "štev.", NORM: "števnik"}, + {ORTH: "šved.", NORM: "švedsko"}, + {ORTH: "švic.", NORM: "švicarsko"}, + {ORTH: "ž.", NORM: "ženski"}, + {ORTH: "žarg.", NORM: "žargonsko"}, + {ORTH: "žel.", NORM: "železnica"}, + {ORTH: "živ.", NORM: "živost"}, +]: + _exc[exc_data[ORTH]] = [exc_data] + + +abbrv = """ +Co. Ch. DIPL. DR. Dr. Ev. Inc. Jr. Kr. Mag. M. MR. Mr. Mt. Murr. Npr. OZ. +Opr. Osn. Prim. Roj. ST. Sim. Sp. Sred. St. Sv. Škofl. Tel. UR. Zb. +a. aa. ab. abc. abit. abl. abs. abt. acc. accel. add. adj. adv. aet. afr. akad. al. alban. all. alleg. +alp. alt. alter. alžir. am. an. andr. ang. anh. anon. ans. antrop. apoc. app. approx. apt. ar. arc. arch. +arh. arr. as. asist. assist. assoc. asst. astr. attn. aug. avstral. az. b. bab. bal. bbl. bd. belg. bioinf. +biomed. bk. bl. bn. borg. bp. br. braz. brit. bros. broš. bt. bu. c. ca. cal. can. cand. cantab. cap. capt. +cat. cath. cc. cca. cd. cdr. cdre. cent. cerkv. cert. cf. cfr. ch. chap. chem. chr. chs. cic. circ. civ. cl. +cm. cmd. cnr. co. cod. col. coll. colo. com. comp. con. conc. cond. conn. cons. cont. coop. corr. cost. cp. +cpl. cr. crd. cres. cresc. ct. cu. d. dan. dat. davč. ddr. dec. ded. def. dem. dent. dept. dia. dip. dipl. +dir. disp. diss. div. do. doc. dok. dol. doo. dop. dott. dr. dram. druž. družb. drž. dt. duh. dur. dvr. dwt. e. +ea. ecc. eccl. eccles. econ. edn. egipt. egr. ekon. eksp. el. em. enc. eng. eo. ep. err. esp. esq. est. +et. etc. etnogr. etnol. ev. evfem. evr. ex. exc. excl. exp. expl. ext. exx. f. fa. facs. fak. faks. fas. +fasc. fco. fcp. feb. febr. fec. fed. fem. ff. fff. fid. fig. fil. film. fiziol. fiziot. flam. fm. fo. fol. folk. +frag. fran. franc. fsc. g. ga. gal. gdč. ge. gen. geod. geog. geotehnol. gg. gimn. glas. glav. gnr. go. gor. +gosp. gp. graf. gram. gren. grš. gs. h. hab. hf. hist. ho. hort. i. ia. ib. ibid. id. idr. idridr. ill. imen. +imp. impf. impr. in. inc. incl. ind. indus. inf. inform. ing. init. ins. int. inv. inšp. inštr. inž. is. islam. +ist. ital. iur. iz. izbr. izd. izg. izgr. izr. izv. j. jak. jam. jan. jav. je. jez. jr. jsl. jud. jug. +jugoslovan. jur. juž. jv. jz. k. kal. kan. kand. kat. kdo. kem. kip. kmet. kol. kom. komp. konf. kont. kost. kov. +kp. kpfw. kr. kraj. krat. kub. kult. kv. kval. l. la. lab. lb. ld. let. lib. lik. litt. lj. ljud. ll. loc. log. +loč. lt. ma. madž. mag. manag. manjš. masc. mass. mater. max. maxmax. mb. md. mech. medic. medij. medn. +mehč. mem. menedž. mes. mess. metal. meteor. meteorol. mex. mi. mikr. mil. minn. mio. misc. miss. mit. mk. +mkt. ml. mlad. mlle. mlr. mm. mme. množ. mo. moj. moš. možn. mr. mrd. mrs. ms. msc. msgr. mt. murr. mus. mut. +n. na. nad. nadalj. nadom. nagl. nakl. namer. nan. naniz. nasl. nat. navt. nač. ned. nem. nik. nizoz. nm. nn. +no. nom. norv. notr. nov. novogr. ns. o. ob. obd. obj. oblač. obl. oblik. obr. obraz. obs. obst. obt. obč. oc. +oct. od. odd. odg. odn. odst. odv. oec. off. ok. okla. okr. ont. oo. op. opis. opp. opr. orch. ord. ore. oreg. +org. orient. orig. ork. ort. oseb. osn. ot. ozir. ošk. p. pag. par. para. parc. parl. part. past. pat. pdk. +pen. perf. pert. perz. pesn. pet. pev. pf. pfc. ph. pharm. phil. pis. pl. po. pod. podr. podaljš. pogl. pogoj. pojm. +pok. pokr. pol. poljed. poljub. polu. pom. pomen. pon. ponov. pop. por. port. pos. posl. posn. pov. pp. ppl. pr. +praet. prav. pravopis. pravosl. preb. pred. predl. predm. predp. preds. pref. pregib. prel. prem. premen. prep. +pres. pret. prev. pribl. prih. pril. primerj. primor. prip. pripor. prir. prist. priv. proc. prof. prog. proiz. +prom. pron. prop. prot. protest. prov. ps. pss. pt. publ. pz. q. qld. qu. quad. que. r. racc. rastl. razgl. +razl. razv. rd. red. ref. reg. rel. relig. rep. repr. rer. resp. rest. ret. rev. revol. rež. rim. rist. rkp. rm. +roj. rom. romun. rp. rr. rt. rud. ruš. ry. sal. samogl. san. sc. scen. sci. scr. sdv. seg. sek. sen. sept. ser. +sev. sg. sgt. sh. sig. sigg. sign. sim. sin. sing. sinh. skand. skl. sklad. sklanj. sklep. skr. sl. slik. slov. +slovak. slovn. sn. so. sob. soc. sociol. sod. sopomen. sopr. sor. sov. sovj. sp. spec. spl. spr. spreg. sq. sr. +sre. sred. sredoz. srh. ss. ssp. st. sta. stan. stanstar. stcsl. ste. stim. stol. stom. str. stroj. strok. stsl. +stud. sup. supl. suppl. svet. sz. t. tab. tech. ted. tehn. tehnol. tek. teks. tekst. tel. temp. ten. teol. ter. +term. test. th. theol. tim. tip. tisočl. tit. tl. tol. tolmač. tom. tor. tov. tr. trad. traj. trans. tren. +trib. tril. trop. trp. trž. ts. tt. tu. tur. turiz. tvor. tvorb. tč. u. ul. umet. un. univ. up. upr. ur. urad. +us. ust. utr. v. va. val. var. varn. ven. ver. verb. vest. vezal. vic. vis. viv. viz. viš. vod. vok. vol. vpr. +vrst. vrstil. vs. vv. vzd. vzg. vzh. vzor. w. wed. wg. wk. x. y. z. zah. zaim. zak. zap. zasl. zavar. zač. zb. +združ. zg. zn. znan. znanstv. zoot. zun. zv. zvd. á. é. ć. č. čas. čet. čl. člen. čustv. đ. ľ. ł. ş. ŠT. š. šir. +škofl. škot. šol. št. števil. štud. ů. ű. žen. žival. +""".split() + +for orth in abbrv: + _exc[orth] = [{ORTH: orth}] + + +TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc) diff --git a/spacy/tests/lang/sl/test_text.py b/spacy/tests/lang/sl/test_text.py index ddc5b6b5d..a2a932077 100644 --- a/spacy/tests/lang/sl/test_text.py +++ b/spacy/tests/lang/sl/test_text.py @@ -20,7 +20,6 @@ od katerih so te svoboščine odvisne, assert len(tokens) == 116 -@pytest.mark.xfail def test_ordinal_number(sl_tokenizer): text = "10. decembra 1948" tokens = sl_tokenizer(text) From 23749cfc91110a77e4c6bbaa71ad90d8c056ca0b Mon Sep 17 00:00:00 2001 From: stefawolf Date: Fri, 5 Aug 2022 12:26:38 +0200 Subject: [PATCH 097/138] adding spans to doc_annotation in Example.to_dict (#11261) * adding spans to doc_annotation in Example.to_dict * to_dict compatible with from_dict: tuples instead of spans * use strings for label and kb_id * Simplify test * Update data formats docs Co-authored-by: Stefanie Wolf Co-authored-by: Adriane Boyd --- spacy/tests/training/test_new_example.py | 38 ++++++++++++++++++++++++ spacy/training/example.pyx | 13 ++++++++ website/docs/api/data-formats.md | 6 ++-- 3 files changed, 55 insertions(+), 2 deletions(-) diff --git a/spacy/tests/training/test_new_example.py b/spacy/tests/training/test_new_example.py index a39d40ded..6b15603b3 100644 --- a/spacy/tests/training/test_new_example.py +++ b/spacy/tests/training/test_new_example.py @@ -431,3 +431,41 @@ def test_Example_aligned_whitespace(en_vocab): example = Example(predicted, reference) assert example.get_aligned("TAG", as_string=True) == tags + + +@pytest.mark.issue("11260") +def test_issue11260(): + annots = { + "words": ["I", "like", "New", "York", "."], + "spans": { + "cities": [(7, 15, "LOC", "")], + "people": [(0, 1, "PERSON", "")], + }, + } + vocab = Vocab() + predicted = Doc(vocab, words=annots["words"]) + example = Example.from_dict(predicted, annots) + assert len(example.reference.spans["cities"]) == 1 + assert len(example.reference.spans["people"]) == 1 + + output_dict = example.to_dict() + assert "spans" in output_dict["doc_annotation"] + assert output_dict["doc_annotation"]["spans"]["cities"] == annots["spans"]["cities"] + assert output_dict["doc_annotation"]["spans"]["people"] == annots["spans"]["people"] + + output_example = Example.from_dict(predicted, output_dict) + + assert len(output_example.reference.spans["cities"]) == len( + example.reference.spans["cities"] + ) + assert len(output_example.reference.spans["people"]) == len( + example.reference.spans["people"] + ) + for span in example.reference.spans["cities"]: + assert span.label_ == "LOC" + assert span.text == "New York" + assert span.start_char == 7 + for span in example.reference.spans["people"]: + assert span.label_ == "PERSON" + assert span.text == "I" + assert span.start_char == 0 diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx index d592e5a52..dfd337b9e 100644 --- a/spacy/training/example.pyx +++ b/spacy/training/example.pyx @@ -361,6 +361,7 @@ cdef class Example: "doc_annotation": { "cats": dict(self.reference.cats), "entities": doc_to_biluo_tags(self.reference), + "spans": self._spans_to_dict(), "links": self._links_to_dict() }, "token_annotation": { @@ -376,6 +377,18 @@ cdef class Example: } } + def _spans_to_dict(self): + span_dict = {} + for key in self.reference.spans: + span_tuples = [] + for span in self.reference.spans[key]: + span_tuple = (span.start_char, span.end_char, span.label_, span.kb_id_) + span_tuples.append(span_tuple) + span_dict[key] = span_tuples + + return span_dict + + def _links_to_dict(self): links = {} for ent in self.reference.ents: diff --git a/website/docs/api/data-formats.md b/website/docs/api/data-formats.md index b7aedc511..ce06c4ea8 100644 --- a/website/docs/api/data-formats.md +++ b/website/docs/api/data-formats.md @@ -395,12 +395,13 @@ file to keep track of your settings and hyperparameters and your own > "pos": List[str], > "morphs": List[str], > "sent_starts": List[Optional[bool]], -> "deps": List[string], +> "deps": List[str], > "heads": List[int], > "entities": List[str], > "entities": List[(int, int, str)], > "cats": Dict[str, float], > "links": Dict[(int, int), dict], +> "spans": Dict[str, List[Tuple]], > } > ``` @@ -417,9 +418,10 @@ file to keep track of your settings and hyperparameters and your own | `deps` | List of string values indicating the [dependency relation](/usage/linguistic-features#dependency-parse) of a token to its head. ~~List[str]~~ | | `heads` | List of integer values indicating the dependency head of each token, referring to the absolute index of each token in the text. ~~List[int]~~ | | `entities` | **Option 1:** List of [BILUO tags](/usage/linguistic-features#accessing-ner) per token of the format `"{action}-{label}"`, or `None` for unannotated tokens. ~~List[str]~~ | -| `entities` | **Option 2:** List of `"(start, end, label)"` tuples defining all entities in the text. ~~List[Tuple[int, int, str]]~~ | +| `entities` | **Option 2:** List of `(start_char, end_char, label)` tuples defining all entities in the text. ~~List[Tuple[int, int, str]]~~ | | `cats` | Dictionary of `label`/`value` pairs indicating how relevant a certain [text category](/api/textcategorizer) is for the text. ~~Dict[str, float]~~ | | `links` | Dictionary of `offset`/`dict` pairs defining [named entity links](/usage/linguistic-features#entity-linking). The character offsets are linked to a dictionary of relevant knowledge base IDs. ~~Dict[Tuple[int, int], Dict]~~ | +| `spans` | Dictionary of `spans_key`/`List[Tuple]` pairs defining the spans for each spans key as `(start_char, end_char, label, kb_id)` tuples. ~~Dict[str, List[Tuple[int, int, str, str]]~~ | From fc4246558be4f6e9b3e71afb814019552764cfb1 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 9 Aug 2022 10:59:36 +0200 Subject: [PATCH 098/138] Fix regex invalid escape sequences (#11276) --- spacy/lang/ko/punctuation.py | 2 +- spacy/schemas.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/spacy/lang/ko/punctuation.py b/spacy/lang/ko/punctuation.py index 7f7b40c5b..f5f1c51da 100644 --- a/spacy/lang/ko/punctuation.py +++ b/spacy/lang/ko/punctuation.py @@ -3,7 +3,7 @@ from ..punctuation import TOKENIZER_INFIXES as BASE_TOKENIZER_INFIXES _infixes = ( - ["·", "ㆍ", "\(", "\)"] + ["·", "ㆍ", r"\(", r"\)"] + [r"(?<=[0-9])~(?=[0-9-])"] + LIST_QUOTES + BASE_TOKENIZER_INFIXES diff --git a/spacy/schemas.py b/spacy/schemas.py index 658e45268..9f91451a9 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -207,7 +207,7 @@ class TokenPatternOperatorSimple(str, Enum): class TokenPatternOperatorMinMax(ConstrainedStr): - regex = re.compile("^({\d+}|{\d+,\d*}|{\d*,\d+})$") + regex = re.compile(r"^({\d+}|{\d+,\d*}|{\d*,\d+})$") TokenPatternOperator = Union[TokenPatternOperatorSimple, TokenPatternOperatorMinMax] From e700358ba00cecb2185add0448cf0588b2fc351f Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 9 Aug 2022 12:15:13 +0200 Subject: [PATCH 099/138] Add W605 to the errors raised by flake8 in the CI (#11283) --- azure-pipelines.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/azure-pipelines.yml b/azure-pipelines.yml index 4624b2eb2..f475b7fdd 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -32,7 +32,7 @@ jobs: versionSpec: "3.7" - script: | pip install flake8==3.9.2 - python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics + python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics displayName: "flake8" - job: "Test" From 231a17817db0997caab1379e601dac1b9a90b46c Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Tue, 9 Aug 2022 21:50:50 +0900 Subject: [PATCH 100/138] Clean up automated label-based issue handling (#11284) * Clean up automated label-based issue handline 1. upgrade tiangolo/issue-manager to latest 2. move needs-more-info to tiangolo 3. change needs-more-info close time to 7 days 4. delete old needs-more-info config * Use old, longer message * Fix label name --- .github/no-response.yml | 13 ------------- .github/workflows/issue-manager.yml | 8 +++++++- 2 files changed, 7 insertions(+), 14 deletions(-) delete mode 100644 .github/no-response.yml diff --git a/.github/no-response.yml b/.github/no-response.yml deleted file mode 100644 index ea78104b9..000000000 --- a/.github/no-response.yml +++ /dev/null @@ -1,13 +0,0 @@ -# Configuration for probot-no-response - https://github.com/probot/no-response - -# Number of days of inactivity before an Issue is closed for lack of response -daysUntilClose: 14 -# Label requiring a response -responseRequiredLabel: more-info-needed -# Comment to post when closing an Issue for lack of response. Set to `false` to disable -closeComment: > - This issue has been automatically closed because there has been no response - to a request for more information from the original author. With only the - information that is currently in the issue, there's not enough information - to take action. If you're the original author, feel free to reopen the issue - if you have or find the answers needed to investigate further. diff --git a/.github/workflows/issue-manager.yml b/.github/workflows/issue-manager.yml index 3fb42ed01..8f3a151ea 100644 --- a/.github/workflows/issue-manager.yml +++ b/.github/workflows/issue-manager.yml @@ -15,7 +15,7 @@ jobs: issue-manager: runs-on: ubuntu-latest steps: - - uses: tiangolo/issue-manager@0.2.1 + - uses: tiangolo/issue-manager@0.4.0 with: token: ${{ secrets.GITHUB_TOKEN }} config: > @@ -25,5 +25,11 @@ jobs: "message": "This issue has been automatically closed because it was answered and there was no follow-up discussion.", "remove_label_on_comment": true, "remove_label_on_close": true + }, + "more-info-needed": { + "delay": "P7D", + "message": "This issue has been automatically closed because there has been no response to a request for more information from the original author. With only the information that is currently in the issue, there's not enough information to take action. If you're the original author, feel free to reopen the issue if you have or find the answers needed to investigate further.", + "remove_label_on_comment": true, + "remove_label_on_close": true } } From ed4ad309e6dd6fb420cbf18e4fd5e8de3291eeba Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Wed, 10 Aug 2022 09:49:08 +0200 Subject: [PATCH 101/138] Fix Dutch noun chunks to skip overlapping spans (#11275) * Add test for overlapping noun chunks * Skip overlapping noun chunks * Update spacy/tests/lang/nl/test_noun_chunks.py Co-authored-by: Sofie Van Landeghem Co-authored-by: Sofie Van Landeghem --- spacy/lang/nl/syntax_iterators.py | 11 +++++++---- spacy/tests/lang/nl/test_noun_chunks.py | 18 +++++++++++++++++- 2 files changed, 24 insertions(+), 5 deletions(-) diff --git a/spacy/lang/nl/syntax_iterators.py b/spacy/lang/nl/syntax_iterators.py index 1ab5e7cff..be9beabe6 100644 --- a/spacy/lang/nl/syntax_iterators.py +++ b/spacy/lang/nl/syntax_iterators.py @@ -40,6 +40,7 @@ def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: span_label = doc.vocab.strings.add("NP") # Only NOUNS and PRONOUNS matter + end_span = -1 for i, word in enumerate(filter(lambda x: x.pos in [PRON, NOUN], doclike)): # For NOUNS # Pick children from syntactic parse (only those with certain dependencies) @@ -58,15 +59,17 @@ def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: children_i = [c.i for c in children] + [word.i] start_span = min(children_i) - end_span = max(children_i) + 1 - yield start_span, end_span, span_label + if start_span >= end_span: + end_span = max(children_i) + 1 + yield start_span, end_span, span_label # PRONOUNS only if it is the subject of a verb elif word.pos == PRON: if word.dep in pronoun_deps: start_span = word.i - end_span = word.i + 1 - yield start_span, end_span, span_label + if start_span >= end_span: + end_span = word.i + 1 + yield start_span, end_span, span_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks} diff --git a/spacy/tests/lang/nl/test_noun_chunks.py b/spacy/tests/lang/nl/test_noun_chunks.py index 73b501e4a..8962e3b75 100644 --- a/spacy/tests/lang/nl/test_noun_chunks.py +++ b/spacy/tests/lang/nl/test_noun_chunks.py @@ -1,5 +1,6 @@ -from spacy.tokens import Doc import pytest +from spacy.tokens import Doc +from spacy.util import filter_spans @pytest.fixture @@ -207,3 +208,18 @@ def test_chunking(nl_sample, nl_reference_chunking): """ chunks = [s.text.lower() for s in nl_sample.noun_chunks] assert chunks == nl_reference_chunking + + +@pytest.mark.issue(10846) +def test_no_overlapping_chunks(nl_vocab): + # fmt: off + doc = Doc( + nl_vocab, + words=["Dit", "programma", "wordt", "beschouwd", "als", "'s", "werelds", "eerste", "computerprogramma"], + deps=["det", "nsubj:pass", "aux:pass", "ROOT", "mark", "det", "fixed", "amod", "xcomp"], + heads=[1, 3, 3, 3, 8, 8, 5, 8, 3], + pos=["DET", "NOUN", "AUX", "VERB", "SCONJ", "DET", "NOUN", "ADJ", "NOUN"], + ) + # fmt: on + chunks = list(doc.noun_chunks) + assert filter_spans(chunks) == chunks From 5d54c0e32a4dbcf969953d8c2c2a5940dd4295d1 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Wed, 10 Aug 2022 11:44:05 +0200 Subject: [PATCH 102/138] Rename modules for consistency (#11286) * rename Python module to entity_ruler * rename Python module to attribute_ruler --- spacy/pipeline/__init__.py | 4 ++-- spacy/pipeline/{attributeruler.py => attribute_ruler.py} | 0 spacy/pipeline/{entityruler.py => entity_ruler.py} | 0 website/docs/api/attributeruler.md | 4 ++-- website/docs/api/entityruler.md | 4 ++-- website/docs/usage/saving-loading.md | 2 +- 6 files changed, 7 insertions(+), 7 deletions(-) rename spacy/pipeline/{attributeruler.py => attribute_ruler.py} (100%) rename spacy/pipeline/{entityruler.py => entity_ruler.py} (100%) diff --git a/spacy/pipeline/__init__.py b/spacy/pipeline/__init__.py index 26931606b..4744a989b 100644 --- a/spacy/pipeline/__init__.py +++ b/spacy/pipeline/__init__.py @@ -1,9 +1,9 @@ -from .attributeruler import AttributeRuler +from .attribute_ruler import AttributeRuler from .dep_parser import DependencyParser from .edit_tree_lemmatizer import EditTreeLemmatizer from .entity_linker import EntityLinker from .ner import EntityRecognizer -from .entityruler import EntityRuler +from .entity_ruler import EntityRuler from .lemmatizer import Lemmatizer from .morphologizer import Morphologizer from .pipe import Pipe diff --git a/spacy/pipeline/attributeruler.py b/spacy/pipeline/attribute_ruler.py similarity index 100% rename from spacy/pipeline/attributeruler.py rename to spacy/pipeline/attribute_ruler.py diff --git a/spacy/pipeline/entityruler.py b/spacy/pipeline/entity_ruler.py similarity index 100% rename from spacy/pipeline/entityruler.py rename to spacy/pipeline/entity_ruler.py diff --git a/website/docs/api/attributeruler.md b/website/docs/api/attributeruler.md index 965bffbcc..f56e15b29 100644 --- a/website/docs/api/attributeruler.md +++ b/website/docs/api/attributeruler.md @@ -1,7 +1,7 @@ --- title: AttributeRuler tag: class -source: spacy/pipeline/attributeruler.py +source: spacy/pipeline/attribute_ruler.py new: 3 teaser: 'Pipeline component for rule-based token attribute assignment' api_string_name: attribute_ruler @@ -34,7 +34,7 @@ how the component should be configured. You can override its settings via the | `validate` | Whether patterns should be validated (passed to the `Matcher`). Defaults to `False`. ~~bool~~ | ```python -%%GITHUB_SPACY/spacy/pipeline/attributeruler.py +%%GITHUB_SPACY/spacy/pipeline/attribute_ruler.py ``` ## AttributeRuler.\_\_init\_\_ {#init tag="method"} diff --git a/website/docs/api/entityruler.md b/website/docs/api/entityruler.md index c2ba33f01..ef7acbbf1 100644 --- a/website/docs/api/entityruler.md +++ b/website/docs/api/entityruler.md @@ -1,7 +1,7 @@ --- title: EntityRuler tag: class -source: spacy/pipeline/entityruler.py +source: spacy/pipeline/entity_ruler.py new: 2.1 teaser: 'Pipeline component for rule-based named entity recognition' api_string_name: entity_ruler @@ -64,7 +64,7 @@ how the component should be configured. You can override its settings via the | `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ | ```python -%%GITHUB_SPACY/spacy/pipeline/entityruler.py +%%GITHUB_SPACY/spacy/pipeline/entity_ruler.py ``` ## EntityRuler.\_\_init\_\_ {#init tag="method"} diff --git a/website/docs/usage/saving-loading.md b/website/docs/usage/saving-loading.md index 0fd713a49..9a4b584a3 100644 --- a/website/docs/usage/saving-loading.md +++ b/website/docs/usage/saving-loading.md @@ -195,7 +195,7 @@ the data to and from a JSON file. > > To see custom serialization methods in action, check out the new > [`EntityRuler`](/api/entityruler) component and its -> [source](%%GITHUB_SPACY/spacy/pipeline/entityruler.py). Patterns added to the +> [source](%%GITHUB_SPACY/spacy/pipeline/entity_ruler.py). Patterns added to the > component will be saved to a `.jsonl` file if the pipeline is serialized to > disk, and to a bytestring if the pipeline is serialized to bytes. This allows > saving out a pipeline with a rule-based entity recognizer and including all From 551e73ccfc30ffe9904592d05ec80573d7a56122 Mon Sep 17 00:00:00 2001 From: antonpibm <51074867+antonpibm@users.noreply.github.com> Date: Thu, 11 Aug 2022 12:26:26 +0300 Subject: [PATCH 103/138] Match private networks as URLs (#11121) --- spacy/lang/tokenizer_exceptions.py | 4 ---- spacy/tests/tokenizer/test_urls.py | 5 ++++- 2 files changed, 4 insertions(+), 5 deletions(-) diff --git a/spacy/lang/tokenizer_exceptions.py b/spacy/lang/tokenizer_exceptions.py index d76fe4262..a5e388ca8 100644 --- a/spacy/lang/tokenizer_exceptions.py +++ b/spacy/lang/tokenizer_exceptions.py @@ -17,10 +17,6 @@ URL_PATTERN = ( r"(?:\S+(?::\S*)?@)?" r"(?:" # IP address exclusion - # private & local networks - r"(?!(?:10|127)(?:\.\d{1,3}){3})" - r"(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})" - r"(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})" # IP address dotted notation octets # excludes loopback network 0.0.0.0 # excludes reserved space >= 224.0.0.0 diff --git a/spacy/tests/tokenizer/test_urls.py b/spacy/tests/tokenizer/test_urls.py index 57e970f87..3d8c7b085 100644 --- a/spacy/tests/tokenizer/test_urls.py +++ b/spacy/tests/tokenizer/test_urls.py @@ -33,6 +33,9 @@ URLS_SHOULD_MATCH = [ "http://userid:password@example.com/", "http://142.42.1.1/", "http://142.42.1.1:8080/", + "http://10.140.12.13/foo", + "http://10.140.12.13/foo/bar?arg1=baz&arg2=taz", + "http://10.1.1.1", "http://foo.com/blah_(wikipedia)#cite-1", "http://foo.com/blah_(wikipedia)_blah#cite-1", "http://foo.com/unicode_(✪)_in_parens", @@ -94,6 +97,7 @@ URLS_SHOULD_NOT_MATCH = [ "http://foo.bar/foo(bar)baz quux", "http://-error-.invalid/", "http://a.b-.co", + # Loopback and broadcast addresses should be excluded "http://0.0.0.0", "http://10.1.1.0", "http://10.1.1.255", @@ -102,7 +106,6 @@ URLS_SHOULD_NOT_MATCH = [ "http://3628126748", "http://.www.foo.bar/", "http://.www.foo.bar./", - "http://10.1.1.1", "NASDAQ:GOOG", "http://-a.b.co", pytest.param("foo.com", marks=pytest.mark.xfail()), From db7b9938a40830f95f3674c00f122f90805b4f5a Mon Sep 17 00:00:00 2001 From: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> Date: Tue, 16 Aug 2022 11:23:34 -0400 Subject: [PATCH 104/138] Docs: displaCy documentation - data types, `parse_{deps,ents,spans}`, spans example (#10950) * add in spans example and parse references * rm autoformatter * rm extra ents copy * TypedDict draft * type fixes * restore non-documentation files * docs update * fix spans example * fix hyperlinks * add parse example * example fix + argument fix * fix api arg in docs * fix bad variable replacement * fix spacing in style Co-authored-by: Sofie Van Landeghem * fix spacing on table * fix spacing on table * rm temp files Co-authored-by: Sofie Van Landeghem --- spacy/displacy/__init__.py | 5 ++- website/docs/api/top-level.md | 71 ++++++++++++++++++++++++++++++- website/docs/usage/visualizers.md | 39 ++++++++++++++--- 3 files changed, 104 insertions(+), 11 deletions(-) diff --git a/spacy/displacy/__init__.py b/spacy/displacy/__init__.py index 5d49b6eb7..7bb300afa 100644 --- a/spacy/displacy/__init__.py +++ b/spacy/displacy/__init__.py @@ -123,7 +123,8 @@ def app(environ, start_response): def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]: """Generate dependency parse in {'words': [], 'arcs': []} format. - doc (Doc): Document do parse. + orig_doc (Doc): Document to parse. + options (Dict[str, Any]): Dependency parse specific visualisation options. RETURNS (dict): Generated dependency parse keyed by words and arcs. """ doc = Doc(orig_doc.vocab).from_bytes( @@ -209,7 +210,7 @@ def parse_ents(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]: def parse_spans(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]: - """Generate spans in [{start: i, end: i, label: 'label'}] format. + """Generate spans in [{start_token: i, end_token: i, label: 'label'}] format. doc (Doc): Document to parse. options (Dict[str, any]): Span-specific visualisation options. diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index c96c571e9..1e1925442 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -240,7 +240,7 @@ browser. Will run a simple web server. | Name | Description | | --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ | -| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ | +| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ | | `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ | | `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ | | `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ | @@ -265,7 +265,7 @@ Render a dependency parse tree or named entity visualization. | Name | Description | | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ | -| `style` | Visualization style,`"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ | +| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ | | `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ | | `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ | | `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ | @@ -273,6 +273,73 @@ Render a dependency parse tree or named entity visualization. | `jupyter` | Explicitly enable or disable "[Jupyter](http://jupyter.org/) mode" to return markup ready to be rendered in a notebook. Detected automatically if `None` (default). ~~Optional[bool]~~ | | **RETURNS** | The rendered HTML markup. ~~str~~ | +### displacy.parse_deps {#displacy.parse_deps tag="method" new="2"} + +Generate dependency parse in `{'words': [], 'arcs': []}` format. +For use with the `manual=True` argument in `displacy.render`. + +> #### Example +> +> ```python +> import spacy +> from spacy import displacy +> nlp = spacy.load("en_core_web_sm") +> doc = nlp("This is a sentence.") +> deps_parse = displacy.parse_deps(doc) +> html = displacy.render(deps_parse, style="dep", manual=True) +> ``` + +| Name | Description | +| ----------- | ------------------------------------------------------------------- | +| `orig_doc` | Doc to parse dependencies. ~~Doc~~ | +| `options` | Dependency parse specific visualisation options. ~~Dict[str, Any]~~ | +| **RETURNS** | Generated dependency parse keyed by words and arcs. ~~dict~~ | + +### displacy.parse_ents {#displacy.parse_ents tag="method" new="2"} + +Generate named entities in `[{start: i, end: i, label: 'label'}]` format. +For use with the `manual=True` argument in `displacy.render`. + +> #### Example +> +> ```python +> import spacy +> from spacy import displacy +> nlp = spacy.load("en_core_web_sm") +> doc = nlp("But Google is starting from behind.") +> ents_parse = displacy.parse_ents(doc) +> html = displacy.render(ents_parse, style="ent", manual=True) +> ``` + +| Name | Description | +| ----------- | ------------------------------------------------------------------- | +| `doc` | Doc to parse entities. ~~Doc~~ | +| `options` | NER-specific visualisation options. ~~Dict[str, Any]~~ | +| **RETURNS** | Generated entities keyed by text (original text) and ents. ~~dict~~ | + +### displacy.parse_spans {#displacy.parse_spans tag="method" new="2"} + +Generate spans in `[{start_token: i, end_token: i, label: 'label'}]` format. +For use with the `manual=True` argument in `displacy.render`. + +> #### Example +> +> ```python +> import spacy +> from spacy import displacy +> nlp = spacy.load("en_core_web_sm") +> doc = nlp("But Google is starting from behind.") +> doc.spans['orgs'] = [doc[1:2]] +> ents_parse = displacy.parse_spans(doc, options={"spans_key" : "orgs"}) +> html = displacy.render(ents_parse, style="span", manual=True) +> ``` + +| Name | Description | +| ----------- | ------------------------------------------------------------------- | +| `doc` | Doc to parse entities. ~~Doc~~ | +| `options` | Span-specific visualisation options. ~~Dict[str, Any]~~ | +| **RETURNS** | Generated entities keyed by text (original text) and ents. ~~dict~~ | + ### Visualizer options {#displacy_options} The `options` argument lets you specify additional settings for each visualizer. diff --git a/website/docs/usage/visualizers.md b/website/docs/usage/visualizers.md index d2892b863..da847d939 100644 --- a/website/docs/usage/visualizers.md +++ b/website/docs/usage/visualizers.md @@ -198,12 +198,12 @@ import DisplacySpanHtml from 'images/displacy-span.html' The span visualizer lets you customize the following `options`: -| Argument | Description | -|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| -| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ | +| Argument | Description | +| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ | | `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ | -| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ | -| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | +| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ | +| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | Because spans can be stored across different keys in `doc.spans`, you need to specify which one displaCy should use with `spans_key` (`sc` is the default). @@ -343,9 +343,21 @@ want to visualize output from other libraries, like [NLTK](http://www.nltk.org) or [SyntaxNet](https://github.com/tensorflow/models/tree/master/research/syntaxnet). If you set `manual=True` on either `render()` or `serve()`, you can pass in data -in displaCy's format as a dictionary (instead of `Doc` objects). +in displaCy's format as a dictionary (instead of `Doc` objects). There are helper +functions for converting `Doc` objects to displaCy's format for use with `manual=True`: +[`displacy.parse_deps`](/api/top-level#displacy.parse_deps), +[`displacy.parse_ents`](/api/top-level#displacy.parse_ents), +and [`displacy.parse_spans`](/api/top-level#displacy.parse_spans). -> #### Example +> #### Example with parse function +> +> ```python +> doc = nlp("But Google is starting from behind.") +> ex = displacy.parse_ents(doc) +> html = displacy.render(ex, style="ent", manual=True) +> ``` + +> #### Example with raw data > > ```python > ex = [{"text": "But Google is starting from behind.", @@ -354,6 +366,7 @@ in displaCy's format as a dictionary (instead of `Doc` objects). > html = displacy.render(ex, style="ent", manual=True) > ``` + ```python ### DEP input { @@ -389,6 +402,18 @@ in displaCy's format as a dictionary (instead of `Doc` objects). } ``` +```python +### SPANS input +{ + "text": "Welcome to the Bank of China.", + "spans": [ + {"start_token": 3, "end_token": 6, "label": "ORG"}, + {"start_token": 5, "end_token": 6, "label": "GPE"}, + ], + "tokens": ["Welcome", "to", "the", "Bank", "of", "China", "."], +} +``` + ## Using displaCy in a web application {#webapp} If you want to use the visualizers as part of a web application, for example to From d757dec5c4fc7618dac7a7831504f7611ff75eb4 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Wed, 17 Aug 2022 12:13:54 +0200 Subject: [PATCH 105/138] Remove intify_attrs(_do_deprecated) (#11319) --- spacy/attrs.pyx | 71 +--------------------------------- spacy/tests/lang/test_attrs.py | 8 ---- spacy/tokenizer.pyx | 4 +- spacy/vocab.pyx | 3 +- 4 files changed, 4 insertions(+), 82 deletions(-) diff --git a/spacy/attrs.pyx b/spacy/attrs.pyx index dc8eed7c3..7b6fd9e94 100644 --- a/spacy/attrs.pyx +++ b/spacy/attrs.pyx @@ -97,7 +97,7 @@ NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])] locals().update(IDS) -def intify_attrs(stringy_attrs, strings_map=None, _do_deprecated=False): +def intify_attrs(stringy_attrs, strings_map=None): """ Normalize a dictionary of attributes, converting them to ints. @@ -109,75 +109,6 @@ def intify_attrs(stringy_attrs, strings_map=None, _do_deprecated=False): converted to ints. """ inty_attrs = {} - if _do_deprecated: - if "F" in stringy_attrs: - stringy_attrs["ORTH"] = stringy_attrs.pop("F") - if "L" in stringy_attrs: - stringy_attrs["LEMMA"] = stringy_attrs.pop("L") - if "pos" in stringy_attrs: - stringy_attrs["TAG"] = stringy_attrs.pop("pos") - if "morph" in stringy_attrs: - morphs = stringy_attrs.pop("morph") - if "number" in stringy_attrs: - stringy_attrs.pop("number") - if "tenspect" in stringy_attrs: - stringy_attrs.pop("tenspect") - morph_keys = [ - "PunctType", - "PunctSide", - "Other", - "Degree", - "AdvType", - "Number", - "VerbForm", - "PronType", - "Aspect", - "Tense", - "PartType", - "Poss", - "Hyph", - "ConjType", - "NumType", - "Foreign", - "VerbType", - "NounType", - "Gender", - "Mood", - "Negative", - "Tense", - "Voice", - "Abbr", - "Derivation", - "Echo", - "Foreign", - "NameType", - "NounType", - "NumForm", - "NumValue", - "PartType", - "Polite", - "StyleVariant", - "PronType", - "AdjType", - "Person", - "Variant", - "AdpType", - "Reflex", - "Negative", - "Mood", - "Aspect", - "Case", - "Polarity", - "PrepCase", - "Animacy", # U20 - ] - for key in morph_keys: - if key in stringy_attrs: - stringy_attrs.pop(key) - elif key.lower() in stringy_attrs: - stringy_attrs.pop(key.lower()) - elif key.upper() in stringy_attrs: - stringy_attrs.pop(key.upper()) for name, value in stringy_attrs.items(): int_key = intify_attr(name) if int_key is not None: diff --git a/spacy/tests/lang/test_attrs.py b/spacy/tests/lang/test_attrs.py index 1c27c1744..1e1bae08c 100644 --- a/spacy/tests/lang/test_attrs.py +++ b/spacy/tests/lang/test_attrs.py @@ -26,14 +26,6 @@ def test_attrs_idempotence(text): assert intify_attrs(int_attrs) == {LEMMA: 10, IS_ALPHA: True} -@pytest.mark.parametrize("text", ["dog"]) -def test_attrs_do_deprecated(text): - int_attrs = intify_attrs( - {"F": text, "is_alpha": True}, strings_map={text: 10}, _do_deprecated=True - ) - assert int_attrs == {ORTH: 10, IS_ALPHA: True} - - def test_attrs_ent_iob_intify(): int_attrs = intify_attrs({"ENT_IOB": ""}) assert int_attrs == {ENT_IOB: 0} diff --git a/spacy/tokenizer.pyx b/spacy/tokenizer.pyx index 0e75b5f7a..972633a2f 100644 --- a/spacy/tokenizer.pyx +++ b/spacy/tokenizer.pyx @@ -582,7 +582,7 @@ cdef class Tokenizer: substrings (iterable): A sequence of dicts, where each dict describes a token and its attributes. """ - attrs = [intify_attrs(spec, _do_deprecated=True) for spec in substrings] + attrs = [intify_attrs(spec) for spec in substrings] orth = "".join([spec[ORTH] for spec in attrs]) if chunk != orth: raise ValueError(Errors.E997.format(chunk=chunk, orth=orth, token_attrs=substrings)) @@ -650,7 +650,7 @@ cdef class Tokenizer: url_match = re.compile("a^").match special_cases = {} for orth, special_tokens in self.rules.items(): - special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens] + special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings) for special_token in special_tokens] tokens = [] for substring in text.split(): suffixes = [] diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index 428cadd82..af7d97933 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -268,8 +268,7 @@ cdef class Vocab: cdef int i tokens = self.mem.alloc(len(substrings) + 1, sizeof(TokenC)) for i, props in enumerate(substrings): - props = intify_attrs(props, strings_map=self.strings, - _do_deprecated=True) + props = intify_attrs(props, strings_map=self.strings) token = &tokens[i] # Set the special tokens up to have arbitrary attributes lex = self.get_by_orth(self.mem, props[ORTH]) From cab263791ff25a713bd2a0e72759fa48aff36b9f Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Wed, 17 Aug 2022 19:55:54 +0200 Subject: [PATCH 106/138] include span_ruler for default warning filter (#11333) --- spacy/errors.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index fd412a4da..9a679ae2c 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -16,8 +16,8 @@ def setup_default_warnings(): filter_warning("ignore", error_msg="numpy.dtype size changed") # noqa filter_warning("ignore", error_msg="numpy.ufunc size changed") # noqa - # warn about entity_ruler & matcher having no patterns only once - for pipe in ["matcher", "entity_ruler"]: + # warn about entity_ruler, span_ruler & matcher having no patterns only once + for pipe in ["matcher", "entity_ruler", "span_ruler"]: filter_warning("once", error_msg=Warnings.W036.format(name=pipe)) # warn once about lemmatizer without required POS From 09b3118b26520786db5fee468008be4f0653614d Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 18 Aug 2022 14:04:57 +0200 Subject: [PATCH 107/138] Add uk pipelines to website (#11332) --- website/meta/languages.json | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/website/meta/languages.json b/website/meta/languages.json index 6bc2309ed..87c91f791 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -467,10 +467,20 @@ "code": "uk", "name": "Ukrainian", "has_examples": true, + "models": [ + "uk_core_news_sm", + "uk_core_news_md", + "uk_core_news_lg", + "uk_core_news_trf" + ], "dependencies": [ { "name": "pymorphy2", "url": "https://github.com/kmike/pymorphy2" + }, + { + "name": "pymorphy2-dicts-uk", + "url": "https://github.com/kmike/pymorphy2-dicts/" } ] }, From 3e4cf1bbe1745a55ede0dece31353aebc3f82729 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 19 Aug 2022 09:52:12 +0200 Subject: [PATCH 108/138] Check for . in factory names (#11336) --- spacy/errors.py | 2 ++ spacy/language.py | 9 +++++++-- spacy/tests/test_language.py | 11 +++++++++++ 3 files changed, 20 insertions(+), 2 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index 9a679ae2c..40e50aaa9 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -540,6 +540,8 @@ class Errors(metaclass=ErrorsWithCodes): E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.") # New errors added in v3.x + E853 = ("Unsupported component factory name '{name}'. The character '.' is " + "not permitted in factory names.") E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not " "permit overlapping spans.") E855 = ("Invalid {obj}: {obj} is not from the same doc.") diff --git a/spacy/language.py b/spacy/language.py index 816bd6531..e89ae142b 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -465,6 +465,8 @@ class Language: """ if not isinstance(name, str): raise ValueError(Errors.E963.format(decorator="factory")) + if "." in name: + raise ValueError(Errors.E853.format(name=name)) if not isinstance(default_config, dict): err = Errors.E962.format( style="default config", name=name, cfg_type=type(default_config) @@ -543,8 +545,11 @@ class Language: DOCS: https://spacy.io/api/language#component """ - if name is not None and not isinstance(name, str): - raise ValueError(Errors.E963.format(decorator="component")) + if name is not None: + if not isinstance(name, str): + raise ValueError(Errors.E963.format(decorator="component")) + if "." in name: + raise ValueError(Errors.E853.format(name=name)) component_name = name if name is not None else util.get_object_name(func) def add_component(component_func: "Pipe") -> Callable: diff --git a/spacy/tests/test_language.py b/spacy/tests/test_language.py index c5fdc8eb0..6f3ba8acc 100644 --- a/spacy/tests/test_language.py +++ b/spacy/tests/test_language.py @@ -659,3 +659,14 @@ def test_multiprocessing_gpu_warning(nlp2, texts): # Trigger multi-processing. for _ in docs: pass + + +def test_dot_in_factory_names(nlp): + Language.component("my_evil_component", func=evil_component) + nlp.add_pipe("my_evil_component") + + with pytest.raises(ValueError, match="not permitted"): + Language.component("my.evil.component.v1", func=evil_component) + + with pytest.raises(ValueError, match="not permitted"): + Language.factory("my.evil.component.v1", func=evil_component) From 5fa8f4faca966fe58c5c8de861900724c7659f25 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 22 Aug 2022 11:27:14 +0200 Subject: [PATCH 109/138] Switch ru and uk lemmatizers to pymorphy3 (#11345) * Switch ru and uk lemmatizers to pymorphy3 * Switch to pymorphy3 in tests --- spacy/lang/ru/__init__.py | 2 +- spacy/lang/ru/lemmatizer.py | 15 ++++++++++++++- spacy/lang/uk/__init__.py | 2 +- spacy/lang/uk/lemmatizer.py | 13 ++++++++++++- spacy/tests/conftest.py | 10 +++++----- website/docs/api/lemmatizer.md | 6 +++--- website/meta/languages.json | 8 ++++---- 7 files changed, 40 insertions(+), 16 deletions(-) diff --git a/spacy/lang/ru/__init__.py b/spacy/lang/ru/__init__.py index c118c26ff..7d17628c4 100644 --- a/spacy/lang/ru/__init__.py +++ b/spacy/lang/ru/__init__.py @@ -28,7 +28,7 @@ class Russian(Language): assigns=["token.lemma"], default_config={ "model": None, - "mode": "pymorphy2", + "mode": "pymorphy3", "overwrite": False, "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, }, diff --git a/spacy/lang/ru/lemmatizer.py b/spacy/lang/ru/lemmatizer.py index 85180b1e4..720d3a8cb 100644 --- a/spacy/lang/ru/lemmatizer.py +++ b/spacy/lang/ru/lemmatizer.py @@ -19,7 +19,7 @@ class RussianLemmatizer(Lemmatizer): model: Optional[Model], name: str = "lemmatizer", *, - mode: str = "pymorphy2", + mode: str = "pymorphy3", overwrite: bool = False, scorer: Optional[Callable] = lemmatizer_score, ) -> None: @@ -33,6 +33,16 @@ class RussianLemmatizer(Lemmatizer): ) from None if getattr(self, "_morph", None) is None: self._morph = MorphAnalyzer() + elif mode == "pymorphy3": + try: + from pymorphy3 import MorphAnalyzer + except ImportError: + raise ImportError( + "The Russian lemmatizer mode 'pymorphy3' requires the " + "pymorphy3 library. Install it with: pip install pymorphy3" + ) from None + if getattr(self, "_morph", None) is None: + self._morph = MorphAnalyzer() super().__init__( vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer ) @@ -104,6 +114,9 @@ class RussianLemmatizer(Lemmatizer): return [analyses[0].normal_form] return [string] + def pymorphy3_lemmatize(self, token: Token) -> List[str]: + return self.pymorphy2_lemmatize(token) + def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]: gram_map = { diff --git a/spacy/lang/uk/__init__.py b/spacy/lang/uk/__init__.py index 737243b66..bfea9ff69 100644 --- a/spacy/lang/uk/__init__.py +++ b/spacy/lang/uk/__init__.py @@ -29,7 +29,7 @@ class Ukrainian(Language): assigns=["token.lemma"], default_config={ "model": None, - "mode": "pymorphy2", + "mode": "pymorphy3", "overwrite": False, "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, }, diff --git a/spacy/lang/uk/lemmatizer.py b/spacy/lang/uk/lemmatizer.py index a8bc56057..97ee80479 100644 --- a/spacy/lang/uk/lemmatizer.py +++ b/spacy/lang/uk/lemmatizer.py @@ -14,7 +14,7 @@ class UkrainianLemmatizer(RussianLemmatizer): model: Optional[Model], name: str = "lemmatizer", *, - mode: str = "pymorphy2", + mode: str = "pymorphy3", overwrite: bool = False, scorer: Optional[Callable] = lemmatizer_score, ) -> None: @@ -29,6 +29,17 @@ class UkrainianLemmatizer(RussianLemmatizer): ) from None if getattr(self, "_morph", None) is None: self._morph = MorphAnalyzer(lang="uk") + elif mode == "pymorphy3": + try: + from pymorphy3 import MorphAnalyzer + except ImportError: + raise ImportError( + "The Ukrainian lemmatizer mode 'pymorphy3' requires the " + "pymorphy3 library and dictionaries. Install them with: " + "pip install pymorphy3 pymorphy3-dicts-uk" + ) from None + if getattr(self, "_morph", None) is None: + self._morph = MorphAnalyzer(lang="uk") super().__init__( vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer ) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index eb643ec2f..76de8f373 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -323,13 +323,13 @@ def ro_tokenizer(): @pytest.fixture(scope="session") def ru_tokenizer(): - pytest.importorskip("pymorphy2") + pytest.importorskip("pymorphy3") return get_lang_class("ru")().tokenizer @pytest.fixture def ru_lemmatizer(): - pytest.importorskip("pymorphy2") + pytest.importorskip("pymorphy3") return get_lang_class("ru")().add_pipe("lemmatizer") @@ -401,14 +401,14 @@ def ky_tokenizer(): @pytest.fixture(scope="session") def uk_tokenizer(): - pytest.importorskip("pymorphy2") + pytest.importorskip("pymorphy3") return get_lang_class("uk")().tokenizer @pytest.fixture def uk_lemmatizer(): - pytest.importorskip("pymorphy2") - pytest.importorskip("pymorphy2_dicts_uk") + pytest.importorskip("pymorphy3") + pytest.importorskip("pymorphy3_dicts_uk") return get_lang_class("uk")().add_pipe("lemmatizer") diff --git a/website/docs/api/lemmatizer.md b/website/docs/api/lemmatizer.md index 422f34040..905096338 100644 --- a/website/docs/api/lemmatizer.md +++ b/website/docs/api/lemmatizer.md @@ -70,7 +70,7 @@ lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require [`token.pos`](/api/token) from a previous pipeline component (see example pipeline configurations in the [pretrained pipeline design details](/models#design-cnn)) or rely on third-party -libraries (`pymorphy2`). +libraries (`pymorphy3`). | Language | Default Mode | | -------- | ------------ | @@ -86,9 +86,9 @@ libraries (`pymorphy2`). | `nb` | `rule` | | `nl` | `rule` | | `pl` | `pos_lookup` | -| `ru` | `pymorphy2` | +| `ru` | `pymorphy3` | | `sv` | `rule` | -| `uk` | `pymorphy2` | +| `uk` | `pymorphy3` | ```python %%GITHUB_SPACY/spacy/pipeline/lemmatizer.py diff --git a/website/meta/languages.json b/website/meta/languages.json index 6bc2309ed..5305ceffc 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -369,8 +369,8 @@ "has_examples": true, "dependencies": [ { - "name": "pymorphy2", - "url": "https://github.com/kmike/pymorphy2" + "name": "pymorphy3", + "url": "https://github.com/no-plagiarism/pymorphy3" } ], "models": [ @@ -469,8 +469,8 @@ "has_examples": true, "dependencies": [ { - "name": "pymorphy2", - "url": "https://github.com/kmike/pymorphy2" + "name": "pymorphy3", + "url": "https://github.com/no-plagiarism/pymorphy3" } ] }, From 04c6e5cb9526c3ac3ce395be7de5fa607ddefe4b Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 22 Aug 2022 11:28:13 +0200 Subject: [PATCH 110/138] Improve floret vectors display in pipeline docs (#11343) --- website/src/templates/models.js | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/website/src/templates/models.js b/website/src/templates/models.js index 69cec3376..df53f8c3c 100644 --- a/website/src/templates/models.js +++ b/website/src/templates/models.js @@ -114,7 +114,11 @@ function formatVectors(data) { if (!data) return 'n/a' if (Object.values(data).every(n => n === 0)) return 'context vectors only' const { keys, vectors, width } = data - return `${abbrNum(keys)} keys, ${abbrNum(vectors)} unique vectors (${width} dimensions)` + if (keys >= 0) { + return `${abbrNum(keys)} keys, ${abbrNum(vectors)} unique vectors (${width} dimensions)` + } else { + return `${abbrNum(vectors)} floret vectors (${width} dimensions)` + } } function formatAccuracy(data, lang) { From 0f07defe2ca0ba7a726aafb4a30c89627510bae1 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Mon, 22 Aug 2022 18:29:05 +0900 Subject: [PATCH 111/138] Remove reference to voting on issue (#11335) Not clear which issue this refers to, we don't suggest this for any other issues, and we don't use votes in general. --- spacy/errors.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index 40e50aaa9..a1420c8fc 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -535,8 +535,7 @@ class Errors(metaclass=ErrorsWithCodes): E198 = ("Unable to return {n} most similar vectors for the current vectors " "table, which contains {n_rows} vectors.") E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.") - E200 = ("Can't yet set {attr} from Span. Vote for this feature on the " - "issue tracker: http://github.com/explosion/spaCy/issues") + E200 = ("Can't set {attr} from Span.") E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.") # New errors added in v3.x From f55bb7470d2f7267937d8491ae6651fbcf505094 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 22 Aug 2022 12:04:30 +0200 Subject: [PATCH 112/138] Clean up warnings in the test suite (#11331) --- .github/azure-steps.yml | 4 ++-- spacy/tests/doc/test_doc_api.py | 5 +++-- spacy/tests/lang/ru/test_lemmatizer.py | 3 +++ spacy/tests/lang/uk/test_lemmatizer.py | 4 ++++ spacy/tests/matcher/test_phrase_matcher.py | 9 +++++---- spacy/tests/pipeline/test_entity_linker.py | 4 ++++ spacy/training/initialize.py | 2 ++ 7 files changed, 23 insertions(+), 8 deletions(-) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index aae08c7f3..18224ba8c 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -54,12 +54,12 @@ steps: condition: eq(${{ parameters.gpu }}, true) - script: | - ${{ parameters.prefix }} python -m pytest --pyargs spacy + ${{ parameters.prefix }} python -m pytest --pyargs spacy -W error displayName: "Run CPU tests" condition: eq(${{ parameters.gpu }}, false) - script: | - ${{ parameters.prefix }} python -m pytest --pyargs spacy -p spacy.tests.enable_gpu + ${{ parameters.prefix }} python -m pytest --pyargs spacy -W error -p spacy.tests.enable_gpu displayName: "Run GPU tests" condition: eq(${{ parameters.gpu }}, true) diff --git a/spacy/tests/doc/test_doc_api.py b/spacy/tests/doc/test_doc_api.py index dd4942989..a64ab2ba8 100644 --- a/spacy/tests/doc/test_doc_api.py +++ b/spacy/tests/doc/test_doc_api.py @@ -3,6 +3,7 @@ import weakref import numpy from numpy.testing import assert_array_equal import pytest +import warnings from thinc.api import NumpyOps, get_current_ops from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS @@ -529,9 +530,9 @@ def test_doc_from_array_sent_starts(en_vocab): # no warning using default attrs attrs = doc._get_array_attrs() arr = doc.to_array(attrs) - with pytest.warns(None) as record: + with warnings.catch_warnings(): + warnings.simplefilter("error") new_doc.from_array(attrs, arr) - assert len(record) == 0 # only SENT_START uses SENT_START attrs = [SENT_START] arr = doc.to_array(attrs) diff --git a/spacy/tests/lang/ru/test_lemmatizer.py b/spacy/tests/lang/ru/test_lemmatizer.py index 3810323bf..9ca7f441b 100644 --- a/spacy/tests/lang/ru/test_lemmatizer.py +++ b/spacy/tests/lang/ru/test_lemmatizer.py @@ -2,6 +2,9 @@ import pytest from spacy.tokens import Doc +pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning") + + def test_ru_doc_lemmatization(ru_lemmatizer): words = ["мама", "мыла", "раму"] pos = ["NOUN", "VERB", "NOUN"] diff --git a/spacy/tests/lang/uk/test_lemmatizer.py b/spacy/tests/lang/uk/test_lemmatizer.py index 4a787b2a6..57dd4198a 100644 --- a/spacy/tests/lang/uk/test_lemmatizer.py +++ b/spacy/tests/lang/uk/test_lemmatizer.py @@ -1,6 +1,10 @@ +import pytest from spacy.tokens import Doc +pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning") + + def test_uk_lemmatizer(uk_lemmatizer): """Check that the default uk lemmatizer runs.""" doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"]) diff --git a/spacy/tests/matcher/test_phrase_matcher.py b/spacy/tests/matcher/test_phrase_matcher.py index 3b24f3ba8..8a8d9eb84 100644 --- a/spacy/tests/matcher/test_phrase_matcher.py +++ b/spacy/tests/matcher/test_phrase_matcher.py @@ -1,4 +1,5 @@ import pytest +import warnings import srsly from mock import Mock @@ -344,13 +345,13 @@ def test_phrase_matcher_validation(en_vocab): matcher.add("TEST1", [doc1]) with pytest.warns(UserWarning): matcher.add("TEST2", [doc2]) - with pytest.warns(None) as record: + with warnings.catch_warnings(): + warnings.simplefilter("error") matcher.add("TEST3", [doc3]) - assert not record.list matcher = PhraseMatcher(en_vocab, attr="POS", validate=True) - with pytest.warns(None) as record: + with warnings.catch_warnings(): + warnings.simplefilter("error") matcher.add("TEST4", [doc2]) - assert not record.list def test_attr_validation(en_vocab): diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index 14995d7b8..82bc976bb 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -1048,6 +1048,10 @@ def test_no_gold_ents(patterns): for eg in train_examples: eg.predicted = ruler(eg.predicted) + # Entity ruler is no longer needed (initialization below wipes out the + # patterns and causes warnings) + nlp.remove_pipe("entity_ruler") + def create_kb(vocab): # create artificial KB mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index 48ff7b589..6304e4a84 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -337,3 +337,5 @@ def ensure_shape(vectors_loc): # store all the results in a list in memory lines2 = open_file(vectors_loc) yield from lines2 + lines2.close() + lines.close() From 1a5be637150cfa10253456fba277801c711118a1 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Mon, 22 Aug 2022 15:52:24 +0200 Subject: [PATCH 113/138] Cleanup Cython structs (#11337) * cleanup Tokenizer fields * remove unused object from vocab * remove IS_OOV_DEPRECATED * add back in as FLAG13 * FLAG 18 instead * import fix * fix clumpsy fingers * revert symbol changes in favor of #11352 * bint instead of bool --- spacy/tokenizer.pxd | 6 +----- spacy/tokenizer.pyx | 9 ++++----- spacy/vocab.pxd | 1 - spacy/vocab.pyi | 1 - spacy/vocab.pyx | 7 ++----- 5 files changed, 7 insertions(+), 17 deletions(-) diff --git a/spacy/tokenizer.pxd b/spacy/tokenizer.pxd index e6a072053..86e62ddbf 100644 --- a/spacy/tokenizer.pxd +++ b/spacy/tokenizer.pxd @@ -23,11 +23,7 @@ cdef class Tokenizer: cdef object _infix_finditer cdef object _rules cdef PhraseMatcher _special_matcher - # TODO convert to bool in v4 - cdef int _faster_heuristics - # TODO next one is unused and should be removed in v4 - # https://github.com/explosion/spaCy/pull/9150 - cdef int _unused_int2 + cdef bint _faster_heuristics cdef Doc _tokenize_affixes(self, str string, bint with_special_cases) cdef int _apply_special_cases(self, Doc doc) except -1 diff --git a/spacy/tokenizer.pyx b/spacy/tokenizer.pyx index 972633a2f..49ce6171a 100644 --- a/spacy/tokenizer.pyx +++ b/spacy/tokenizer.pyx @@ -8,7 +8,6 @@ from preshed.maps cimport PreshMap cimport cython import re -import warnings from .tokens.doc cimport Doc from .strings cimport hash_string @@ -16,9 +15,9 @@ from .lexeme cimport EMPTY_LEXEME from .attrs import intify_attrs from .symbols import ORTH, NORM -from .errors import Errors, Warnings +from .errors import Errors from . import util -from .util import registry, get_words_and_spaces +from .util import get_words_and_spaces from .attrs import intify_attrs from .symbols import ORTH from .scorer import Scorer @@ -128,10 +127,10 @@ cdef class Tokenizer: property faster_heuristics: def __get__(self): - return bool(self._faster_heuristics) + return self._faster_heuristics def __set__(self, faster_heuristics): - self._faster_heuristics = bool(faster_heuristics) + self._faster_heuristics = faster_heuristics self._reload_special_cases() def __reduce__(self): diff --git a/spacy/vocab.pxd b/spacy/vocab.pxd index 9c951b2b7..815de0765 100644 --- a/spacy/vocab.pxd +++ b/spacy/vocab.pxd @@ -32,7 +32,6 @@ cdef class Vocab: cdef public object writing_system cdef public object get_noun_chunks cdef readonly int length - cdef public object _unused_object # TODO remove in v4, see #9150 cdef public object lex_attr_getters cdef public object cfg diff --git a/spacy/vocab.pyi b/spacy/vocab.pyi index 4cc359c47..41964703b 100644 --- a/spacy/vocab.pyi +++ b/spacy/vocab.pyi @@ -72,7 +72,6 @@ def unpickle_vocab( sstore: StringStore, vectors: Any, morphology: Any, - _unused_object: Any, lex_attr_getters: Any, lookups: Any, get_noun_chunks: Any, diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index af7d97933..d780dec0d 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -558,21 +558,18 @@ def pickle_vocab(vocab): sstore = vocab.strings vectors = vocab.vectors morph = vocab.morphology - _unused_object = vocab._unused_object lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters) lookups = vocab.lookups get_noun_chunks = vocab.get_noun_chunks return (unpickle_vocab, - (sstore, vectors, morph, _unused_object, lex_attr_getters, lookups, get_noun_chunks)) + (sstore, vectors, morph, lex_attr_getters, lookups, get_noun_chunks)) -def unpickle_vocab(sstore, vectors, morphology, _unused_object, - lex_attr_getters, lookups, get_noun_chunks): +def unpickle_vocab(sstore, vectors, morphology, lex_attr_getters, lookups, get_noun_chunks): cdef Vocab vocab = Vocab() vocab.vectors = vectors vocab.strings = sstore vocab.morphology = morphology - vocab._unused_object = _unused_object vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters) vocab.lookups = lookups vocab.get_noun_chunks = get_noun_chunks From 6e20842370bf9ed33b184013241c42f3d2f2a321 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Mon, 22 Aug 2022 15:52:53 +0200 Subject: [PATCH 114/138] dev docs: numeric comparators (#11334) * add section on numeric comparators * edit * prettier * Update extra/DEVELOPER_DOCS/Code Conventions.md Co-authored-by: Adriane Boyd * note on typing imports Co-authored-by: Adriane Boyd --- extra/DEVELOPER_DOCS/Code Conventions.md | 25 +++++++++++++++++++++++- 1 file changed, 24 insertions(+), 1 deletion(-) diff --git a/extra/DEVELOPER_DOCS/Code Conventions.md b/extra/DEVELOPER_DOCS/Code Conventions.md index 31a87d362..7294ac38b 100644 --- a/extra/DEVELOPER_DOCS/Code Conventions.md +++ b/extra/DEVELOPER_DOCS/Code Conventions.md @@ -191,6 +191,8 @@ def load_model(name: str) -> "Language": ... ``` +Note that we typically put the `from typing` import statements on the first line(s) of the Python module. + ## Structuring logic ### Positional and keyword arguments @@ -275,6 +277,27 @@ If you have to use `try`/`except`, make sure to only include what's **absolutely + return [v.strip() for v in value.split(",")] ``` +### Numeric comparisons + +For numeric comparisons, as a general rule we always use `<` and `>=` and avoid the usage of `<=` and `>`. This is to ensure we consistently +apply inclusive lower bounds and exclusive upper bounds, helping to prevent off-by-one errors. + +One exception to this rule is the ternary case. With a chain like + +```python +if value >= 0 and value < max: + ... +``` + +it's fine to rewrite this to the shorter form + +```python +if 0 <= value < max: + ... +``` + +even though this requires the usage of the `<=` operator. + ### Iteration and comprehensions We generally avoid using built-in functions like `filter` or `map` in favor of list or generator comprehensions. @@ -451,7 +474,7 @@ spaCy uses the [`pytest`](http://doc.pytest.org/) framework for testing. Tests f When adding tests, make sure to use descriptive names and only test for one behavior at a time. Tests should be grouped into modules dedicated to the same type of functionality and some test modules are organized as directories of test files related to the same larger area of the library, e.g. `matcher` or `tokenizer`. -Regression tests are tests that refer to bugs reported in specific issues. They should live in the relevant module of the test suite, named according to the issue number (e.g., `test_issue1234.py`), and [marked](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers) appropriately (e.g. `@pytest.mark.issue(1234)`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first. +Regression tests are tests that refer to bugs reported in specific issues. They should live in the relevant module of the test suite, named according to the issue number (e.g., `test_issue1234.py`), and [marked](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers) appropriately (e.g. `@pytest.mark.issue(1234)`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first. The test suite also provides [fixtures](https://github.com/explosion/spaCy/blob/master/spacy/tests/conftest.py) for different language tokenizers that can be used as function arguments of the same name and will be passed in automatically. Those should only be used for tests related to those specific languages. We also have [test utility functions](https://github.com/explosion/spaCy/blob/master/spacy/tests/util.py) for common operations, like creating a temporary file. From bb0e1788781af6dcb3ff53f169e4e2d0c9330247 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 22 Aug 2022 20:28:57 +0200 Subject: [PATCH 115/138] Make Span/Doc.ents more consistent for ent_kb_id and ent_id (#11328) * Map `Span.id` to `Token.ent_id` in all cases when setting `Doc.ents` * Reset `Token.ent_id` and `Token.ent_kb_id` when setting `Doc.ents` * Make `Span.ent_id` an alias of `Span.id` rather than a read-only view of the root token's `ent_id` annotation --- spacy/tests/doc/test_add_entities.py | 27 +++++++++++++++++ spacy/tests/doc/test_span.py | 20 ++++++++++++ spacy/tokens/doc.pyx | 12 ++++++-- spacy/tokens/span.pyi | 20 +++++++----- spacy/tokens/span.pyx | 37 +++++++++++------------ website/docs/api/span.md | 4 +-- website/docs/api/token.md | 4 +-- website/docs/usage/rule-based-matching.md | 6 ++-- 8 files changed, 94 insertions(+), 36 deletions(-) diff --git a/spacy/tests/doc/test_add_entities.py b/spacy/tests/doc/test_add_entities.py index 231b7c2a8..30d66115f 100644 --- a/spacy/tests/doc/test_add_entities.py +++ b/spacy/tests/doc/test_add_entities.py @@ -45,6 +45,33 @@ def test_ents_reset(en_vocab): assert [t.ent_iob_ for t in doc] == orig_iobs +def test_ents_clear(en_vocab): + """Ensure that removing entities clears token attributes""" + text = ["Louisiana", "Office", "of", "Conservation"] + doc = Doc(en_vocab, words=text) + entity = Span(doc, 0, 4, label=391, span_id="TEST") + doc.ents = [entity] + doc.ents = [] + for token in doc: + assert token.ent_iob == 2 + assert token.ent_type == 0 + assert token.ent_id == 0 + assert token.ent_kb_id == 0 + doc.ents = [entity] + doc.set_ents([], default="missing") + for token in doc: + assert token.ent_iob == 0 + assert token.ent_type == 0 + assert token.ent_id == 0 + assert token.ent_kb_id == 0 + doc.set_ents([], default="blocked") + for token in doc: + assert token.ent_iob == 3 + assert token.ent_type == 0 + assert token.ent_id == 0 + assert token.ent_kb_id == 0 + + def test_add_overlapping_entities(en_vocab): text = ["Louisiana", "Office", "of", "Conservation"] doc = Doc(en_vocab, words=text) diff --git a/spacy/tests/doc/test_span.py b/spacy/tests/doc/test_span.py index c6303c52d..1a2f3cdcd 100644 --- a/spacy/tests/doc/test_span.py +++ b/spacy/tests/doc/test_span.py @@ -692,3 +692,23 @@ def test_span_group_copy(doc): assert len(doc.spans["test"]) == 3 # check that the copy spans were not modified and this is an isolated doc assert len(doc_copy.spans["test"]) == 2 + + +@pytest.mark.issue(11113) +def test_span_ent_id(en_tokenizer): + doc = en_tokenizer("a b c d") + doc.ents = [Span(doc, 1, 3, label="A", span_id="ID0")] + span = doc.ents[0] + assert doc[1].ent_id_ == "ID0" + + # setting Span.id sets Token.ent_id + span.id_ = "ID1" + doc.ents = [span] + assert doc.ents[0].ent_id_ == "ID1" + assert doc[1].ent_id_ == "ID1" + + # Span.ent_id is an alias of Span.id + span.ent_id_ = "ID2" + doc.ents = [span] + assert doc.ents[0].ent_id_ == "ID2" + assert doc[1].ent_id_ == "ID2" diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index d9a104ac8..8432f7c60 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -808,27 +808,33 @@ cdef class Doc: self.c[i].ent_iob = 1 self.c[i].ent_type = span.label self.c[i].ent_kb_id = span.kb_id - # for backwards compatibility in v3, only set ent_id from - # span.id if it's set, otherwise don't override - self.c[i].ent_id = span.id if span.id else self.c[i].ent_id + self.c[i].ent_id = span.id for span in blocked: for i in range(span.start, span.end): self.c[i].ent_iob = 3 self.c[i].ent_type = 0 + self.c[i].ent_kb_id = 0 + self.c[i].ent_id = 0 for span in missing: for i in range(span.start, span.end): self.c[i].ent_iob = 0 self.c[i].ent_type = 0 + self.c[i].ent_kb_id = 0 + self.c[i].ent_id = 0 for span in outside: for i in range(span.start, span.end): self.c[i].ent_iob = 2 self.c[i].ent_type = 0 + self.c[i].ent_kb_id = 0 + self.c[i].ent_id = 0 # Set tokens outside of all provided spans if default != SetEntsDefault.unmodified: for i in range(self.length): if i not in seen_tokens: self.c[i].ent_type = 0 + self.c[i].ent_kb_id = 0 + self.c[i].ent_id = 0 if default == SetEntsDefault.outside: self.c[i].ent_iob = 2 elif default == SetEntsDefault.missing: diff --git a/spacy/tokens/span.pyi b/spacy/tokens/span.pyi index 617e3d19d..28b627c32 100644 --- a/spacy/tokens/span.pyi +++ b/spacy/tokens/span.pyi @@ -115,17 +115,23 @@ class Span: end: int start_char: int end_char: int - label: int - kb_id: int - ent_id: int - ent_id_: str + @property + def label(self) -> int: ... + @property + def kb_id(self) -> int: ... @property def id(self) -> int: ... @property - def id_(self) -> str: ... + def ent_id(self) -> int: ... @property def orth_(self) -> str: ... @property def lemma_(self) -> str: ... - label_: str - kb_id_: str + @property + def label_(self) -> str: ... + @property + def kb_id_(self) -> str: ... + @property + def id_(self) -> str: ... + @property + def ent_id_(self) -> str: ... diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index dd6ba99a8..89d9727e9 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -802,28 +802,18 @@ cdef class Span: property id: def __get__(self): - cdef SpanC* span_c = self.span_c() - return span_c.id + return self.span_c().id def __set__(self, attr_t id): - cdef SpanC* span_c = self.span_c() - span_c.id = id + self.span_c().id = id property ent_id: - """RETURNS (uint64): The entity ID.""" + """Alias for the span's ID.""" def __get__(self): - return self.root.ent_id + return self.id - def __set__(self, hash_t key): - raise NotImplementedError(Errors.E200.format(attr="ent_id")) - - property ent_id_: - """RETURNS (str): The (string) entity ID.""" - def __get__(self): - return self.root.ent_id_ - - def __set__(self, str key): - raise NotImplementedError(Errors.E200.format(attr="ent_id_")) + def __set__(self, attr_t ent_id): + self.id = ent_id @property def orth_(self): @@ -839,7 +829,7 @@ cdef class Span: return "".join([t.lemma_ + t.whitespace_ for t in self]).strip() property label_: - """RETURNS (str): The span's label.""" + """The span's label.""" def __get__(self): return self.doc.vocab.strings[self.label] @@ -847,7 +837,7 @@ cdef class Span: self.label = self.doc.vocab.strings.add(label_) property kb_id_: - """RETURNS (str): The span's KB ID.""" + """The span's KB ID.""" def __get__(self): return self.doc.vocab.strings[self.kb_id] @@ -855,13 +845,22 @@ cdef class Span: self.kb_id = self.doc.vocab.strings.add(kb_id_) property id_: - """RETURNS (str): The span's ID.""" + """The span's ID.""" def __get__(self): return self.doc.vocab.strings[self.id] def __set__(self, str id_): self.id = self.doc.vocab.strings.add(id_) + property ent_id_: + """Alias for the span's ID.""" + def __get__(self): + return self.id_ + + def __set__(self, str ent_id_): + self.id_ = ent_id_ + + cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1: # Don't allow spaces to be the root, if there are diff --git a/website/docs/api/span.md b/website/docs/api/span.md index 89f608994..be522c31f 100644 --- a/website/docs/api/span.md +++ b/website/docs/api/span.md @@ -561,8 +561,8 @@ overlaps with will be returned. | `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ | | `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ | | `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ | -| `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ | -| `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ | +| `ent_id` | Alias for `id`: the hash value of the span's ID. ~~int~~ | +| `ent_id_` | Alias for `id_`: the span's ID. ~~str~~ | | `id` | The hash value of the span's ID. ~~int~~ | | `id_` | The span's ID. ~~str~~ | | `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ | diff --git a/website/docs/api/token.md b/website/docs/api/token.md index d43cd3ff1..73447e4d3 100644 --- a/website/docs/api/token.md +++ b/website/docs/api/token.md @@ -425,8 +425,8 @@ The L2 norm of the token's vector representation. | `ent_iob_` | IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. ~~str~~ | | `ent_kb_id` 2.2 | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~int~~ | | `ent_kb_id_` 2.2 | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~str~~ | -| `ent_id` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~int~~ | -| `ent_id_` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~str~~ | +| `ent_id` | ID of the entity the token is an instance of, if any. ~~int~~ | +| `ent_id_` | ID of the entity the token is an instance of, if any. ~~str~~ | | `lemma` | Base form of the token, with no inflectional suffixes. ~~int~~ | | `lemma_` | Base form of the token, with no inflectional suffixes. ~~str~~ | | `norm` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~int~~ | diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md index f096890cb..bf1891df1 100644 --- a/website/docs/usage/rule-based-matching.md +++ b/website/docs/usage/rule-based-matching.md @@ -1367,14 +1367,14 @@ patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}, ruler.add_patterns(patterns) doc1 = nlp("Apple is opening its first big office in San Francisco.") -print([(ent.text, ent.label_, ent.ent_id_) for ent in doc1.ents]) +print([(ent.text, ent.label_, ent.id_) for ent in doc1.ents]) doc2 = nlp("Apple is opening its first big office in San Fran.") -print([(ent.text, ent.label_, ent.ent_id_) for ent in doc2.ents]) +print([(ent.text, ent.label_, ent.id_) for ent in doc2.ents]) ``` If the `id` attribute is included in the [`EntityRuler`](/api/entityruler) -patterns, the `ent_id_` property of the matched entity is set to the `id` given +patterns, the `id_` property of the matched entity is set to the `id` given in the patterns. So in the example above it's easy to identify that "San Francisco" and "San Fran" are both the same entity. From 7e75327893a60a2985de66bde73f3e1664cdf123 Mon Sep 17 00:00:00 2001 From: Tal Zussman <32444106+tzussman@users.noreply.github.com> Date: Tue, 23 Aug 2022 01:40:38 -0400 Subject: [PATCH 116/138] Fix menu order in linguistic-features.md (#11364) Swap 'Vectors & Similarity' and 'Mappings & Exceptions' in menu to match order in body --- website/docs/usage/linguistic-features.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/docs/usage/linguistic-features.md b/website/docs/usage/linguistic-features.md index 9dae6f2ee..82472c67e 100644 --- a/website/docs/usage/linguistic-features.md +++ b/website/docs/usage/linguistic-features.md @@ -11,8 +11,8 @@ menu: - ['Tokenization', 'tokenization'] - ['Merging & Splitting', 'retokenization'] - ['Sentence Segmentation', 'sbd'] - - ['Vectors & Similarity', 'vectors-similarity'] - ['Mappings & Exceptions', 'mappings-exceptions'] + - ['Vectors & Similarity', 'vectors-similarity'] - ['Language Data', 'language-data'] --- From 5afa98aabfc18a23f19b07b13e2cd12ddb6ee009 Mon Sep 17 00:00:00 2001 From: Edward <43848523+thomashacker@users.noreply.github.com> Date: Tue, 23 Aug 2022 10:05:02 +0200 Subject: [PATCH 117/138] Support custom attributes for tokens and spans in json conversion (#11125) * Add token and span custom attributes to to_json() * Change logic for to_json * Add functionality to from_json * Small adjustments * Move token/span attributes to new dict key * Fix test * Fix the same test but much better * Add backwards compatibility tests and adjust logic * Add test to check if attributes not set in underscore are not saved in the json * Add tests for json compatibility * Adjust test names * Fix tests and clean up code * Fix assert json tests * small adjustment * adjust naming and code readability * Adjust naming, added more tests and changed logic * Fix typo * Adjust errors, naming, and small test optimization * Fix byte tests * Fix bytes tests * Change naming and json structure * update schema * Update spacy/schemas.py Co-authored-by: Adriane Boyd * Update spacy/tokens/doc.pyx Co-authored-by: Adriane Boyd * Update spacy/tokens/doc.pyx Co-authored-by: Adriane Boyd * Update spacy/schemas.py Co-authored-by: Adriane Boyd * Update schema for underscore attributes * Adjust underscore schema * adjust schema tests Co-authored-by: Adriane Boyd --- spacy/errors.py | 2 +- spacy/schemas.py | 12 +- spacy/tests/doc/test_json_doc_conversion.py | 194 +++++++++++++++++++- spacy/tokens/doc.pyx | 59 ++++-- 4 files changed, 243 insertions(+), 24 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index a1420c8fc..608305a06 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -389,7 +389,7 @@ class Errors(metaclass=ErrorsWithCodes): "consider using doc.spans instead.") E106 = ("Can't find `doc._.{attr}` attribute specified in the underscore " "settings: {opts}") - E107 = ("Value of `doc._.{attr}` is not JSON-serializable: {value}") + E107 = ("Value of custom attribute `{attr}` is not JSON-serializable: {value}") E109 = ("Component '{name}' could not be run. Did you forget to " "call `initialize()`?") E110 = ("Invalid displaCy render wrapper. Expected callable, got: {obj}") diff --git a/spacy/schemas.py b/spacy/schemas.py index 9f91451a9..048082134 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -514,6 +514,14 @@ class DocJSONSchema(BaseModel): tokens: List[Dict[StrictStr, Union[StrictStr, StrictInt]]] = Field( ..., title="Token information - ID, start, annotations" ) - _: Optional[Dict[StrictStr, Any]] = Field( - None, title="Any custom data stored in the document's _ attribute" + underscore_doc: Optional[Dict[StrictStr, Any]] = Field( + None, + title="Any custom data stored in the document's _ attribute", + alias="_", + ) + underscore_token: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field( + None, title="Any custom data stored in the token's _ attribute" + ) + underscore_span: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field( + None, title="Any custom data stored in the span's _ attribute" ) diff --git a/spacy/tests/doc/test_json_doc_conversion.py b/spacy/tests/doc/test_json_doc_conversion.py index 85e4def29..0d7c061c9 100644 --- a/spacy/tests/doc/test_json_doc_conversion.py +++ b/spacy/tests/doc/test_json_doc_conversion.py @@ -1,12 +1,15 @@ import pytest import spacy from spacy import schemas -from spacy.tokens import Doc, Span +from spacy.tokens import Doc, Span, Token +import srsly +from .test_underscore import clean_underscore # noqa: F401 @pytest.fixture() def doc(en_vocab): words = ["c", "d", "e"] + spaces = [True, True, True] pos = ["VERB", "NOUN", "NOUN"] tags = ["VBP", "NN", "NN"] heads = [0, 0, 1] @@ -17,6 +20,7 @@ def doc(en_vocab): return Doc( en_vocab, words=words, + spaces=spaces, pos=pos, tags=tags, heads=heads, @@ -45,6 +49,47 @@ def doc_without_deps(en_vocab): ) +@pytest.fixture() +def doc_json(): + return { + "text": "c d e ", + "ents": [{"start": 2, "end": 3, "label": "ORG"}], + "sents": [{"start": 0, "end": 5}], + "tokens": [ + { + "id": 0, + "start": 0, + "end": 1, + "tag": "VBP", + "pos": "VERB", + "morph": "Feat1=A", + "dep": "ROOT", + "head": 0, + }, + { + "id": 1, + "start": 2, + "end": 3, + "tag": "NN", + "pos": "NOUN", + "morph": "Feat1=B", + "dep": "dobj", + "head": 0, + }, + { + "id": 2, + "start": 4, + "end": 5, + "tag": "NN", + "pos": "NOUN", + "morph": "Feat1=A|Feat2=D", + "dep": "dobj", + "head": 1, + }, + ], + } + + def test_doc_to_json(doc): json_doc = doc.to_json() assert json_doc["text"] == "c d e " @@ -56,7 +101,8 @@ def test_doc_to_json(doc): assert json_doc["ents"][0]["start"] == 2 # character offset! assert json_doc["ents"][0]["end"] == 3 # character offset! assert json_doc["ents"][0]["label"] == "ORG" - assert not schemas.validate(schemas.DocJSONSchema, json_doc) + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 + assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc def test_doc_to_json_underscore(doc): @@ -64,11 +110,96 @@ def test_doc_to_json_underscore(doc): Doc.set_extension("json_test2", default=False) doc._.json_test1 = "hello world" doc._.json_test2 = [1, 2, 3] + json_doc = doc.to_json(underscore=["json_test1", "json_test2"]) assert "_" in json_doc assert json_doc["_"]["json_test1"] == "hello world" assert json_doc["_"]["json_test2"] == [1, 2, 3] - assert not schemas.validate(schemas.DocJSONSchema, json_doc) + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 + assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc + + +def test_doc_to_json_with_token_span_attributes(doc): + Doc.set_extension("json_test1", default=False) + Doc.set_extension("json_test2", default=False) + Token.set_extension("token_test", default=False) + Span.set_extension("span_test", default=False) + + doc._.json_test1 = "hello world" + doc._.json_test2 = [1, 2, 3] + doc[0:1]._.span_test = "span_attribute" + doc[0]._.token_test = 117 + doc.spans["span_group"] = [doc[0:1]] + json_doc = doc.to_json( + underscore=["json_test1", "json_test2", "token_test", "span_test"] + ) + + assert "_" in json_doc + assert json_doc["_"]["json_test1"] == "hello world" + assert json_doc["_"]["json_test2"] == [1, 2, 3] + assert "underscore_token" in json_doc + assert "underscore_span" in json_doc + assert json_doc["underscore_token"]["token_test"]["value"] == 117 + assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute" + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 + assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc + + +def test_doc_to_json_with_custom_user_data(doc): + Doc.set_extension("json_test", default=False) + Token.set_extension("token_test", default=False) + Span.set_extension("span_test", default=False) + + doc._.json_test = "hello world" + doc[0:1]._.span_test = "span_attribute" + doc[0]._.token_test = 117 + json_doc = doc.to_json(underscore=["json_test", "token_test", "span_test"]) + doc.user_data["user_data_test"] = 10 + doc.user_data[("user_data_test2", True)] = 10 + + assert "_" in json_doc + assert json_doc["_"]["json_test"] == "hello world" + assert "underscore_token" in json_doc + assert "underscore_span" in json_doc + assert json_doc["underscore_token"]["token_test"]["value"] == 117 + assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute" + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 + assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc + + +def test_doc_to_json_with_token_span_same_identifier(doc): + Doc.set_extension("my_ext", default=False) + Token.set_extension("my_ext", default=False) + Span.set_extension("my_ext", default=False) + + doc._.my_ext = "hello world" + doc[0:1]._.my_ext = "span_attribute" + doc[0]._.my_ext = 117 + json_doc = doc.to_json(underscore=["my_ext"]) + + assert "_" in json_doc + assert json_doc["_"]["my_ext"] == "hello world" + assert "underscore_token" in json_doc + assert "underscore_span" in json_doc + assert json_doc["underscore_token"]["my_ext"]["value"] == 117 + assert json_doc["underscore_span"]["my_ext"]["value"] == "span_attribute" + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 + assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc + + +def test_doc_to_json_with_token_attributes_missing(doc): + Token.set_extension("token_test", default=False) + Span.set_extension("span_test", default=False) + + doc[0:1]._.span_test = "span_attribute" + doc[0]._.token_test = 117 + json_doc = doc.to_json(underscore=["span_test"]) + + assert "underscore_token" in json_doc + assert "underscore_span" in json_doc + assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute" + assert "token_test" not in json_doc["underscore_token"] + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 def test_doc_to_json_underscore_error_attr(doc): @@ -94,11 +225,29 @@ def test_doc_to_json_span(doc): assert len(json_doc["spans"]) == 1 assert len(json_doc["spans"]["test"]) == 2 assert json_doc["spans"]["test"][0]["start"] == 0 - assert not schemas.validate(schemas.DocJSONSchema, json_doc) + assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0 def test_json_to_doc(doc): - new_doc = Doc(doc.vocab).from_json(doc.to_json(), validate=True) + json_doc = doc.to_json() + json_doc = srsly.json_loads(srsly.json_dumps(json_doc)) + new_doc = Doc(doc.vocab).from_json(json_doc, validate=True) + assert new_doc.text == doc.text == "c d e " + assert len(new_doc) == len(doc) == 3 + assert new_doc[0].pos == doc[0].pos + assert new_doc[0].tag == doc[0].tag + assert new_doc[0].dep == doc[0].dep + assert new_doc[0].head.idx == doc[0].head.idx + assert new_doc[0].lemma == doc[0].lemma + assert len(new_doc.ents) == 1 + assert new_doc.ents[0].start == 1 + assert new_doc.ents[0].end == 2 + assert new_doc.ents[0].label_ == "ORG" + assert doc.to_bytes() == new_doc.to_bytes() + + +def test_json_to_doc_compat(doc, doc_json): + new_doc = Doc(doc.vocab).from_json(doc_json, validate=True) new_tokens = [token for token in new_doc] assert new_doc.text == doc.text == "c d e " assert len(new_tokens) == len([token for token in doc]) == 3 @@ -114,11 +263,8 @@ def test_json_to_doc(doc): def test_json_to_doc_underscore(doc): - if not Doc.has_extension("json_test1"): - Doc.set_extension("json_test1", default=False) - if not Doc.has_extension("json_test2"): - Doc.set_extension("json_test2", default=False) - + Doc.set_extension("json_test1", default=False) + Doc.set_extension("json_test2", default=False) doc._.json_test1 = "hello world" doc._.json_test2 = [1, 2, 3] json_doc = doc.to_json(underscore=["json_test1", "json_test2"]) @@ -126,6 +272,34 @@ def test_json_to_doc_underscore(doc): assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)]) assert new_doc._.json_test1 == "hello world" assert new_doc._.json_test2 == [1, 2, 3] + assert doc.to_bytes() == new_doc.to_bytes() + + +def test_json_to_doc_with_token_span_attributes(doc): + Doc.set_extension("json_test1", default=False) + Doc.set_extension("json_test2", default=False) + Token.set_extension("token_test", default=False) + Span.set_extension("span_test", default=False) + doc._.json_test1 = "hello world" + doc._.json_test2 = [1, 2, 3] + doc[0:1]._.span_test = "span_attribute" + doc[0]._.token_test = 117 + + json_doc = doc.to_json( + underscore=["json_test1", "json_test2", "token_test", "span_test"] + ) + json_doc = srsly.json_loads(srsly.json_dumps(json_doc)) + new_doc = Doc(doc.vocab).from_json(json_doc, validate=True) + + assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)]) + assert new_doc._.json_test1 == "hello world" + assert new_doc._.json_test2 == [1, 2, 3] + assert new_doc[0]._.token_test == 117 + assert new_doc[0:1]._.span_test == "span_attribute" + assert new_doc.user_data == doc.user_data + assert new_doc.to_bytes(exclude=["user_data"]) == doc.to_bytes( + exclude=["user_data"] + ) def test_json_to_doc_spans(doc): diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index d9a104ac8..7ba9a3341 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -1602,13 +1602,30 @@ cdef class Doc: ents.append(char_span) self.ents = ents - # Add custom attributes. Note that only Doc extensions are currently considered, Token and Span extensions are - # not yet supported. + # Add custom attributes for the whole Doc object. for attr in doc_json.get("_", {}): if not Doc.has_extension(attr): Doc.set_extension(attr) self._.set(attr, doc_json["_"][attr]) + if doc_json.get("underscore_token", {}): + for token_attr in doc_json["underscore_token"]: + token_start = doc_json["underscore_token"][token_attr]["token_start"] + value = doc_json["underscore_token"][token_attr]["value"] + + if not Token.has_extension(token_attr): + Token.set_extension(token_attr) + self[token_start]._.set(token_attr, value) + + if doc_json.get("underscore_span", {}): + for span_attr in doc_json["underscore_span"]: + token_start = doc_json["underscore_span"][span_attr]["token_start"] + token_end = doc_json["underscore_span"][span_attr]["token_end"] + value = doc_json["underscore_span"][span_attr]["value"] + + if not Span.has_extension(span_attr): + Span.set_extension(span_attr) + self[token_start:token_end]._.set(span_attr, value) return self def to_json(self, underscore=None): @@ -1650,20 +1667,40 @@ cdef class Doc: for span_group in self.spans: data["spans"][span_group] = [] for span in self.spans[span_group]: - span_data = { - "start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_ - } + span_data = {"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_} data["spans"][span_group].append(span_data) if underscore: - data["_"] = {} + user_keys = set() + if self.user_data: + data["_"] = {} + data["underscore_token"] = {} + data["underscore_span"] = {} + for data_key in self.user_data: + if type(data_key) == tuple and len(data_key) >= 4 and data_key[0] == "._.": + attr = data_key[1] + start = data_key[2] + end = data_key[3] + if attr in underscore: + user_keys.add(attr) + value = self.user_data[data_key] + if not srsly.is_json_serializable(value): + raise ValueError(Errors.E107.format(attr=attr, value=repr(value))) + # Check if doc attribute + if start is None: + data["_"][attr] = value + # Check if token attribute + elif end is None: + if attr not in data["underscore_token"]: + data["underscore_token"][attr] = {"token_start": start, "value": value} + # Else span attribute + else: + if attr not in data["underscore_span"]: + data["underscore_span"][attr] = {"token_start": start, "token_end": end, "value": value} + for attr in underscore: - if not self.has_extension(attr): + if attr not in user_keys: raise ValueError(Errors.E106.format(attr=attr, opts=underscore)) - value = self._.get(attr) - if not srsly.is_json_serializable(value): - raise ValueError(Errors.E107.format(attr=attr, value=repr(value))) - data["_"][attr] = value return data def to_utf8_array(self, int nr_char=-1): From c09d2fa25bae47f0c70a3dde6bc2bc43c044b231 Mon Sep 17 00:00:00 2001 From: Tobius Saul <30893923+tobiusaolo@users.noreply.github.com> Date: Tue, 23 Aug 2022 14:09:36 +0300 Subject: [PATCH 118/138] luganda language extension (#10847) * luganda language extension * __init__.py changes * New enhancements * Lexical attribute changed * punctuaction and sentence additions * Remove comment header * Fix typos, reformat * reformated version * Add tokenizer test * Remove contractions from stop words * Format * Add Luganda to website Co-authored-by: Adriane Boyd --- spacy/lang/lg/__init__.py | 18 +++++ spacy/lang/lg/examples.py | 17 +++++ spacy/lang/lg/lex_attrs.py | 95 +++++++++++++++++++++++++++ spacy/lang/lg/punctuation.py | 19 ++++++ spacy/lang/lg/stop_words.py | 19 ++++++ spacy/tests/conftest.py | 5 ++ spacy/tests/lang/lg/__init__.py | 0 spacy/tests/lang/lg/test_tokenizer.py | 15 +++++ website/meta/languages.json | 5 ++ 9 files changed, 193 insertions(+) create mode 100644 spacy/lang/lg/__init__.py create mode 100644 spacy/lang/lg/examples.py create mode 100644 spacy/lang/lg/lex_attrs.py create mode 100644 spacy/lang/lg/punctuation.py create mode 100644 spacy/lang/lg/stop_words.py create mode 100644 spacy/tests/lang/lg/__init__.py create mode 100644 spacy/tests/lang/lg/test_tokenizer.py diff --git a/spacy/lang/lg/__init__.py b/spacy/lang/lg/__init__.py new file mode 100644 index 000000000..6f7153fce --- /dev/null +++ b/spacy/lang/lg/__init__.py @@ -0,0 +1,18 @@ +from .stop_words import STOP_WORDS +from .lex_attrs import LEX_ATTRS +from .punctuation import TOKENIZER_INFIXES +from ...language import Language, BaseDefaults + + +class LugandaDefaults(BaseDefaults): + lex_attr_getters = LEX_ATTRS + infixes = TOKENIZER_INFIXES + stop_words = STOP_WORDS + + +class Luganda(Language): + lang = "lg" + Defaults = LugandaDefaults + + +__all__ = ["Luganda"] diff --git a/spacy/lang/lg/examples.py b/spacy/lang/lg/examples.py new file mode 100644 index 000000000..5450c5520 --- /dev/null +++ b/spacy/lang/lg/examples.py @@ -0,0 +1,17 @@ +""" +Example sentences to test spaCy and its language models. + +>>> from spacy.lang.lg.examples import sentences +>>> docs = nlp.pipe(sentences) +""" + +sentences = [ + "Mpa ebyafaayo ku byalo Nakatu ne Nkajja", + "Okuyita Ttembo kitegeeza kugwa ddalu", + "Ekifumu kino kyali kya mulimu ki?", + "Ekkovu we liyise wayitibwa mukululo", + "Akola mulimu ki oguvaamu ssente?", + "Emisumaali egikomerera embaawo giyitibwa nninga", + "Abooluganda ab’emmamba ababiri", + "Ekisaawe ky'ebyenjigiriza kya mugaso nnyo", +] diff --git a/spacy/lang/lg/lex_attrs.py b/spacy/lang/lg/lex_attrs.py new file mode 100644 index 000000000..3c60e3d0e --- /dev/null +++ b/spacy/lang/lg/lex_attrs.py @@ -0,0 +1,95 @@ +from ...attrs import LIKE_NUM + +_num_words = [ + "nnooti", # Zero + "zeero", # zero + "emu", # one + "bbiri", # two + "ssatu", # three + "nnya", # four + "ttaano", # five + "mukaaga", # six + "musanvu", # seven + "munaana", # eight + "mwenda", # nine + "kkumi", # ten + "kkumi n'emu", # eleven + "kkumi na bbiri", # twelve + "kkumi na ssatu", # thirteen + "kkumi na nnya", # forteen + "kkumi na ttaano", # fifteen + "kkumi na mukaaga", # sixteen + "kkumi na musanvu", # seventeen + "kkumi na munaana", # eighteen + "kkumi na mwenda", # nineteen + "amakumi abiri", # twenty + "amakumi asatu", # thirty + "amakumi ana", # forty + "amakumi ataano", # fifty + "nkaaga", # sixty + "nsanvu", # seventy + "kinaana", # eighty + "kyenda", # ninety + "kikumi", # hundred + "lukumi", # thousand + "kakadde", # million + "kawumbi", # billion + "kase", # trillion + "katabalika", # quadrillion + "keesedde", # gajillion + "kafukunya", # bazillion + "ekisooka", # first + "ekyokubiri", # second + "ekyokusatu", # third + "ekyokuna", # fourth + "ekyokutaano", # fifith + "ekyomukaaga", # sixth + "ekyomusanvu", # seventh + "eky'omunaana", # eighth + "ekyomwenda", # nineth + "ekyekkumi", # tenth + "ekyekkumi n'ekimu", # eleventh + "ekyekkumi n'ebibiri", # twelveth + "ekyekkumi n'ebisatu", # thirteenth + "ekyekkumi n'ebina", # fourteenth + "ekyekkumi n'ebitaano", # fifteenth + "ekyekkumi n'omukaaga", # sixteenth + "ekyekkumi n'omusanvu", # seventeenth + "ekyekkumi n'omunaana", # eigteenth + "ekyekkumi n'omwenda", # nineteenth + "ekyamakumi abiri", # twentieth + "ekyamakumi asatu", # thirtieth + "ekyamakumi ana", # fortieth + "ekyamakumi ataano", # fiftieth + "ekyenkaaga", # sixtieth + "ekyensanvu", # seventieth + "ekyekinaana", # eightieth + "ekyekyenda", # ninetieth + "ekyekikumi", # hundredth + "ekyolukumi", # thousandth + "ekyakakadde", # millionth + "ekyakawumbi", # billionth + "ekyakase", # trillionth + "ekyakatabalika", # quadrillionth + "ekyakeesedde", # gajillionth + "ekyakafukunya", # bazillionth +] + + +def like_num(text): + if text.startswith(("+", "-", "±", "~")): + text = text[1:] + text = text.replace(",", "").replace(".", "") + if text.isdigit(): + return True + if text.count("/") == 1: + num, denom = text.split("/") + if num.isdigit() and denom.isdigit(): + return True + text_lower = text.lower() + if text_lower in _num_words: + return True + return False + + +LEX_ATTRS = {LIKE_NUM: like_num} diff --git a/spacy/lang/lg/punctuation.py b/spacy/lang/lg/punctuation.py new file mode 100644 index 000000000..5d3eb792e --- /dev/null +++ b/spacy/lang/lg/punctuation.py @@ -0,0 +1,19 @@ +from ..char_classes import LIST_ELLIPSES, LIST_ICONS, HYPHENS +from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA + +_infixes = ( + LIST_ELLIPSES + + LIST_ICONS + + [ + r"(?<=[0-9])[+\-\*^](?=[0-9-])", + r"(?<=[{al}{q}])\.(?=[{au}{q}])".format( + al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES + ), + r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA), + r"(?<=[{a}0-9])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS), + r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA), + ] +) + + +TOKENIZER_INFIXES = _infixes diff --git a/spacy/lang/lg/stop_words.py b/spacy/lang/lg/stop_words.py new file mode 100644 index 000000000..7bad59344 --- /dev/null +++ b/spacy/lang/lg/stop_words.py @@ -0,0 +1,19 @@ +STOP_WORDS = set( + """ +abadde abalala abamu abangi abava ajja ali alina ani anti ateekeddwa atewamu +atya awamu aweebwa ayinza ba baali babadde babalina bajja +bajjanewankubade bali balina bandi bangi bano bateekeddwa baweebwa bayina bebombi beera bibye +bimu bingi bino bo bokka bonna buli bulijjo bulungi bwabwe bwaffe bwayo bwe bwonna bya byabwe +byaffe byebimu byonna ddaa ddala ddi e ebimu ebiri ebweruobulungi ebyo edda ejja ekirala ekyo +endala engeri ennyo era erimu erina ffe ffenna ga gujja gumu gunno guno gwa gwe kaseera kati +kennyini ki kiki kikino kikye kikyo kino kirungi kki ku kubangabyombi kubangaolwokuba kudda +kuva kuwa kwegamba kyaffe kye kyekimuoyo kyekyo kyonna leero liryo lwa lwaki lyabwezaabwe +lyaffe lyange mbadde mingi mpozzi mu mulinaoyina munda mwegyabwe nolwekyo nabadde nabo nandiyagadde +nandiye nanti naye ne nedda neera nga nnyingi nnyini nnyinza nnyo nti nyinza nze oba ojja okudda +okugenda okuggyako okutuusa okuva okuwa oli olina oluvannyuma olwekyobuva omuli ono osobola otya +oyina oyo seetaaga si sinakindi singa talina tayina tebaali tebaalina tebayina terina tetulina +tetuteekeddwa tewali teyalina teyayina tolina tu tuyina tulina tuyina twafuna twetaaga wa wabula +wabweru wadde waggulunnina wakati waliwobangi waliyo wandi wange wano wansi weebwa yabadde yaffe +ye yenna yennyini yina yonna ziba zijja zonna +""".split() +) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index eb643ec2f..5193bd301 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -261,6 +261,11 @@ def lb_tokenizer(): return get_lang_class("lb")().tokenizer +@pytest.fixture(scope="session") +def lg_tokenizer(): + return get_lang_class("lg")().tokenizer + + @pytest.fixture(scope="session") def lt_tokenizer(): return get_lang_class("lt")().tokenizer diff --git a/spacy/tests/lang/lg/__init__.py b/spacy/tests/lang/lg/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/lg/test_tokenizer.py b/spacy/tests/lang/lg/test_tokenizer.py new file mode 100644 index 000000000..958385a77 --- /dev/null +++ b/spacy/tests/lang/lg/test_tokenizer.py @@ -0,0 +1,15 @@ +import pytest + +LG_BASIC_TOKENIZATION_TESTS = [ + ( + "Abooluganda ab’emmamba ababiri", + ["Abooluganda", "ab’emmamba", "ababiri"], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", LG_BASIC_TOKENIZATION_TESTS) +def test_lg_tokenizer_basic(lg_tokenizer, text, expected_tokens): + tokens = lg_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/website/meta/languages.json b/website/meta/languages.json index 87c91f791..79e1fc5d5 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -265,6 +265,11 @@ "name": "Luxembourgish", "has_examples": true }, + { + "code": "lg", + "name": "Luganda", + "has_examples": true + }, { "code": "lij", "name": "Ligurian", From 2a558a7cdcdaf817228154754c93b79642dc2bcd Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 26 Aug 2022 10:11:18 +0200 Subject: [PATCH 119/138] Switch to mecab-ko as default Korean tokenizer (#11294) * Switch to mecab-ko as default Korean tokenizer Switch to the (confusingly-named) mecab-ko python module for default Korean tokenization. Maintain the previous `natto-py` tokenizer as `spacy.KoreanNattoTokenizer.v1`. * Temporarily run tests with mecab-ko tokenizer * Fix types * Fix duplicate test names * Update requirements test * Revert "Temporarily run tests with mecab-ko tokenizer" This reverts commit d2083e7044403a2046f902b125a147525b703e29. * Add mecab_args setting, fix pickle for KoreanNattoTokenizer * Fix length check * Update docs * Formatting * Update natto-py error message Co-authored-by: Paul O'Leary McCann Co-authored-by: Paul O'Leary McCann --- setup.cfg | 2 +- spacy/lang/ko/__init__.py | 121 +++++++++++++++++----- spacy/tests/conftest.py | 16 ++- spacy/tests/lang/ko/test_lemmatization.py | 8 ++ spacy/tests/lang/ko/test_serialize.py | 20 ++++ spacy/tests/lang/ko/test_tokenizer.py | 42 +++++++- spacy/tests/package/test_requirements.py | 2 +- website/docs/usage/models.md | 35 ++++++- 8 files changed, 212 insertions(+), 34 deletions(-) diff --git a/setup.cfg b/setup.cfg index 708300b04..8bce8cff2 100644 --- a/setup.cfg +++ b/setup.cfg @@ -114,7 +114,7 @@ ja = sudachipy>=0.5.2,!=0.6.1 sudachidict_core>=20211220 ko = - natto-py>=0.9.0 + mecab-ko>=1.0.0 th = pythainlp>=2.0 diff --git a/spacy/lang/ko/__init__.py b/spacy/lang/ko/__init__.py index 0e02e4a2d..1220aa141 100644 --- a/spacy/lang/ko/__init__.py +++ b/spacy/lang/ko/__init__.py @@ -18,34 +18,23 @@ DEFAULT_CONFIG = """ [nlp.tokenizer] @tokenizers = "spacy.ko.KoreanTokenizer" +mecab_args = "" """ @registry.tokenizers("spacy.ko.KoreanTokenizer") -def create_tokenizer(): +def create_tokenizer(mecab_args: str): def korean_tokenizer_factory(nlp): - return KoreanTokenizer(nlp.vocab) + return KoreanTokenizer(nlp.vocab, mecab_args=mecab_args) return korean_tokenizer_factory class KoreanTokenizer(DummyTokenizer): - def __init__(self, vocab: Vocab): + def __init__(self, vocab: Vocab, *, mecab_args: str = ""): self.vocab = vocab - self._mecab = try_mecab_import() # type: ignore[func-returns-value] - self._mecab_tokenizer = None - - @property - def mecab_tokenizer(self): - # This is a property so that initializing a pipeline with blank:ko is - # possible without actually requiring mecab-ko, e.g. to run - # `spacy init vectors ko` for a pipeline that will have a different - # tokenizer in the end. The languages need to match for the vectors - # to be imported and there's no way to pass a custom config to - # `init vectors`. - if self._mecab_tokenizer is None: - self._mecab_tokenizer = self._mecab("-F%f[0],%f[7]") - return self._mecab_tokenizer + mecab = try_mecab_import() + self.mecab_tokenizer = mecab.Tagger(mecab_args) def __reduce__(self): return KoreanTokenizer, (self.vocab,) @@ -68,13 +57,15 @@ class KoreanTokenizer(DummyTokenizer): def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]: # 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3], # 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], * - for node in self.mecab_tokenizer.parse(text, as_nodes=True): - if node.is_eos(): + for line in self.mecab_tokenizer.parse(text).split("\n"): + if line == "EOS": break - surface = node.surface - feature = node.feature - tag, _, expr = feature.partition(",") - lemma, _, remainder = expr.partition("/") + surface, _, expr = line.partition("\t") + features = expr.split("/")[0].split(",") + tag = features[0] + lemma = "*" + if len(features) >= 8: + lemma = features[7] if lemma == "*": lemma = surface yield {"surface": surface, "lemma": lemma, "tag": tag} @@ -97,20 +88,94 @@ class Korean(Language): Defaults = KoreanDefaults -def try_mecab_import() -> None: +def try_mecab_import(): try: - from natto import MeCab + import mecab_ko as MeCab return MeCab except ImportError: raise ImportError( 'The Korean tokenizer ("spacy.ko.KoreanTokenizer") requires ' - "[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), " - "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), " - "and [natto-py](https://github.com/buruzaemon/natto-py)" + "the python package `mecab-ko`: pip install mecab-ko" ) from None +@registry.tokenizers("spacy.KoreanNattoTokenizer.v1") +def create_natto_tokenizer(): + def korean_natto_tokenizer_factory(nlp): + return KoreanNattoTokenizer(nlp.vocab) + + return korean_natto_tokenizer_factory + + +class KoreanNattoTokenizer(DummyTokenizer): + def __init__(self, vocab: Vocab): + self.vocab = vocab + self._mecab = self._try_mecab_import() # type: ignore[func-returns-value] + self._mecab_tokenizer = None + + @property + def mecab_tokenizer(self): + # This is a property so that initializing a pipeline with blank:ko is + # possible without actually requiring mecab-ko, e.g. to run + # `spacy init vectors ko` for a pipeline that will have a different + # tokenizer in the end. The languages need to match for the vectors + # to be imported and there's no way to pass a custom config to + # `init vectors`. + if self._mecab_tokenizer is None: + self._mecab_tokenizer = self._mecab("-F%f[0],%f[7]") + return self._mecab_tokenizer + + def __reduce__(self): + return KoreanNattoTokenizer, (self.vocab,) + + def __call__(self, text: str) -> Doc: + dtokens = list(self.detailed_tokens(text)) + surfaces = [dt["surface"] for dt in dtokens] + doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces))) + for token, dtoken in zip(doc, dtokens): + first_tag, sep, eomi_tags = dtoken["tag"].partition("+") + token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미) + if token.tag_ in TAG_MAP: + token.pos = TAG_MAP[token.tag_][POS] + else: + token.pos = X + token.lemma_ = dtoken["lemma"] + doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens] + return doc + + def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]: + # 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3], + # 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], * + for node in self.mecab_tokenizer.parse(text, as_nodes=True): + if node.is_eos(): + break + surface = node.surface + feature = node.feature + tag, _, expr = feature.partition(",") + lemma, _, remainder = expr.partition("/") + if lemma == "*" or lemma == "": + lemma = surface + yield {"surface": surface, "lemma": lemma, "tag": tag} + + def score(self, examples): + validate_examples(examples, "KoreanTokenizer.score") + return Scorer.score_tokenization(examples) + + def _try_mecab_import(self): + try: + from natto import MeCab + + return MeCab + except ImportError: + raise ImportError( + 'The Korean Natto tokenizer ("spacy.ko.KoreanNattoTokenizer") requires ' + "[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), " + "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), " + "and [natto-py](https://github.com/buruzaemon/natto-py)" + ) from None + + def check_spaces(text, tokens): prev_end = -1 start = 0 diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index e70fcd6dd..92810118a 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -239,7 +239,7 @@ def hsb_tokenizer(): @pytest.fixture(scope="session") def ko_tokenizer(): - pytest.importorskip("natto") + pytest.importorskip("mecab_ko") return get_lang_class("ko")().tokenizer @@ -256,6 +256,20 @@ def ko_tokenizer_tokenizer(): return nlp.tokenizer +@pytest.fixture(scope="session") +def ko_tokenizer_natto(): + pytest.importorskip("natto") + config = { + "nlp": { + "tokenizer": { + "@tokenizers": "spacy.KoreanNattoTokenizer.v1", + } + } + } + nlp = get_lang_class("ko").from_config(config) + return nlp.tokenizer + + @pytest.fixture(scope="session") def lb_tokenizer(): return get_lang_class("lb")().tokenizer diff --git a/spacy/tests/lang/ko/test_lemmatization.py b/spacy/tests/lang/ko/test_lemmatization.py index 7782ca4bc..0c389b9ce 100644 --- a/spacy/tests/lang/ko/test_lemmatization.py +++ b/spacy/tests/lang/ko/test_lemmatization.py @@ -7,3 +7,11 @@ import pytest def test_ko_lemmatizer_assigns(ko_tokenizer, word, lemma): test_lemma = ko_tokenizer(word)[0].lemma_ assert test_lemma == lemma + + +@pytest.mark.parametrize( + "word,lemma", [("새로운", "새롭"), ("빨간", "빨갛"), ("클수록", "크"), ("뭡니까", "뭣"), ("됐다", "되")] +) +def test_ko_lemmatizer_natto_assigns(ko_tokenizer_natto, word, lemma): + test_lemma = ko_tokenizer_natto(word)[0].lemma_ + assert test_lemma == lemma diff --git a/spacy/tests/lang/ko/test_serialize.py b/spacy/tests/lang/ko/test_serialize.py index 75288fcc5..35d28d42a 100644 --- a/spacy/tests/lang/ko/test_serialize.py +++ b/spacy/tests/lang/ko/test_serialize.py @@ -22,3 +22,23 @@ def test_ko_tokenizer_pickle(ko_tokenizer): b = pickle.dumps(ko_tokenizer) ko_tokenizer_re = pickle.loads(b) assert ko_tokenizer.to_bytes() == ko_tokenizer_re.to_bytes() + + +def test_ko_tokenizer_natto_serialize(ko_tokenizer_natto): + tokenizer_bytes = ko_tokenizer_natto.to_bytes() + nlp = Korean() + nlp.tokenizer.from_bytes(tokenizer_bytes) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + with make_tempdir() as d: + file_path = d / "tokenizer" + ko_tokenizer_natto.to_disk(file_path) + nlp = Korean() + nlp.tokenizer.from_disk(file_path) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + +def test_ko_tokenizer_natto_pickle(ko_tokenizer_natto): + b = pickle.dumps(ko_tokenizer_natto) + ko_tokenizer_natto_re = pickle.loads(b) + assert ko_tokenizer_natto.to_bytes() == ko_tokenizer_natto_re.to_bytes() diff --git a/spacy/tests/lang/ko/test_tokenizer.py b/spacy/tests/lang/ko/test_tokenizer.py index 6e06e405e..e7f8a5c0d 100644 --- a/spacy/tests/lang/ko/test_tokenizer.py +++ b/spacy/tests/lang/ko/test_tokenizer.py @@ -19,6 +19,8 @@ POS_TESTS = [("서울 타워 근처에 살고 있습니다.", "PROPN ADP VERB X NOUN ADV VERB AUX X PUNCT")] # fmt: on +# tests for ko_tokenizer (default KoreanTokenizer) + @pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS) def test_ko_tokenizer(ko_tokenizer, text, expected_tokens): @@ -44,7 +46,7 @@ def test_ko_tokenizer_pos(ko_tokenizer, text, expected_pos): assert pos == expected_pos.split() -def test_ko_empty_doc(ko_tokenizer): +def test_ko_tokenizer_empty_doc(ko_tokenizer): tokens = ko_tokenizer("") assert len(tokens) == 0 @@ -55,6 +57,44 @@ def test_ko_tokenizer_unknown_tag(ko_tokenizer): assert tokens[1].pos_ == "X" +# same tests for ko_tokenizer_natto (KoreanNattoTokenizer) + + +@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS) +def test_ko_tokenizer_natto(ko_tokenizer_natto, text, expected_tokens): + tokens = [token.text for token in ko_tokenizer_natto(text)] + assert tokens == expected_tokens.split() + + +@pytest.mark.parametrize("text,expected_tags", TAG_TESTS) +def test_ko_tokenizer_natto_tags(ko_tokenizer_natto, text, expected_tags): + tags = [token.tag_ for token in ko_tokenizer_natto(text)] + assert tags == expected_tags.split() + + +@pytest.mark.parametrize("text,expected_tags", FULL_TAG_TESTS) +def test_ko_tokenizer_natto_full_tags(ko_tokenizer_natto, text, expected_tags): + tags = ko_tokenizer_natto(text).user_data["full_tags"] + assert tags == expected_tags.split() + + +@pytest.mark.parametrize("text,expected_pos", POS_TESTS) +def test_ko_tokenizer_natto_pos(ko_tokenizer_natto, text, expected_pos): + pos = [token.pos_ for token in ko_tokenizer_natto(text)] + assert pos == expected_pos.split() + + +def test_ko_tokenizer_natto_empty_doc(ko_tokenizer_natto): + tokens = ko_tokenizer_natto("") + assert len(tokens) == 0 + + +@pytest.mark.issue(10535) +def test_ko_tokenizer_natto_unknown_tag(ko_tokenizer_natto): + tokens = ko_tokenizer_natto("미닛 리피터") + assert tokens[1].pos_ == "X" + + # fmt: off SPACY_TOKENIZER_TESTS = [ ("있다.", "있다 ."), diff --git a/spacy/tests/package/test_requirements.py b/spacy/tests/package/test_requirements.py index e20227455..c0b9d4dc6 100644 --- a/spacy/tests/package/test_requirements.py +++ b/spacy/tests/package/test_requirements.py @@ -21,7 +21,7 @@ def test_build_dependencies(): # ignore language-specific packages that shouldn't be installed by all libs_ignore_setup = [ "fugashi", - "natto-py", + "mecab-ko", "pythainlp", "sudachipy", "sudachidict_core", diff --git a/website/docs/usage/models.md b/website/docs/usage/models.md index 56992e7e3..a2bf72d02 100644 --- a/website/docs/usage/models.md +++ b/website/docs/usage/models.md @@ -268,18 +268,49 @@ used for training the current [Japanese pipelines](/models/ja). ### Korean language support {#korean} -> #### mecab-ko tokenizer +There are currently three built-in options for Korean tokenization, two based on +[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md) and one +using the rule-based tokenizer. + +> #### Default mecab-ko tokenizer > > ```python +> # uses mecab-ko-dic > nlp = spacy.blank("ko") +> +> # with custom mecab args +> mecab_args = "-d /path/to/dicdir -u /path/to/userdic" +> config = {"nlp": {"tokenizer": {"mecab_args": mecab_args}}} +> nlp = spacy.blank("ko", config=config) > ``` -The default MeCab-based Korean tokenizer requires: +The default MeCab-based Korean tokenizer requires the python package +[`mecab-ko`](https://pypi.org/project/mecab-ko/) and no further system +requirements. + +The `natto-py` MeCab-based tokenizer (the previous default for spaCy v3.4 and +earlier) is available as `spacy.KoreanNattoTokenizer.v1`. It requires: - [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md) - [mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic) - [natto-py](https://github.com/buruzaemon/natto-py) +To use this tokenizer, edit `[nlp.tokenizer]` in your config: + +> #### natto-py MeCab-ko tokenizer +> +> ```python +> config = {"nlp": {"tokenizer": {"@tokenizers": "spacy.KoreanNattoTokenizer.v1"}}} +> nlp = spacy.blank("ko", config=config) +> ``` + +```ini +### config.cfg +[nlp] +lang = "ko" +tokenizer = {"@tokenizers" = "spacy.KoreanNattoTokenizer.v1"} +``` + For some Korean datasets and tasks, the [rule-based tokenizer](/usage/linguistic-features#tokenization) is better-suited than MeCab. To configure a Korean pipeline with the rule-based tokenizer: From 7a2c58864cfb24b78c28643e22ce8c9686e1f1bf Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Fri, 26 Aug 2022 17:23:10 +0900 Subject: [PATCH 120/138] Move deps outside explosion to "third-party" (#11381) --- setup.cfg | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.cfg b/setup.cfg index 708300b04..bf4890a68 100644 --- a/setup.cfg +++ b/setup.cfg @@ -50,9 +50,9 @@ install_requires = wasabi>=0.9.1,<1.1.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 + # Third-party dependencies typer>=0.3.0,<0.5.0 pathy>=0.3.5 - # Third-party dependencies tqdm>=4.38.0,<5.0.0 numpy>=1.15.0 requests>=2.13.0,<3.0.0 From ba3320097948cd5056fc068cfc1a9cc1b2d89cf2 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 26 Aug 2022 16:07:16 +0200 Subject: [PATCH 121/138] Remove pathy from pyproject.toml (#11383) --- pyproject.toml | 1 - 1 file changed, 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 317c5fdbe..7abd7a96f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,7 +6,6 @@ requires = [ "preshed>=3.0.2,<3.1.0", "murmurhash>=0.28.0,<1.1.0", "thinc>=8.1.0,<8.2.0", - "pathy", "numpy>=1.15.0", ] build-backend = "setuptools.build_meta" From 6723d76f24a55f24ef1632ac8be46567a984d0ef Mon Sep 17 00:00:00 2001 From: Edward <43848523+thomashacker@users.noreply.github.com> Date: Mon, 29 Aug 2022 10:23:05 +0200 Subject: [PATCH 122/138] Add ConsoleLogger.v2 (#11214) * Init * Change logger to ConsoleLogger.v2 * adjust naming * More naming adjustments * Fix output_file reference error * ignore type * Add basic test for logger * Hopefully fix mypy issue * mypy ignore line * Update mypy line Co-authored-by: Adriane Boyd * Update test method name Co-authored-by: Adriane Boyd * Change file saving logic * Fix finalize method * increase spacy-legacy version in requirements * Update docs * small adjustments Co-authored-by: Adriane Boyd --- requirements.txt | 2 +- setup.cfg | 2 +- spacy/tests/training/test_logger.py | 30 ++++++++ spacy/training/loggers.py | 102 +++++++++++++++++++++------- website/docs/api/legacy.md | 53 +++++++++++++++ website/docs/api/top-level.md | 57 +++++++++------- 6 files changed, 198 insertions(+), 48 deletions(-) create mode 100644 spacy/tests/training/test_logger.py diff --git a/requirements.txt b/requirements.txt index 437dd415a..3b8d66e0e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ # Our libraries -spacy-legacy>=3.0.9,<3.1.0 +spacy-legacy>=3.0.10,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 diff --git a/setup.cfg b/setup.cfg index bf4890a68..5fd820a96 100644 --- a/setup.cfg +++ b/setup.cfg @@ -41,7 +41,7 @@ setup_requires = thinc>=8.1.0,<8.2.0 install_requires = # Our libraries - spacy-legacy>=3.0.9,<3.1.0 + spacy-legacy>=3.0.10,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 diff --git a/spacy/tests/training/test_logger.py b/spacy/tests/training/test_logger.py new file mode 100644 index 000000000..0dfd0cbf4 --- /dev/null +++ b/spacy/tests/training/test_logger.py @@ -0,0 +1,30 @@ +import pytest +import spacy + +from spacy.training import loggers + + +@pytest.fixture() +def nlp(): + nlp = spacy.blank("en") + nlp.add_pipe("ner") + return nlp + + +@pytest.fixture() +def info(): + return { + "losses": {"ner": 100}, + "other_scores": {"ENTS_F": 0.85, "ENTS_P": 0.90, "ENTS_R": 0.80}, + "epoch": 100, + "step": 125, + "score": 85, + } + + +def test_console_logger(nlp, info): + console_logger = loggers.console_logger( + progress_bar=True, console_output=True, output_file=None + ) + log_step, finalize = console_logger(nlp) + log_step(info) diff --git a/spacy/training/loggers.py b/spacy/training/loggers.py index edd0f1959..408ea7140 100644 --- a/spacy/training/loggers.py +++ b/spacy/training/loggers.py @@ -1,10 +1,13 @@ -from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO +from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO, Union from wasabi import Printer +from pathlib import Path import tqdm import sys +import srsly from ..util import registry from ..errors import Errors +from .. import util if TYPE_CHECKING: from ..language import Language # noqa: F401 @@ -23,13 +26,44 @@ def setup_table( return final_cols, final_widths, ["r" for _ in final_widths] -@registry.loggers("spacy.ConsoleLogger.v1") -def console_logger(progress_bar: bool = False): +@registry.loggers("spacy.ConsoleLogger.v2") +def console_logger( + progress_bar: bool = False, + console_output: bool = True, + output_file: Optional[Union[str, Path]] = None, +): + """The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file. + progress_bar (bool): Whether the logger should print the progress bar. + console_output (bool): Whether the logger should print the logs on the console. + output_file (Optional[Union[str, Path]]): The file to save the training logs to. + """ + _log_exist = False + if output_file: + output_file = util.ensure_path(output_file) # type: ignore + if output_file.exists(): # type: ignore + _log_exist = True + if not output_file.parents[0].exists(): # type: ignore + output_file.parents[0].mkdir(parents=True) # type: ignore + def setup_printer( nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr ) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]: write = lambda text: print(text, file=stdout, flush=True) msg = Printer(no_print=True) + + nonlocal output_file + output_stream = None + if _log_exist: + write( + msg.warn( + f"Saving logs is disabled because {output_file} already exists." + ) + ) + output_file = None + elif output_file: + write(msg.info(f"Saving results to {output_file}")) + output_stream = open(output_file, "w", encoding="utf-8") + # ensure that only trainable components are logged logged_pipes = [ name @@ -40,13 +74,15 @@ def console_logger(progress_bar: bool = False): score_weights = nlp.config["training"]["score_weights"] score_cols = [col for col, value in score_weights.items() if value is not None] loss_cols = [f"Loss {pipe}" for pipe in logged_pipes] - spacing = 2 - table_header, table_widths, table_aligns = setup_table( - cols=["E", "#"] + loss_cols + score_cols + ["Score"], - widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6], - ) - write(msg.row(table_header, widths=table_widths, spacing=spacing)) - write(msg.row(["-" * width for width in table_widths], spacing=spacing)) + + if console_output: + spacing = 2 + table_header, table_widths, table_aligns = setup_table( + cols=["E", "#"] + loss_cols + score_cols + ["Score"], + widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6], + ) + write(msg.row(table_header, widths=table_widths, spacing=spacing)) + write(msg.row(["-" * width for width in table_widths], spacing=spacing)) progress = None def log_step(info: Optional[Dict[str, Any]]) -> None: @@ -57,12 +93,15 @@ def console_logger(progress_bar: bool = False): if progress is not None: progress.update(1) return - losses = [ - "{0:.2f}".format(float(info["losses"][pipe_name])) - for pipe_name in logged_pipes - ] + + losses = [] + log_losses = {} + for pipe_name in logged_pipes: + losses.append("{0:.2f}".format(float(info["losses"][pipe_name]))) + log_losses[pipe_name] = float(info["losses"][pipe_name]) scores = [] + log_scores = {} for col in score_cols: score = info["other_scores"].get(col, 0.0) try: @@ -73,6 +112,7 @@ def console_logger(progress_bar: bool = False): if col != "speed": score *= 100 scores.append("{0:.2f}".format(score)) + log_scores[str(col)] = score data = ( [info["epoch"], info["step"]] @@ -80,20 +120,36 @@ def console_logger(progress_bar: bool = False): + scores + ["{0:.2f}".format(float(info["score"]))] ) + + if output_stream: + # Write to log file per log_step + log_data = { + "epoch": info["epoch"], + "step": info["step"], + "losses": log_losses, + "scores": log_scores, + "score": float(info["score"]), + } + output_stream.write(srsly.json_dumps(log_data) + "\n") + if progress is not None: progress.close() - write( - msg.row(data, widths=table_widths, aligns=table_aligns, spacing=spacing) - ) - if progress_bar: - # Set disable=None, so that it disables on non-TTY - progress = tqdm.tqdm( - total=eval_frequency, disable=None, leave=False, file=stderr + if console_output: + write( + msg.row( + data, widths=table_widths, aligns=table_aligns, spacing=spacing + ) ) - progress.set_description(f"Epoch {info['epoch']+1}") + if progress_bar: + # Set disable=None, so that it disables on non-TTY + progress = tqdm.tqdm( + total=eval_frequency, disable=None, leave=False, file=stderr + ) + progress.set_description(f"Epoch {info['epoch']+1}") def finalize() -> None: - pass + if output_stream: + output_stream.close() return log_step, finalize diff --git a/website/docs/api/legacy.md b/website/docs/api/legacy.md index 31d178b67..d9167c76f 100644 --- a/website/docs/api/legacy.md +++ b/website/docs/api/legacy.md @@ -248,6 +248,59 @@ added to an existing vectors table. See more details in ## Loggers {#loggers} +These functions are available from `@spacy.registry.loggers`. + +### spacy.ConsoleLogger.v1 {#ConsoleLogger_v1} + +> #### Example config +> +> ```ini +> [training.logger] +> @loggers = "spacy.ConsoleLogger.v1" +> progress_bar = true +> ``` + +Writes the results of a training step to the console in a tabular format. + + + +```cli +$ python -m spacy train config.cfg +``` + +``` +ℹ Using CPU +ℹ Loading config and nlp from: config.cfg +ℹ Pipeline: ['tok2vec', 'tagger'] +ℹ Start training +ℹ Training. Initial learn rate: 0.0 + +E # LOSS TOK2VEC LOSS TAGGER TAG_ACC SCORE +--- ------ ------------ ----------- ------- ------ + 0 0 0.00 86.20 0.22 0.00 + 0 200 3.08 18968.78 34.00 0.34 + 0 400 31.81 22539.06 33.64 0.34 + 0 600 92.13 22794.91 43.80 0.44 + 0 800 183.62 21541.39 56.05 0.56 + 0 1000 352.49 25461.82 65.15 0.65 + 0 1200 422.87 23708.82 71.84 0.72 + 0 1400 601.92 24994.79 76.57 0.77 + 0 1600 662.57 22268.02 80.20 0.80 + 0 1800 1101.50 28413.77 82.56 0.83 + 0 2000 1253.43 28736.36 85.00 0.85 + 0 2200 1411.02 28237.53 87.42 0.87 + 0 2400 1605.35 28439.95 88.70 0.89 +``` + +Note that the cumulative loss keeps increasing within one epoch, but should +start decreasing across epochs. + + + +| Name | Description | +| -------------- | --------------------------------------------------------- | +| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ | + Logging utilities for spaCy are implemented in the [`spacy-loggers`](https://github.com/explosion/spacy-loggers) repo, and the functions are typically available from `@spacy.registry.loggers`. diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index 1e1925442..c3dc42f1a 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -275,8 +275,8 @@ Render a dependency parse tree or named entity visualization. ### displacy.parse_deps {#displacy.parse_deps tag="method" new="2"} -Generate dependency parse in `{'words': [], 'arcs': []}` format. -For use with the `manual=True` argument in `displacy.render`. +Generate dependency parse in `{'words': [], 'arcs': []}` format. For use with +the `manual=True` argument in `displacy.render`. > #### Example > @@ -297,8 +297,8 @@ For use with the `manual=True` argument in `displacy.render`. ### displacy.parse_ents {#displacy.parse_ents tag="method" new="2"} -Generate named entities in `[{start: i, end: i, label: 'label'}]` format. -For use with the `manual=True` argument in `displacy.render`. +Generate named entities in `[{start: i, end: i, label: 'label'}]` format. For +use with the `manual=True` argument in `displacy.render`. > #### Example > @@ -319,8 +319,8 @@ For use with the `manual=True` argument in `displacy.render`. ### displacy.parse_spans {#displacy.parse_spans tag="method" new="2"} -Generate spans in `[{start_token: i, end_token: i, label: 'label'}]` format. -For use with the `manual=True` argument in `displacy.render`. +Generate spans in `[{start_token: i, end_token: i, label: 'label'}]` format. For +use with the `manual=True` argument in `displacy.render`. > #### Example > @@ -505,7 +505,7 @@ finished. To log each training step, a and the accuracy scores on the development set. The built-in, default logger is the ConsoleLogger, which prints results to the -console in tabular format. The +console in tabular format and saves them to a `jsonl` file. The [spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as a dependency of spaCy, enables other loggers, such as one that sends results to a [Weights & Biases](https://www.wandb.com/) dashboard. @@ -513,16 +513,20 @@ a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of using one of the built-in loggers, you can [implement your own](/usage/training#custom-logging). -#### spacy.ConsoleLogger.v1 {#ConsoleLogger tag="registered function"} +#### spacy.ConsoleLogger.v2 {#ConsoleLogger tag="registered function"} > #### Example config > > ```ini > [training.logger] -> @loggers = "spacy.ConsoleLogger.v1" +> @loggers = "spacy.ConsoleLogger.v2" +> progress_bar = true +> console_output = true +> output_file = "training_log.jsonl" > ``` -Writes the results of a training step to the console in a tabular format. +Writes the results of a training step to the console in a tabular format and +saves them to a `jsonl` file. @@ -536,22 +540,23 @@ $ python -m spacy train config.cfg ℹ Pipeline: ['tok2vec', 'tagger'] ℹ Start training ℹ Training. Initial learn rate: 0.0 +ℹ Saving results to training_log.jsonl E # LOSS TOK2VEC LOSS TAGGER TAG_ACC SCORE --- ------ ------------ ----------- ------- ------ - 1 0 0.00 86.20 0.22 0.00 - 1 200 3.08 18968.78 34.00 0.34 - 1 400 31.81 22539.06 33.64 0.34 - 1 600 92.13 22794.91 43.80 0.44 - 1 800 183.62 21541.39 56.05 0.56 - 1 1000 352.49 25461.82 65.15 0.65 - 1 1200 422.87 23708.82 71.84 0.72 - 1 1400 601.92 24994.79 76.57 0.77 - 1 1600 662.57 22268.02 80.20 0.80 - 1 1800 1101.50 28413.77 82.56 0.83 - 1 2000 1253.43 28736.36 85.00 0.85 - 1 2200 1411.02 28237.53 87.42 0.87 - 1 2400 1605.35 28439.95 88.70 0.89 + 0 0 0.00 86.20 0.22 0.00 + 0 200 3.08 18968.78 34.00 0.34 + 0 400 31.81 22539.06 33.64 0.34 + 0 600 92.13 22794.91 43.80 0.44 + 0 800 183.62 21541.39 56.05 0.56 + 0 1000 352.49 25461.82 65.15 0.65 + 0 1200 422.87 23708.82 71.84 0.72 + 0 1400 601.92 24994.79 76.57 0.77 + 0 1600 662.57 22268.02 80.20 0.80 + 0 1800 1101.50 28413.77 82.56 0.83 + 0 2000 1253.43 28736.36 85.00 0.85 + 0 2200 1411.02 28237.53 87.42 0.87 + 0 2400 1605.35 28439.95 88.70 0.89 ``` Note that the cumulative loss keeps increasing within one epoch, but should @@ -559,6 +564,12 @@ start decreasing across epochs. +| Name | Description | +| ---------------- | --------------------------------------------------------------------- | +| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ | +| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ | +| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ | + ## Readers {#readers} ### File readers {#file-readers source="github.com/explosion/srsly" new="3"} From aafee5e1b7c8d13d9ac14c438063621a18bec743 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Mon, 29 Aug 2022 17:32:38 +0900 Subject: [PATCH 123/138] Fix lookup usage in French/Catalan (fix #11347) (#11382) * Fix lookup usage (fix #11347) Before using the lookups table in the French (and Catalan) lemmatizers, there's a check to see if the current term is in the table. But it's checking a string against hashes, so it's always false. Also the table lookup function is designed so you don't have to do that anyway. * Use the lookup table directly * Use string, not token --- spacy/lang/ca/lemmatizer.py | 6 +++--- spacy/lang/fr/lemmatizer.py | 13 ++++++++++--- 2 files changed, 13 insertions(+), 6 deletions(-) diff --git a/spacy/lang/ca/lemmatizer.py b/spacy/lang/ca/lemmatizer.py index 2fd012912..0f15e6e65 100644 --- a/spacy/lang/ca/lemmatizer.py +++ b/spacy/lang/ca/lemmatizer.py @@ -72,10 +72,10 @@ class CatalanLemmatizer(Lemmatizer): oov_forms.append(form) if not forms: forms.extend(oov_forms) - if not forms and string in lookup_table.keys(): - forms.append(self.lookup_lemmatize(token)[0]) + + # use lookups, and fall back to the token itself if not forms: - forms.append(string) + forms.append(lookup_table.get(string, [string])[0]) forms = list(dict.fromkeys(forms)) self.cache[cache_key] = forms return forms diff --git a/spacy/lang/fr/lemmatizer.py b/spacy/lang/fr/lemmatizer.py index c6422cf96..a7cbe0bcf 100644 --- a/spacy/lang/fr/lemmatizer.py +++ b/spacy/lang/fr/lemmatizer.py @@ -53,11 +53,16 @@ class FrenchLemmatizer(Lemmatizer): rules = rules_table.get(univ_pos, []) string = string.lower() forms = [] + # first try lookup in table based on upos if string in index: forms.append(string) self.cache[cache_key] = forms return forms + + # then add anything in the exceptions table forms.extend(exceptions.get(string, [])) + + # if nothing found yet, use the rules oov_forms = [] if not forms: for old, new in rules: @@ -69,12 +74,14 @@ class FrenchLemmatizer(Lemmatizer): forms.append(form) else: oov_forms.append(form) + + # if still nothing, add the oov forms from rules if not forms: forms.extend(oov_forms) - if not forms and string in lookup_table.keys(): - forms.append(self.lookup_lemmatize(token)[0]) + + # use lookups, which fall back to the token itself if not forms: - forms.append(string) + forms.append(lookup_table.get(string, [string])[0]) forms = list(dict.fromkeys(forms)) self.cache[cache_key] = forms return forms From 4bce8fa7557d86d61347da501fe2f62424f7d44c Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Mon, 29 Aug 2022 13:23:24 +0200 Subject: [PATCH 124/138] Remove setup_requires from setup.cfg (#11384) * Remove setup_requires from setup.cfg * Update requirements test to ignore cython in setup.cfg --- setup.cfg | 8 -------- spacy/tests/package/test_requirements.py | 2 +- 2 files changed, 1 insertion(+), 9 deletions(-) diff --git a/setup.cfg b/setup.cfg index 8bce8cff2..41172a339 100644 --- a/setup.cfg +++ b/setup.cfg @@ -31,14 +31,6 @@ project_urls = zip_safe = false include_package_data = true python_requires = >=3.6 -setup_requires = - cython>=0.25,<3.0 - numpy>=1.15.0 - # We also need our Cython packages here to compile against - cymem>=2.0.2,<2.1.0 - preshed>=3.0.2,<3.1.0 - murmurhash>=0.28.0,<1.1.0 - thinc>=8.1.0,<8.2.0 install_requires = # Our libraries spacy-legacy>=3.0.9,<3.1.0 diff --git a/spacy/tests/package/test_requirements.py b/spacy/tests/package/test_requirements.py index c0b9d4dc6..4e2a1c7e7 100644 --- a/spacy/tests/package/test_requirements.py +++ b/spacy/tests/package/test_requirements.py @@ -4,8 +4,8 @@ from pathlib import Path def test_build_dependencies(): # Check that library requirements are pinned exactly the same across different setup files. - # TODO: correct checks for numpy rather than ignoring libs_ignore_requirements = [ + "cython", "pytest", "pytest-timeout", "mock", From 98a916e01aa4b7e87feb9893c8874ecf322fb4a2 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 30 Aug 2022 13:56:35 +0200 Subject: [PATCH 125/138] Make stable private modules public and adjust names (#11353) * Make stable private modules public and adjust names * `spacy.ml._character_embed` -> `spacy.ml.character_embed` * `spacy.ml._precomputable_affine` -> `spacy.ml.precomputable_affine` * `spacy.tokens._serialize` -> `spacy.tokens.doc_bin` * `spacy.tokens._retokenize` -> `spacy.tokens.retokenize` * `spacy.tokens._dict_proxies` -> `spacy.tokens.span_groups` * Skip _precomputable_affine * retokenize -> retokenizer * Fix imports --- setup.py | 2 +- spacy/ml/{_character_embed.py => character_embed.py} | 0 spacy/ml/models/tok2vec.py | 4 ++-- spacy/pipeline/attribute_ruler.py | 2 +- spacy/tests/pipeline/test_models.py | 2 +- spacy/tests/pipeline/test_spancat.py | 2 +- spacy/tests/serialize/test_serialize_span_groups.py | 2 +- spacy/tokens/__init__.py | 2 +- spacy/tokens/doc.pyi | 4 ++-- spacy/tokens/doc.pyx | 6 +++--- spacy/tokens/{_serialize.py => doc_bin.py} | 2 +- spacy/tokens/{_retokenize.pyi => retokenizer.pyi} | 0 spacy/tokens/{_retokenize.pyx => retokenizer.pyx} | 0 spacy/tokens/{_dict_proxies.py => span_groups.py} | 0 14 files changed, 14 insertions(+), 14 deletions(-) rename spacy/ml/{_character_embed.py => character_embed.py} (100%) rename spacy/tokens/{_serialize.py => doc_bin.py} (99%) rename spacy/tokens/{_retokenize.pyi => retokenizer.pyi} (100%) rename spacy/tokens/{_retokenize.pyx => retokenizer.pyx} (100%) rename spacy/tokens/{_dict_proxies.py => span_groups.py} (100%) diff --git a/setup.py b/setup.py index ec1bd35fa..8e0ef93d4 100755 --- a/setup.py +++ b/setup.py @@ -60,7 +60,7 @@ MOD_NAMES = [ "spacy.tokens.span_group", "spacy.tokens.graph", "spacy.tokens.morphanalysis", - "spacy.tokens._retokenize", + "spacy.tokens.retokenizer", "spacy.matcher.matcher", "spacy.matcher.phrasematcher", "spacy.matcher.dependencymatcher", diff --git a/spacy/ml/_character_embed.py b/spacy/ml/character_embed.py similarity index 100% rename from spacy/ml/_character_embed.py rename to spacy/ml/character_embed.py diff --git a/spacy/ml/models/tok2vec.py b/spacy/ml/models/tok2vec.py index 30c7360ff..79772ad80 100644 --- a/spacy/ml/models/tok2vec.py +++ b/spacy/ml/models/tok2vec.py @@ -7,7 +7,7 @@ from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM from ...tokens import Doc from ...util import registry from ...errors import Errors -from ...ml import _character_embed +from ...ml import character_embed from ..staticvectors import StaticVectors from ..featureextractor import FeatureExtractor from ...pipeline.tok2vec import Tok2VecListener @@ -226,7 +226,7 @@ def CharacterEmbed( if feature is None: raise ValueError(Errors.E911.format(feat=feature)) char_embed = chain( - _character_embed.CharacterEmbed(nM=nM, nC=nC), + character_embed.CharacterEmbed(nM=nM, nC=nC), cast(Model[List[Floats2d], Ragged], list2ragged()), ) feature_extractor: Model[List[Doc], Ragged] = chain( diff --git a/spacy/pipeline/attribute_ruler.py b/spacy/pipeline/attribute_ruler.py index 0d9494865..ac998a61d 100644 --- a/spacy/pipeline/attribute_ruler.py +++ b/spacy/pipeline/attribute_ruler.py @@ -11,7 +11,7 @@ from ..matcher import Matcher from ..scorer import Scorer from ..symbols import IDS from ..tokens import Doc, Span -from ..tokens._retokenize import normalize_token_attrs, set_token_attrs +from ..tokens.retokenizer import normalize_token_attrs, set_token_attrs from ..vocab import Vocab from ..util import SimpleFrozenList, registry from .. import util diff --git a/spacy/tests/pipeline/test_models.py b/spacy/tests/pipeline/test_models.py index e3fd28d0f..50ad94422 100644 --- a/spacy/tests/pipeline/test_models.py +++ b/spacy/tests/pipeline/test_models.py @@ -9,7 +9,7 @@ from thinc.types import Array2d, Ragged from spacy.lang.en import English from spacy.ml import FeatureExtractor, StaticVectors -from spacy.ml._character_embed import CharacterEmbed +from spacy.ml.character_embed import CharacterEmbed from spacy.tokens import Doc diff --git a/spacy/tests/pipeline/test_spancat.py b/spacy/tests/pipeline/test_spancat.py index 15256a763..95e9aeb57 100644 --- a/spacy/tests/pipeline/test_spancat.py +++ b/spacy/tests/pipeline/test_spancat.py @@ -7,7 +7,7 @@ from spacy import util from spacy.lang.en import English from spacy.language import Language from spacy.tokens import SpanGroup -from spacy.tokens._dict_proxies import SpanGroups +from spacy.tokens.span_groups import SpanGroups from spacy.training import Example from spacy.util import fix_random_seed, registry, make_tempdir diff --git a/spacy/tests/serialize/test_serialize_span_groups.py b/spacy/tests/serialize/test_serialize_span_groups.py index 85313fcdc..c1c910fa1 100644 --- a/spacy/tests/serialize/test_serialize_span_groups.py +++ b/spacy/tests/serialize/test_serialize_span_groups.py @@ -1,7 +1,7 @@ import pytest from spacy.tokens import Span, SpanGroup -from spacy.tokens._dict_proxies import SpanGroups +from spacy.tokens.span_groups import SpanGroups @pytest.mark.issue(10685) diff --git a/spacy/tokens/__init__.py b/spacy/tokens/__init__.py index 64090925d..cb0911283 100644 --- a/spacy/tokens/__init__.py +++ b/spacy/tokens/__init__.py @@ -2,7 +2,7 @@ from .doc import Doc from .token import Token from .span import Span from .span_group import SpanGroup -from ._serialize import DocBin +from .doc_bin import DocBin from .morphanalysis import MorphAnalysis __all__ = ["Doc", "Token", "Span", "SpanGroup", "DocBin", "MorphAnalysis"] diff --git a/spacy/tokens/doc.pyi b/spacy/tokens/doc.pyi index a40fa74aa..ae1324a8a 100644 --- a/spacy/tokens/doc.pyi +++ b/spacy/tokens/doc.pyi @@ -4,8 +4,8 @@ from cymem.cymem import Pool from thinc.types import Floats1d, Floats2d, Ints2d from .span import Span from .token import Token -from ._dict_proxies import SpanGroups -from ._retokenize import Retokenizer +from .span_groups import SpanGroups +from .retokenizer import Retokenizer from ..lexeme import Lexeme from ..vocab import Vocab from .underscore import Underscore diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index 3c69b6ad8..2956f357c 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -19,7 +19,7 @@ import warnings from .span cimport Span from .token cimport MISSING_DEP -from ._dict_proxies import SpanGroups +from .span_groups import SpanGroups from .token cimport Token from ..lexeme cimport Lexeme, EMPTY_LEXEME from ..typedefs cimport attr_t, flags_t @@ -35,8 +35,8 @@ from .. import util from .. import parts_of_speech from .. import schemas from .underscore import Underscore, get_ext_args -from ._retokenize import Retokenizer -from ._serialize import ALL_ATTRS as DOCBIN_ALL_ATTRS +from .retokenizer import Retokenizer +from .doc_bin import ALL_ATTRS as DOCBIN_ALL_ATTRS from ..util import get_words_and_spaces DEF PADDING = 5 diff --git a/spacy/tokens/_serialize.py b/spacy/tokens/doc_bin.py similarity index 99% rename from spacy/tokens/_serialize.py rename to spacy/tokens/doc_bin.py index c4e8f26f4..c107aa25d 100644 --- a/spacy/tokens/_serialize.py +++ b/spacy/tokens/doc_bin.py @@ -12,7 +12,7 @@ from ..compat import copy_reg from ..attrs import SPACY, ORTH, intify_attr, IDS from ..errors import Errors from ..util import ensure_path, SimpleFrozenList -from ._dict_proxies import SpanGroups +from .span_groups import SpanGroups # fmt: off ALL_ATTRS = ("ORTH", "NORM", "TAG", "HEAD", "DEP", "ENT_IOB", "ENT_TYPE", "ENT_KB_ID", "ENT_ID", "LEMMA", "MORPH", "POS", "SENT_START") diff --git a/spacy/tokens/_retokenize.pyi b/spacy/tokens/retokenizer.pyi similarity index 100% rename from spacy/tokens/_retokenize.pyi rename to spacy/tokens/retokenizer.pyi diff --git a/spacy/tokens/_retokenize.pyx b/spacy/tokens/retokenizer.pyx similarity index 100% rename from spacy/tokens/_retokenize.pyx rename to spacy/tokens/retokenizer.pyx diff --git a/spacy/tokens/_dict_proxies.py b/spacy/tokens/span_groups.py similarity index 100% rename from spacy/tokens/_dict_proxies.py rename to spacy/tokens/span_groups.py From 5ae63b1fbd549fdfc0f7399c0b9656d4a6681544 Mon Sep 17 00:00:00 2001 From: "Patrick J. Burns" Date: Tue, 30 Aug 2022 08:04:54 -0400 Subject: [PATCH 126/138] Add Latin language support (#11349) * Add lang folder for la (Latin) * Add Latin lang classes * Add minimal tokenizer exceptions * Add minimal stopwords * Add minimal lex_attrs * Update stopwords, tokenizer exceptions * Add la tests; register la_tokenizer in conftest.py * Update spacy/lang/la/lex_attrs.py Remove duplicate form in Latin lex_attrs Co-authored-by: Sofie Van Landeghem * Update natto-py version spec (#11222) * Update natto-py version spec * Update setup.cfg Co-authored-by: Adriane Boyd Co-authored-by: Adriane Boyd * Add scorer to textcat API docs config settings (#11263) * Update docs for pipeline initialize() methods (#11221) * Update documentation for dependency parser * Update documentation for trainable_lemmatizer * Update documentation for entity_linker * Update documentation for ner * Update documentation for morphologizer * Update documentation for senter * Update documentation for spancat * Update documentation for tagger * Update documentation for textcat * Update documentation for tok2vec * Run prettier on edited files * Apply similar changes in transformer docs * Remove need to say annotated example explicitly I removed the need to say "Must contain at least one annotated Example" because it's often a given that Examples will contain some gold-standard annotation. * Run prettier on transformer docs * chore: add 'concepCy' to spacy universe (#11255) * chore: add 'concepCy' to spacy universe * docs: add 'slogan' to concepCy * Support full prerelease versions in the compat table (#11228) * Support full prerelease versions in the compat table * Fix types * adding spans to doc_annotation in Example.to_dict (#11261) * adding spans to doc_annotation in Example.to_dict * to_dict compatible with from_dict: tuples instead of spans * use strings for label and kb_id * Simplify test * Update data formats docs Co-authored-by: Stefanie Wolf Co-authored-by: Adriane Boyd * Fix regex invalid escape sequences (#11276) * Add W605 to the errors raised by flake8 in the CI (#11283) * Clean up automated label-based issue handling (#11284) * Clean up automated label-based issue handline 1. upgrade tiangolo/issue-manager to latest 2. move needs-more-info to tiangolo 3. change needs-more-info close time to 7 days 4. delete old needs-more-info config * Use old, longer message * Fix label name * Fix Dutch noun chunks to skip overlapping spans (#11275) * Add test for overlapping noun chunks * Skip overlapping noun chunks * Update spacy/tests/lang/nl/test_noun_chunks.py Co-authored-by: Sofie Van Landeghem Co-authored-by: Sofie Van Landeghem * Docs: displaCy documentation - data types, `parse_{deps,ents,spans}`, spans example (#10950) * add in spans example and parse references * rm autoformatter * rm extra ents copy * TypedDict draft * type fixes * restore non-documentation files * docs update * fix spans example * fix hyperlinks * add parse example * example fix + argument fix * fix api arg in docs * fix bad variable replacement * fix spacing in style Co-authored-by: Sofie Van Landeghem * fix spacing on table * fix spacing on table * rm temp files Co-authored-by: Sofie Van Landeghem * include span_ruler for default warning filter (#11333) * Add uk pipelines to website (#11332) * Check for . in factory names (#11336) * Make fixes for PR #11349 * Fix roman numeral coverage in #11349 Co-authored-by: Patrick J. Burns Co-authored-by: Sofie Van Landeghem Co-authored-by: Paul O'Leary McCann Co-authored-by: Adriane Boyd Co-authored-by: Lj Miranda <12949683+ljvmiranda921@users.noreply.github.com> Co-authored-by: Jules Belveze <32683010+JulesBelveze@users.noreply.github.com> Co-authored-by: stefawolf Co-authored-by: Stefanie Wolf Co-authored-by: Peter Baumgartner <5107405+pmbaumgartner@users.noreply.github.com> --- spacy/lang/la/__init__.py | 18 +++++++++++++ spacy/lang/la/lex_attrs.py | 32 +++++++++++++++++++++++ spacy/lang/la/stop_words.py | 37 +++++++++++++++++++++++++++ spacy/lang/la/tokenizer_exceptions.py | 30 ++++++++++++++++++++++ spacy/tests/conftest.py | 5 ++++ spacy/tests/lang/la/__init__.py | 0 spacy/tests/lang/la/test_exception.py | 7 +++++ spacy/tests/lang/la/test_text.py | 33 ++++++++++++++++++++++++ website/docs/api/top-level.md | 2 +- 9 files changed, 163 insertions(+), 1 deletion(-) create mode 100644 spacy/lang/la/__init__.py create mode 100644 spacy/lang/la/lex_attrs.py create mode 100644 spacy/lang/la/stop_words.py create mode 100644 spacy/lang/la/tokenizer_exceptions.py create mode 100644 spacy/tests/lang/la/__init__.py create mode 100644 spacy/tests/lang/la/test_exception.py create mode 100644 spacy/tests/lang/la/test_text.py diff --git a/spacy/lang/la/__init__.py b/spacy/lang/la/__init__.py new file mode 100644 index 000000000..5f2cccee3 --- /dev/null +++ b/spacy/lang/la/__init__.py @@ -0,0 +1,18 @@ +from ...language import Language, BaseDefaults +from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS +from .stop_words import STOP_WORDS +from .lex_attrs import LEX_ATTRS + + +class LatinDefaults(BaseDefaults): + tokenizer_exceptions = TOKENIZER_EXCEPTIONS + stop_words = STOP_WORDS + lex_attr_getters = LEX_ATTRS + + +class Latin(Language): + lang = "la" + Defaults = LatinDefaults + + +__all__ = ["Latin"] diff --git a/spacy/lang/la/lex_attrs.py b/spacy/lang/la/lex_attrs.py new file mode 100644 index 000000000..9348a811a --- /dev/null +++ b/spacy/lang/la/lex_attrs.py @@ -0,0 +1,32 @@ +from ...attrs import LIKE_NUM +import re + +# cf. Goyvaerts/Levithan 2009; case-insensitive, allow 4 +roman_numerals_compile = re.compile(r'(?i)^(?=[MDCLXVI])M*(C[MD]|D?C{0,4})(X[CL]|L?X{0,4})(I[XV]|V?I{0,4})$') + +_num_words = set( + """ +unus una unum duo duae tres tria quattuor quinque sex septem octo novem decem +""".split() +) + +_ordinal_words = set( + """ +primus prima primum secundus secunda secundum tertius tertia tertium +""".split() +) + + +def like_num(text): + if text.isdigit(): + return True + if roman_numerals_compile.match(text): + return True + if text.lower() in _num_words: + return True + if text.lower() in _ordinal_words: + return True + return False + + +LEX_ATTRS = {LIKE_NUM: like_num} diff --git a/spacy/lang/la/stop_words.py b/spacy/lang/la/stop_words.py new file mode 100644 index 000000000..8b590bb67 --- /dev/null +++ b/spacy/lang/la/stop_words.py @@ -0,0 +1,37 @@ +# Corrected Perseus list, cf. https://wiki.digitalclassicist.org/Stopwords_for_Greek_and_Latin + +STOP_WORDS = set( + """ +ab ac ad adhuc aliqui aliquis an ante apud at atque aut autem + +cum cur + +de deinde dum + +ego enim ergo es est et etiam etsi ex + +fio + +haud hic + +iam idem igitur ille in infra inter interim ipse is ita + +magis modo mox + +nam ne nec necque neque nisi non nos + +o ob + +per possum post pro + +quae quam quare qui quia quicumque quidem quilibet quis quisnam quisquam quisque quisquis quo quoniam + +sed si sic sive sub sui sum super suus + +tam tamen trans tu tum + +ubi uel uero + +vel vero +""".split() +) diff --git a/spacy/lang/la/tokenizer_exceptions.py b/spacy/lang/la/tokenizer_exceptions.py new file mode 100644 index 000000000..905304188 --- /dev/null +++ b/spacy/lang/la/tokenizer_exceptions.py @@ -0,0 +1,30 @@ +from ..tokenizer_exceptions import BASE_EXCEPTIONS +from ...symbols import ORTH +from ...util import update_exc + + +## TODO: Look into systematically handling u/v +_exc = { + "mecum": [{ORTH: "me"}, {ORTH: "cum"}], + "tecum": [{ORTH: "te"}, {ORTH: "cum"}], + "nobiscum": [{ORTH: "nobis"}, {ORTH: "cum"}], + "vobiscum": [{ORTH: "vobis"}, {ORTH: "cum"}], + "uobiscum": [{ORTH: "uobis"}, {ORTH: "cum"}], +} + +for orth in [ + + 'A.', 'Agr.', 'Ap.', 'C.', 'Cn.', 'D.', 'F.', 'K.', 'L.', "M'.", 'M.', 'Mam.', 'N.', 'Oct.', + 'Opet.', 'P.', 'Paul.', 'Post.', 'Pro.', 'Q.', 'S.', 'Ser.', 'Sert.', 'Sex.', 'St.', 'Sta.', + 'T.', 'Ti.', 'V.', 'Vol.', 'Vop.', 'U.', 'Uol.', 'Uop.', + + 'Ian.', 'Febr.', 'Mart.', 'Apr.', 'Mai.', 'Iun.', 'Iul.', 'Aug.', 'Sept.', 'Oct.', 'Nov.', 'Nou.', + 'Dec.', + + 'Non.', 'Id.', 'A.D.', + + 'Coll.', 'Cos.', 'Ord.', 'Pl.', 'S.C.', 'Suff.', 'Trib.', +]: + _exc[orth] = [{ORTH: orth}] + +TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index 5193bd301..0395ba7ca 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -256,6 +256,11 @@ def ko_tokenizer_tokenizer(): return nlp.tokenizer +@pytest.fixture(scope="module") +def la_tokenizer(): + return get_lang_class("la")().tokenizer + + @pytest.fixture(scope="session") def lb_tokenizer(): return get_lang_class("lb")().tokenizer diff --git a/spacy/tests/lang/la/__init__.py b/spacy/tests/lang/la/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/la/test_exception.py b/spacy/tests/lang/la/test_exception.py new file mode 100644 index 000000000..04bc1d489 --- /dev/null +++ b/spacy/tests/lang/la/test_exception.py @@ -0,0 +1,7 @@ +import pytest + +def test_la_tokenizer_handles_exc_in_text(la_tokenizer): + text = "scio te omnia facturum, ut nobiscum quam primum sis" + tokens = la_tokenizer(text) + assert len(tokens) == 11 + assert tokens[6].text == "nobis" diff --git a/spacy/tests/lang/la/test_text.py b/spacy/tests/lang/la/test_text.py new file mode 100644 index 000000000..11676b92b --- /dev/null +++ b/spacy/tests/lang/la/test_text.py @@ -0,0 +1,33 @@ +import pytest +from spacy.lang.la.lex_attrs import like_num + +@pytest.mark.parametrize( + "text,match", + [ + ("IIII", True), + ("VI", True), + ("vi", True), + ("IV", True), + ("iv", True), + ("IX", True), + ("ix", True), + ("MMXXII", True), + ("0", True), + ("1", True), + ("quattuor", True), + ("decem", True), + ("tertius", True), + ("canis", False), + ("MMXX11", False), + (",", False), + ], +) +def test_lex_attrs_like_number(la_tokenizer, text, match): + tokens = la_tokenizer(text) + assert len(tokens) == 1 + assert tokens[0].like_num == match + +@pytest.mark.parametrize("word", ["quinque"]) +def test_la_lex_attrs_capitals(word): + assert like_num(word) + assert like_num(word.upper()) diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index c3dc42f1a..724f2775e 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -451,7 +451,7 @@ factories. | Registry name | Description | | ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `architectures` | Registry for functions that create [model architectures](/api/architectures). Can be used to register custom model architectures and reference them in the `config.cfg`. | -| `augmenters` | Registry for functions that create [data augmentation](#augmenters) callbacks for corpora and other training data iterators. | +| `augmenters` | Registry for functions that create [data augmentation](#augmenters) callbacks for corpora and other training data iterators. | | `batchers` | Registry for training and evaluation [data batchers](#batchers). | | `callbacks` | Registry for custom callbacks to [modify the `nlp` object](/usage/training#custom-code-nlp-callbacks) before training. | | `displacy_colors` | Registry for custom color scheme for the [`displacy` NER visualizer](/usage/visualizers). Automatically reads from [entry points](/usage/saving-loading#entry-points). | From 3f4b4b7b4fa2df6c5d888cdc97efb71093d3fb6b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 30 Aug 2022 14:21:02 +0200 Subject: [PATCH 127/138] Fix `test_{prefer,require}_gpu` (#11390) * Fix `test_{prefer,require}_gpu` These tests assumed that GPUs are only supported with CuPy, but since Thinc 8.1 we also support Metal Performance Shaders. * test_misc: arrange thinc imports to be together --- spacy/tests/test_misc.py | 25 ++++++++++++------------- 1 file changed, 12 insertions(+), 13 deletions(-) diff --git a/spacy/tests/test_misc.py b/spacy/tests/test_misc.py index d8743d322..1c9b045ac 100644 --- a/spacy/tests/test_misc.py +++ b/spacy/tests/test_misc.py @@ -10,7 +10,8 @@ from spacy.ml._precomputable_affine import _backprop_precomputable_affine_paddin from spacy.util import dot_to_object, SimpleFrozenList, import_file from spacy.util import to_ternary_int from thinc.api import Config, Optimizer, ConfigValidationError -from thinc.api import set_current_ops +from thinc.api import get_current_ops, set_current_ops, NumpyOps, CupyOps, MPSOps +from thinc.compat import has_cupy_gpu, has_torch_mps_gpu from spacy.training.batchers import minibatch_by_words from spacy.lang.en import English from spacy.lang.nl import Dutch @@ -18,7 +19,6 @@ from spacy.language import DEFAULT_CONFIG_PATH from spacy.schemas import ConfigSchemaTraining, TokenPattern, TokenPatternSchema from pydantic import ValidationError -from thinc.api import get_current_ops, NumpyOps, CupyOps from .util import get_random_doc, make_tempdir @@ -111,26 +111,25 @@ def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2): def test_prefer_gpu(): current_ops = get_current_ops() - try: - import cupy # noqa: F401 - - prefer_gpu() + if has_cupy_gpu: + assert prefer_gpu() assert isinstance(get_current_ops(), CupyOps) - except ImportError: + elif has_torch_mps_gpu: + assert prefer_gpu() + assert isinstance(get_current_ops(), MPSOps) + else: assert not prefer_gpu() set_current_ops(current_ops) def test_require_gpu(): current_ops = get_current_ops() - try: - import cupy # noqa: F401 - + if has_cupy_gpu: require_gpu() assert isinstance(get_current_ops(), CupyOps) - except ImportError: - with pytest.raises(ValueError): - require_gpu() + elif has_torch_mps_gpu: + require_gpu() + assert isinstance(get_current_ops(), MPSOps) set_current_ops(current_ops) From 698b8b495f1baf2e30e2f622f4725c047feb03d1 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Tue, 30 Aug 2022 22:40:31 +0900 Subject: [PATCH 128/138] Update/remove old Matcher syntax (#11370) * Clean up old Matcher call style related stuff In v2 Matcher.add was called with (key, on_match, *patterns). In v3 this was changed to (key, patterns, *, on_match=None), but there were various points where the old call syntax was documented or handled specially. This removes all those. The Matcher itself didn't need any code changes, as it just gives a generic type error. However the PhraseMatcher required some changes because it would automatically "fix" the old call style. Surprisingly, the tokenizer was still using the old call style in one place. After these changes tests failed in two places: 1. one test for the "new" call style, including the "old" call style. I removed this test. 2. deserializing the PhraseMatcher fails because the input docs are a set. I am not sure why 2 is happening - I guess it's a quirk of the serialization format? - so for now I just convert the set to a list when deserializing. The check that the input Docs are a List in the PhraseMatcher is a new check, but makes it parallel with the other Matchers, which seemed like the right thing to do. * Add notes related to input docs / deserialization type * Remove Typing import * Remove old note about call style change * Apply suggestions from code review Co-authored-by: Adriane Boyd * Use separate method for setting internal doc representations In addition to the title change, this changes the internal dict to be a defaultdict, instead of a dict with frequent use of setdefault. * Add _add_from_arrays for unpickling * Cleanup around adding from arrays This moves adding to internal structures into the private batch method, and removes the single-add method. This has one behavioral change for `add`, in that if something is wrong with the list of input Docs (such as one of the items not being a Doc), valid items before the invalid one will not be added. Also the callback will not be updated if anything is invalid. This change should not be significant. This also adds a test to check failure when given a non-Doc. * Update spacy/matcher/phrasematcher.pyx Co-authored-by: Adriane Boyd Co-authored-by: Adriane Boyd --- spacy/errors.py | 7 +- spacy/matcher/dependencymatcher.pyx | 6 +- spacy/matcher/matcher.pyx | 6 +- spacy/matcher/phrasematcher.pyi | 9 ++ spacy/matcher/phrasematcher.pyx | 113 +++++++++++---------- spacy/tests/matcher/test_phrase_matcher.py | 29 ++---- spacy/tokenizer.pyx | 2 +- website/docs/api/matcher.md | 16 +-- website/docs/api/phrasematcher.md | 22 +--- 9 files changed, 95 insertions(+), 115 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index 608305a06..17346425c 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -487,7 +487,7 @@ class Errors(metaclass=ErrorsWithCodes): "Current DocBin: {current}\nOther DocBin: {other}") E169 = ("Can't find module: {module}") E170 = ("Cannot apply transition {name}: invalid for the current state.") - E171 = ("Matcher.add received invalid 'on_match' callback argument: expected " + E171 = ("{name}.add received invalid 'on_match' callback argument: expected " "callable or None, but got: {arg_type}") E175 = ("Can't remove rule for unknown match pattern ID: {key}") E176 = ("Alias '{alias}' is not defined in the Knowledge Base.") @@ -738,7 +738,7 @@ class Errors(metaclass=ErrorsWithCodes): "loaded nlp object, but got: {source}") E947 = ("`Matcher.add` received invalid `greedy` argument: expected " "a string value from {expected} but got: '{arg}'") - E948 = ("`Matcher.add` received invalid 'patterns' argument: expected " + E948 = ("`{name}.add` received invalid 'patterns' argument: expected " "a list, but got: {arg_type}") E949 = ("Unable to align tokens for the predicted and reference docs. It " "is only possible to align the docs when both texts are the same " @@ -941,6 +941,9 @@ class Errors(metaclass=ErrorsWithCodes): E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got " "{value}.") + # v4 error strings + E4000 = ("Expected a Doc as input, but got: '{type}'") + # Deprecated model shortcuts, only used in errors and warnings OLD_MODEL_SHORTCUTS = { diff --git a/spacy/matcher/dependencymatcher.pyx b/spacy/matcher/dependencymatcher.pyx index 74c2d002f..4c6004907 100644 --- a/spacy/matcher/dependencymatcher.pyx +++ b/spacy/matcher/dependencymatcher.pyx @@ -165,9 +165,9 @@ cdef class DependencyMatcher: on_match (callable): Optional callback executed on match. """ if on_match is not None and not hasattr(on_match, "__call__"): - raise ValueError(Errors.E171.format(arg_type=type(on_match))) - if patterns is None or not isinstance(patterns, List): # old API - raise ValueError(Errors.E948.format(arg_type=type(patterns))) + raise ValueError(Errors.E171.format(name="DependencyMatcher", arg_type=type(on_match))) + if patterns is None or not isinstance(patterns, List): + raise ValueError(Errors.E948.format(name="DependencyMatcher", arg_type=type(patterns))) for pattern in patterns: if len(pattern) == 0: raise ValueError(Errors.E012.format(key=key)) diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx index fcbcee02c..bee087260 100644 --- a/spacy/matcher/matcher.pyx +++ b/spacy/matcher/matcher.pyx @@ -110,9 +110,9 @@ cdef class Matcher: """ errors = {} if on_match is not None and not hasattr(on_match, "__call__"): - raise ValueError(Errors.E171.format(arg_type=type(on_match))) - if patterns is None or not isinstance(patterns, List): # old API - raise ValueError(Errors.E948.format(arg_type=type(patterns))) + raise ValueError(Errors.E171.format(name="Matcher", arg_type=type(on_match))) + if patterns is None or not isinstance(patterns, List): + raise ValueError(Errors.E948.format(name="Matcher", arg_type=type(patterns))) if greedy is not None and greedy not in ["FIRST", "LONGEST"]: raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy)) for i, pattern in enumerate(patterns): diff --git a/spacy/matcher/phrasematcher.pyi b/spacy/matcher/phrasematcher.pyi index 68e3386e4..670c87409 100644 --- a/spacy/matcher/phrasematcher.pyi +++ b/spacy/matcher/phrasematcher.pyi @@ -20,6 +20,15 @@ class PhraseMatcher: Callable[[Matcher, Doc, int, List[Tuple[Any, ...]]], Any] ] = ..., ) -> None: ... + def _add_from_arrays( + self, + key: str, + specs: List[List[int]], + *, + on_match: Optional[ + Callable[[Matcher, Doc, int, List[Tuple[Any, ...]]], Any] + ] = ..., + ) -> None: ... def remove(self, key: str) -> None: ... @overload def __call__( diff --git a/spacy/matcher/phrasematcher.pyx b/spacy/matcher/phrasematcher.pyx index 382029872..ebe1213c7 100644 --- a/spacy/matcher/phrasematcher.pyx +++ b/spacy/matcher/phrasematcher.pyx @@ -1,4 +1,6 @@ # cython: infer_types=True, profile=True +from typing import List +from collections import defaultdict from libc.stdint cimport uintptr_t from preshed.maps cimport map_init, map_set, map_get, map_clear, map_iter @@ -39,7 +41,7 @@ cdef class PhraseMatcher: """ self.vocab = vocab self._callbacks = {} - self._docs = {} + self._docs = defaultdict(set) self._validate = validate self.mem = Pool() @@ -155,66 +157,24 @@ cdef class PhraseMatcher: del self._callbacks[key] del self._docs[key] - def add(self, key, docs, *_docs, on_match=None): - """Add a match-rule to the phrase-matcher. A match-rule consists of: an ID - key, an on_match callback, and one or more patterns. - Since spaCy v2.2.2, PhraseMatcher.add takes a list of patterns as the - second argument, with the on_match callback as an optional keyword - argument. + def _add_from_arrays(self, key, specs, *, on_match=None): + """Add a preprocessed list of specs, with an optional callback. key (str): The match ID. - docs (list): List of `Doc` objects representing match patterns. + specs (List[List[int]]): A list of lists of hashes to match. on_match (callable): Callback executed on match. - *_docs (Doc): For backwards compatibility: list of patterns to add - as variable arguments. Will be ignored if a list of patterns is - provided as the second argument. - - DOCS: https://spacy.io/api/phrasematcher#add """ - if docs is None or hasattr(docs, "__call__"): # old API - on_match = docs - docs = _docs - - _ = self.vocab[key] - self._callbacks[key] = on_match - self._docs.setdefault(key, set()) - cdef MapStruct* current_node cdef MapStruct* internal_node cdef void* result - if isinstance(docs, Doc): - raise ValueError(Errors.E179.format(key=key)) - for doc in docs: - if len(doc) == 0: - continue - if isinstance(doc, Doc): - attrs = (TAG, POS, MORPH, LEMMA, DEP) - has_annotation = {attr: doc.has_annotation(attr) for attr in attrs} - for attr in attrs: - if self.attr == attr and not has_annotation[attr]: - if attr == TAG: - pipe = "tagger" - elif attr in (POS, MORPH): - pipe = "morphologizer or tagger+attribute_ruler" - elif attr == LEMMA: - pipe = "lemmatizer" - elif attr == DEP: - pipe = "parser" - error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr)) - raise ValueError(error_msg) - if self._validate and any(has_annotation.values()) \ - and self.attr not in attrs: - string_attr = self.vocab.strings[self.attr] - warnings.warn(Warnings.W012.format(key=key, attr=string_attr)) - keyword = self._convert_to_array(doc) - else: - keyword = doc - self._docs[key].add(tuple(keyword)) + self._callbacks[key] = on_match + for spec in specs: + self._docs[key].add(tuple(spec)) current_node = self.c_map - for token in keyword: + for token in spec: if token == self._terminal_hash: warnings.warn(Warnings.W021) break @@ -233,6 +193,57 @@ cdef class PhraseMatcher: result = internal_node map_set(self.mem, result, self.vocab.strings[key], NULL) + + def add(self, key, docs, *, on_match=None): + """Add a match-rule to the phrase-matcher. A match-rule consists of: an ID + key, a list of one or more patterns, and (optionally) an on_match callback. + + key (str): The match ID. + docs (list): List of `Doc` objects representing match patterns. + on_match (callable): Callback executed on match. + + If any of the input Docs are invalid, no internal state will be updated. + + DOCS: https://spacy.io/api/phrasematcher#add + """ + if isinstance(docs, Doc): + raise ValueError(Errors.E179.format(key=key)) + if docs is None or not isinstance(docs, List): + raise ValueError(Errors.E948.format(name="PhraseMatcher", arg_type=type(docs))) + if on_match is not None and not hasattr(on_match, "__call__"): + raise ValueError(Errors.E171.format(name="PhraseMatcher", arg_type=type(on_match))) + + _ = self.vocab[key] + specs = [] + + for doc in docs: + if len(doc) == 0: + continue + if not isinstance(doc, Doc): + raise ValueError(Errors.E4000.format(type=type(doc))) + + attrs = (TAG, POS, MORPH, LEMMA, DEP) + has_annotation = {attr: doc.has_annotation(attr) for attr in attrs} + for attr in attrs: + if self.attr == attr and not has_annotation[attr]: + if attr == TAG: + pipe = "tagger" + elif attr in (POS, MORPH): + pipe = "morphologizer or tagger+attribute_ruler" + elif attr == LEMMA: + pipe = "lemmatizer" + elif attr == DEP: + pipe = "parser" + error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr)) + raise ValueError(error_msg) + if self._validate and any(has_annotation.values()) \ + and self.attr not in attrs: + string_attr = self.vocab.strings[self.attr] + warnings.warn(Warnings.W012.format(key=key, attr=string_attr)) + specs.append(self._convert_to_array(doc)) + + self._add_from_arrays(key, specs, on_match=on_match) + def __call__(self, object doclike, *, as_spans=False): """Find all sequences matching the supplied patterns on the `Doc`. @@ -345,7 +356,7 @@ def unpickle_matcher(vocab, docs, callbacks, attr): matcher = PhraseMatcher(vocab, attr=attr) for key, specs in docs.items(): callback = callbacks.get(key, None) - matcher.add(key, specs, on_match=callback) + matcher._add_from_arrays(key, specs, on_match=callback) return matcher diff --git a/spacy/tests/matcher/test_phrase_matcher.py b/spacy/tests/matcher/test_phrase_matcher.py index 8a8d9eb84..b462b1878 100644 --- a/spacy/tests/matcher/test_phrase_matcher.py +++ b/spacy/tests/matcher/test_phrase_matcher.py @@ -198,28 +198,6 @@ def test_phrase_matcher_contains(en_vocab): assert "TEST2" not in matcher -def test_phrase_matcher_add_new_api(en_vocab): - doc = Doc(en_vocab, words=["a", "b"]) - patterns = [Doc(en_vocab, words=["a"]), Doc(en_vocab, words=["a", "b"])] - matcher = PhraseMatcher(en_vocab) - matcher.add("OLD_API", None, *patterns) - assert len(matcher(doc)) == 2 - matcher = PhraseMatcher(en_vocab) - on_match = Mock() - matcher.add("OLD_API_CALLBACK", on_match, *patterns) - assert len(matcher(doc)) == 2 - assert on_match.call_count == 2 - # New API: add(key: str, patterns: List[List[dict]], on_match: Callable) - matcher = PhraseMatcher(en_vocab) - matcher.add("NEW_API", patterns) - assert len(matcher(doc)) == 2 - matcher = PhraseMatcher(en_vocab) - on_match = Mock() - matcher.add("NEW_API_CALLBACK", patterns, on_match=on_match) - assert len(matcher(doc)) == 2 - assert on_match.call_count == 2 - - def test_phrase_matcher_repeated_add(en_vocab): matcher = PhraseMatcher(en_vocab) # match ID only gets added once @@ -468,6 +446,13 @@ def test_phrase_matcher_deprecated(en_vocab): assert "spaCy v3.0" in str(record.list[0].message) +def test_phrase_matcher_non_doc(en_vocab): + matcher = PhraseMatcher(en_vocab) + doc = Doc(en_vocab, words=["hello", "world"]) + with pytest.raises(ValueError): + matcher.add("TEST", [doc, "junk"]) + + @pytest.mark.parametrize("attr", ["SENT_START", "IS_SENT_START"]) def test_phrase_matcher_sent_start(en_vocab, attr): _ = PhraseMatcher(en_vocab, attr=attr) # noqa: F841 diff --git a/spacy/tokenizer.pyx b/spacy/tokenizer.pyx index 49ce6171a..ff8d85ac7 100644 --- a/spacy/tokenizer.pyx +++ b/spacy/tokenizer.pyx @@ -614,7 +614,7 @@ cdef class Tokenizer: self._rules[string] = substrings self._flush_cache() if not self.faster_heuristics or self.find_prefix(string) or self.find_infix(string) or self.find_suffix(string) or " " in string: - self._special_matcher.add(string, None, self._tokenize_affixes(string, False)) + self._special_matcher.add(string, [self._tokenize_affixes(string, False)]) def _reload_special_cases(self): self._flush_cache() diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md index 8cc446c6a..ff6923cf2 100644 --- a/website/docs/api/matcher.md +++ b/website/docs/api/matcher.md @@ -64,7 +64,7 @@ matched: > ``` | OP | Description | -|---------|------------------------------------------------------------------------| +| ------- | ---------------------------------------------------------------------- | | `!` | Negate the pattern, by requiring it to match exactly 0 times. | | `?` | Make the pattern optional, by allowing it to match 0 or 1 times. | | `+` | Require the pattern to match 1 or more times. | @@ -204,20 +204,6 @@ will be overwritten. > matches = matcher(doc) > ``` - - -As of spaCy v3.0, `Matcher.add` takes a list of patterns as the second argument -(instead of a variable number of arguments). The `on_match` callback becomes an -optional keyword argument. - -```diff -patterns = [[{"TEXT": "Google"}, {"TEXT": "Now"}], [{"TEXT": "GoogleNow"}]] -- matcher.add("GoogleNow", on_match, *patterns) -+ matcher.add("GoogleNow", patterns, on_match=on_match) -``` - - - | Name | Description | | ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | | `match_id` | An ID for the thing you're matching. ~~str~~ | diff --git a/website/docs/api/phrasematcher.md b/website/docs/api/phrasematcher.md index 2cef9ac2a..b06198916 100644 --- a/website/docs/api/phrasematcher.md +++ b/website/docs/api/phrasematcher.md @@ -116,10 +116,10 @@ Check whether the matcher contains rules for a match ID. ## PhraseMatcher.add {#add tag="method"} Add a rule to the matcher, consisting of an ID key, one or more patterns, and a -callback function to act on the matches. The callback function will receive the -arguments `matcher`, `doc`, `i` and `matches`. If a pattern already exists for -the given ID, the patterns will be extended. An `on_match` callback will be -overwritten. +optional callback function to act on the matches. The callback function will +receive the arguments `matcher`, `doc`, `i` and `matches`. If a pattern already +exists for the given ID, the patterns will be extended. An `on_match` callback +will be overwritten. > #### Example > @@ -134,20 +134,6 @@ overwritten. > matches = matcher(doc) > ``` - - -As of spaCy v3.0, `PhraseMatcher.add` takes a list of patterns as the second -argument (instead of a variable number of arguments). The `on_match` callback -becomes an optional keyword argument. - -```diff -patterns = [nlp("health care reform"), nlp("healthcare reform")] -- matcher.add("HEALTH", on_match, *patterns) -+ matcher.add("HEALTH", patterns, on_match=on_match) -``` - - - | Name | Description | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | | `key` | An ID for the thing you're matching. ~~str~~ | From 8fc0efc502da2f02076575e0887cb585d0e0f391 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Wed, 31 Aug 2022 09:02:34 +0200 Subject: [PATCH 129/138] Allow string argument for disable/enable/exclude (#11406) * adding unit test for spacy.load with disable/exclude string arg * allow pure strings in from_config * update docs * upstream type adjustements * docs update * make docstring more consistent * Update spacy/language.py Co-authored-by: Adriane Boyd * two more cleanups * fix type in internal method Co-authored-by: Adriane Boyd --- spacy/__init__.py | 12 ++--- spacy/language.py | 32 +++++++----- spacy/tests/pipeline/test_pipe_methods.py | 11 +++++ spacy/util.py | 60 +++++++++++------------ website/docs/api/language.md | 27 +++++----- website/docs/api/top-level.md | 58 +++++++++++----------- 6 files changed, 112 insertions(+), 88 deletions(-) diff --git a/spacy/__init__.py b/spacy/__init__.py index 069215fda..d60f46b96 100644 --- a/spacy/__init__.py +++ b/spacy/__init__.py @@ -31,21 +31,21 @@ def load( name: Union[str, Path], *, vocab: Union[Vocab, bool] = True, - disable: Iterable[str] = util.SimpleFrozenList(), - enable: Iterable[str] = util.SimpleFrozenList(), - exclude: Iterable[str] = util.SimpleFrozenList(), + disable: Union[str, Iterable[str]] = util.SimpleFrozenList(), + enable: Union[str, Iterable[str]] = util.SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = util.SimpleFrozenList(), config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(), ) -> Language: """Load a spaCy model from an installed package or a local path. name (str): Package name or model path. vocab (Vocab): A Vocab object. If True, a vocab is created. - disable (Iterable[str]): Names of pipeline components to disable. Disabled + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (but can be enabled later using nlp.enable_pipe). - exclude (Iterable[str]): Names of pipeline components to exclude. Excluded + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. diff --git a/spacy/language.py b/spacy/language.py index e89ae142b..ec330753c 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -1063,7 +1063,7 @@ class Language: """ if enable is None and disable is None: raise ValueError(Errors.E991) - if disable is not None and isinstance(disable, str): + if isinstance(disable, str): disable = [disable] if enable is not None: if isinstance(enable, str): @@ -1698,9 +1698,9 @@ class Language: config: Union[Dict[str, Any], Config] = {}, *, vocab: Union[Vocab, bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), meta: Dict[str, Any] = SimpleFrozenDict(), auto_fill: bool = True, validate: bool = True, @@ -1711,12 +1711,12 @@ class Language: config (Dict[str, Any] / Config): The loaded config. vocab (Vocab): A Vocab object. If True, a vocab is created. - disable (Iterable[str]): Names of pipeline components to disable. + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (and can be enabled using `nlp.enable_pipe`). - exclude (Iterable[str]): Names of pipeline components to exclude. + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. meta (Dict[str, Any]): Meta overrides for nlp.meta. auto_fill (bool): Automatically fill in missing values in config based @@ -1727,6 +1727,12 @@ class Language: DOCS: https://spacy.io/api/language#from_config """ + if isinstance(disable, str): + disable = [disable] + if isinstance(enable, str): + enable = [enable] + if isinstance(exclude, str): + exclude = [exclude] if auto_fill: config = Config( cls.default_config, section_order=CONFIG_SECTION_ORDER @@ -2031,25 +2037,29 @@ class Language: @staticmethod def _resolve_component_status( - disable: Iterable[str], enable: Iterable[str], pipe_names: Collection[str] + disable: Union[str, Iterable[str]], + enable: Union[str, Iterable[str]], + pipe_names: Iterable[str], ) -> Tuple[str, ...]: """Derives whether (1) `disable` and `enable` values are consistent and (2) resolves those to a single set of disabled components. Raises an error in case of inconsistency. - disable (Iterable[str]): Names of components or serialization fields to disable. - enable (Iterable[str]): Names of pipeline components to enable. + disable (Union[str, Iterable[str]]): Name(s) of component(s) or serialization fields to disable. + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. pipe_names (Iterable[str]): Names of all pipeline components. RETURNS (Tuple[str, ...]): Names of components to exclude from pipeline w.r.t. specified includes and excludes. """ - if disable is not None and isinstance(disable, str): + if isinstance(disable, str): disable = [disable] to_disable = disable if enable: + if isinstance(enable, str): + enable = [enable] to_disable = [ pipe_name for pipe_name in pipe_names if pipe_name not in enable ] diff --git a/spacy/tests/pipeline/test_pipe_methods.py b/spacy/tests/pipeline/test_pipe_methods.py index 6f00a1cd9..b946061f6 100644 --- a/spacy/tests/pipeline/test_pipe_methods.py +++ b/spacy/tests/pipeline/test_pipe_methods.py @@ -618,6 +618,7 @@ def test_load_disable_enable() -> None: base_nlp.to_disk(tmp_dir) to_disable = ["parser", "tagger"] to_enable = ["tagger", "parser"] + single_str = "tagger" # Setting only `disable`. nlp = spacy.load(tmp_dir, disable=to_disable) @@ -632,6 +633,16 @@ def test_load_disable_enable() -> None: ] ) + # Loading with a string representing one component + nlp = spacy.load(tmp_dir, exclude=single_str) + assert single_str not in nlp.component_names + + nlp = spacy.load(tmp_dir, disable=single_str) + assert single_str in nlp.component_names + assert single_str not in nlp.pipe_names + assert nlp._disabled == {single_str} + assert nlp.disabled == [single_str] + # Testing consistent enable/disable combination. nlp = spacy.load( tmp_dir, diff --git a/spacy/util.py b/spacy/util.py index d170fc15b..4e1a62d05 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -398,9 +398,9 @@ def load_model( name: Union[str, Path], *, vocab: Union["Vocab", bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": """Load a model from a package or data path. @@ -408,9 +408,9 @@ def load_model( name (str): Package name or model path. vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. - disable (Iterable[str]): Names of pipeline components to disable. - enable (Iterable[str]): Names of pipeline components to enable. All others will be disabled. - exclude (Iterable[str]): Names of pipeline components to exclude. + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All others will be disabled. + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. RETURNS (Language): The loaded nlp object. @@ -440,9 +440,9 @@ def load_model_from_package( name: str, *, vocab: Union["Vocab", bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": """Load a model from an installed package. @@ -450,12 +450,12 @@ def load_model_from_package( name (str): The package name. vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. - disable (Iterable[str]): Names of pipeline components to disable. Disabled + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (and can be enabled using `nlp.enable_pipe`). - exclude (Iterable[str]): Names of pipeline components to exclude. Excluded + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. @@ -470,9 +470,9 @@ def load_model_from_path( *, meta: Optional[Dict[str, Any]] = None, vocab: Union["Vocab", bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": """Load a model from a data directory path. Creates Language class with @@ -482,12 +482,12 @@ def load_model_from_path( meta (Dict[str, Any]): Optional model meta. vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. - disable (Iterable[str]): Names of pipeline components to disable. Disabled + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (and can be enabled using `nlp.enable_pipe`). - exclude (Iterable[str]): Names of pipeline components to exclude. Excluded + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. @@ -516,9 +516,9 @@ def load_model_from_config( *, meta: Dict[str, Any] = SimpleFrozenDict(), vocab: Union["Vocab", bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), auto_fill: bool = False, validate: bool = True, ) -> "Language": @@ -529,12 +529,12 @@ def load_model_from_config( meta (Dict[str, Any]): Optional model meta. vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. - disable (Iterable[str]): Names of pipeline components to disable. Disabled + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (and can be enabled using `nlp.enable_pipe`). - exclude (Iterable[str]): Names of pipeline components to exclude. Excluded + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. auto_fill (bool): Whether to auto-fill config with missing defaults. validate (bool): Whether to show config validation errors. @@ -616,9 +616,9 @@ def load_model_from_init_py( init_file: Union[Path, str], *, vocab: Union["Vocab", bool] = True, - disable: Iterable[str] = SimpleFrozenList(), - enable: Iterable[str] = SimpleFrozenList(), - exclude: Iterable[str] = SimpleFrozenList(), + disable: Union[str, Iterable[str]] = SimpleFrozenList(), + enable: Union[str, Iterable[str]] = SimpleFrozenList(), + exclude: Union[str, Iterable[str]] = SimpleFrozenList(), config: Union[Dict[str, Any], Config] = SimpleFrozenDict(), ) -> "Language": """Helper function to use in the `load()` method of a model package's @@ -626,12 +626,12 @@ def load_model_from_init_py( vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. - disable (Iterable[str]): Names of pipeline components to disable. Disabled + disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable. Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling nlp.enable_pipe. - enable (Iterable[str]): Names of pipeline components to enable. All other + enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other pipes will be disabled (and can be enabled using `nlp.enable_pipe`). - exclude (Iterable[str]): Names of pipeline components to exclude. Excluded + exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude. Excluded components won't be loaded. config (Dict[str, Any] / Config): Config overrides as nested dict or dict keyed by section values in dot notation. diff --git a/website/docs/api/language.md b/website/docs/api/language.md index 9a413efaf..ed763e36a 100644 --- a/website/docs/api/language.md +++ b/website/docs/api/language.md @@ -63,17 +63,18 @@ spaCy loads a model under the hood based on its > nlp = Language.from_config(config) > ``` -| Name | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `config` | The loaded config. ~~Union[Dict[str, Any], Config]~~ | -| _keyword-only_ | | -| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ | -| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [`nlp.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ | -| `exclude` | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | -| `meta` | [Meta data](/api/data-formats#meta) overrides. ~~Dict[str, Any]~~ | -| `auto_fill` | Whether to automatically fill in missing values in the config, based on defaults and function argument annotations. Defaults to `True`. ~~bool~~ | -| `validate` | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ | -| **RETURNS** | The initialized object. ~~Language~~ | +| Name | Description | +| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `config` | The loaded config. ~~Union[Dict[str, Any], Config]~~ | +| _keyword-only_ | | +| `vocab` | A `Vocab` object. If `True`, a vocab is created using the default language data settings. ~~Vocab~~ | +| `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled, but can be enabled again using [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `exclude` | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `meta` | [Meta data](/api/data-formats#meta) overrides. ~~Dict[str, Any]~~ | +| `auto_fill` | Whether to automatically fill in missing values in the config, based on defaults and function argument annotations. Defaults to `True`. ~~bool~~ | +| `validate` | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ | +| **RETURNS** | The initialized object. ~~Language~~ | ## Language.component {#component tag="classmethod" new="3"} @@ -695,8 +696,8 @@ As of spaCy v3.0, the `disable_pipes` method has been renamed to `select_pipes`: | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------ | | _keyword-only_ | | -| `disable` | Name(s) of pipeline components to disable. ~~Optional[Union[str, Iterable[str]]]~~ | -| `enable` | Name(s) of pipeline components that will not be disabled. ~~Optional[Union[str, Iterable[str]]]~~ | +| `disable` | Name(s) of pipeline component(s) to disable. ~~Optional[Union[str, Iterable[str]]]~~ | +| `enable` | Name(s) of pipeline component(s) that will not be disabled. ~~Optional[Union[str, Iterable[str]]]~~ | | **RETURNS** | The disabled pipes that can be restored by calling the object's `.restore()` method. ~~DisabledPipes~~ | ## Language.get_factory_meta {#get_factory_meta tag="classmethod" new="3"} diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index 724f2775e..220b2d6e9 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -45,16 +45,16 @@ specified separately using the new `exclude` keyword argument. > nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"]) > ``` -| Name | Description | -| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ | -| _keyword-only_ | | -| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | -| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | -| `enable` | Names of pipeline components to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled. ~~List[str]~~ | -| `exclude` 3 | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | -| `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | -| **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ | +| Name | Description | +| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `name` | Pipeline to load, i.e. package name or path. ~~Union[str, Path]~~ | +| _keyword-only_ | | +| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | +| `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled. ~~Union[str, Iterable[str]]~~ | +| `exclude` 3 | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | +| **RETURNS** | A `Language` object with the loaded pipeline. ~~Language~~ | Essentially, `spacy.load()` is a convenience wrapper that reads the pipeline's [`config.cfg`](/api/data-formats#config), uses the language and pipeline @@ -1049,15 +1049,16 @@ and create a `Language` object. The model data will then be loaded in via > nlp = util.load_model("/path/to/data") > ``` -| Name | Description | -| ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `name` | Package name or path. ~~str~~ | -| _keyword-only_ | | -| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | -| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [`nlp.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ | -| `exclude` 3 | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | -| `config` 3 | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | -| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ | +| Name | Description | +| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `name` | Package name or path. ~~str~~ | +| _keyword-only_ | | +| `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | +| `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled, but can be enabled again using [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `exclude` | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `config` 3 | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | +| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ | ### util.load_model_from_init_py {#util.load_model_from_init_py tag="function" new="2"} @@ -1073,15 +1074,16 @@ A helper function to use in the `load()` method of a pipeline package's > return load_model_from_init_py(__file__, **overrides) > ``` -| Name | Description | -| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `init_file` | Path to package's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ | -| _keyword-only_ | | -| `vocab` 3 | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | -| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ | -| `exclude` 3 | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ | -| `config` 3 | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | -| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ | +| Name | Description | +| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `init_file` | Path to package's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ | +| _keyword-only_ | | +| `vocab` 3 | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | +| `disable` | Name(s) of pipeline component(s) to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `enable` 3.4 | Name(s) of pipeline component(s) to [enable](/usage/processing-pipelines#disabling). All other pipes will be disabled, but can be enabled again using [`nlp.enable_pipe`](/api/language#enable_pipe). ~~Union[str, Iterable[str]]~~ | +| `exclude` 3 | Name(s) of pipeline component(s) to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~Union[str, Iterable[str]]~~ | +| `config` 3 | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ | +| **RETURNS** | `Language` class with the loaded pipeline. ~~Language~~ | ### util.load_config {#util.load_config tag="function" new="3"} From 604a7c3c26bcc6737a9676c3ba1b16c9ac705be3 Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Wed, 31 Aug 2022 09:03:20 +0200 Subject: [PATCH 130/138] `SpanGroup(s)`-related optimizations (#11380) * `SpanGroup`: Add support for binding copies to a new reference document * `SpanGroups`: Replace superfluous serialize-deserialize roundtrip in `copy` Instead, directly copy the in-memory representations of the constituent `SpanGroup`s. * Update `SpanGroup.copy()` signature * Rename `new_doc` param to `doc` * Fix kwdarg * Update `.pyi` file and docstrings * `mypy` fix * Update spacy/tokens/span_group.pyx * Update docs Co-authored-by: Adriane Boyd --- spacy/tokens/_dict_proxies.py | 3 ++- spacy/tokens/span_group.pyi | 4 ++-- spacy/tokens/span_group.pyx | 7 +++++-- website/docs/api/spangroup.md | 7 ++++--- 4 files changed, 13 insertions(+), 8 deletions(-) diff --git a/spacy/tokens/_dict_proxies.py b/spacy/tokens/_dict_proxies.py index 9630da261..6edcce13d 100644 --- a/spacy/tokens/_dict_proxies.py +++ b/spacy/tokens/_dict_proxies.py @@ -42,7 +42,8 @@ class SpanGroups(UserDict): def copy(self, doc: Optional["Doc"] = None) -> "SpanGroups": if doc is None: doc = self._ensure_doc() - return SpanGroups(doc).from_bytes(self.to_bytes()) + data_copy = ((k, v.copy(doc=doc)) for k, v in self.items()) + return SpanGroups(doc, items=data_copy) def setdefault(self, key, default=None): if not isinstance(default, SpanGroup): diff --git a/spacy/tokens/span_group.pyi b/spacy/tokens/span_group.pyi index 245eb4dbe..21cd124ab 100644 --- a/spacy/tokens/span_group.pyi +++ b/spacy/tokens/span_group.pyi @@ -1,4 +1,4 @@ -from typing import Any, Dict, Iterable +from typing import Any, Dict, Iterable, Optional from .doc import Doc from .span import Span @@ -24,4 +24,4 @@ class SpanGroup: def __getitem__(self, i: int) -> Span: ... def to_bytes(self) -> bytes: ... def from_bytes(self, bytes_data: bytes) -> SpanGroup: ... - def copy(self) -> SpanGroup: ... + def copy(self, doc: Optional[Doc] = ...) -> SpanGroup: ... diff --git a/spacy/tokens/span_group.pyx b/spacy/tokens/span_group.pyx index bb0fab24f..1aa3c0bc8 100644 --- a/spacy/tokens/span_group.pyx +++ b/spacy/tokens/span_group.pyx @@ -241,15 +241,18 @@ cdef class SpanGroup: cdef void push_back(self, SpanC span) nogil: self.c.push_back(span) - def copy(self) -> SpanGroup: + def copy(self, doc: Optional["Doc"] = None) -> SpanGroup: """Clones the span group. + doc (Doc): New reference document to which the copy is bound. RETURNS (SpanGroup): A copy of the span group. DOCS: https://spacy.io/api/spangroup#copy """ + if doc is None: + doc = self.doc return SpanGroup( - self.doc, + doc, name=self.name, attrs=deepcopy(self.attrs), spans=list(self), diff --git a/website/docs/api/spangroup.md b/website/docs/api/spangroup.md index 8dbdefc01..2d1cf73c4 100644 --- a/website/docs/api/spangroup.md +++ b/website/docs/api/spangroup.md @@ -255,9 +255,10 @@ Return a copy of the span group. > new_group = doc.spans["errors"].copy() > ``` -| Name | Description | -| ----------- | ----------------------------------------------- | -| **RETURNS** | A copy of the `SpanGroup` object. ~~SpanGroup~~ | +| Name | Description | +| ----------- | -------------------------------------------------------------------------------------------------- | +| `doc` | The document to which the copy is bound. Defaults to `None` for the current doc. ~~Optional[Doc]~~ | +| **RETURNS** | A copy of the `SpanGroup` object. ~~SpanGroup~~ | ## SpanGroup.to_bytes {#to_bytes tag="method"} From 78f5503a29b3ab27b860220499346b79d26e666b Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Thu, 1 Sep 2022 19:37:23 +0200 Subject: [PATCH 131/138] Check for any non-Doc returned value for components (#11424) --- spacy/errors.py | 5 +++-- spacy/language.py | 4 ++-- spacy/tests/test_language.py | 22 ++++++++++++++++++++++ 3 files changed, 27 insertions(+), 4 deletions(-) diff --git a/spacy/errors.py b/spacy/errors.py index 608305a06..5ee1476c2 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -230,8 +230,9 @@ class Errors(metaclass=ErrorsWithCodes): "initialized component.") E004 = ("Can't set up pipeline component: a factory for '{name}' already " "exists. Existing factory: {func}. New factory: {new_func}") - E005 = ("Pipeline component '{name}' returned None. If you're using a " - "custom component, maybe you forgot to return the processed Doc?") + E005 = ("Pipeline component '{name}' returned {returned_type} instead of a " + "Doc. If you're using a custom component, maybe you forgot to " + "return the processed Doc?") E006 = ("Invalid constraints for adding pipeline component. You can only " "set one of the following: before (component name or index), " "after (component name or index), first (True) or last (True). " diff --git a/spacy/language.py b/spacy/language.py index ec330753c..34a06e576 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -1028,8 +1028,8 @@ class Language: raise ValueError(Errors.E109.format(name=name)) from e except Exception as e: error_handler(name, proc, [doc], e) - if doc is None: - raise ValueError(Errors.E005.format(name=name)) + if not isinstance(doc, Doc): + raise ValueError(Errors.E005.format(name=name, returned_type=type(doc))) return doc def disable_pipes(self, *names) -> "DisabledPipes": diff --git a/spacy/tests/test_language.py b/spacy/tests/test_language.py index 6f3ba8acc..03a98d32f 100644 --- a/spacy/tests/test_language.py +++ b/spacy/tests/test_language.py @@ -670,3 +670,25 @@ def test_dot_in_factory_names(nlp): with pytest.raises(ValueError, match="not permitted"): Language.factory("my.evil.component.v1", func=evil_component) + + +def test_component_return(): + """Test that an error is raised if components return a type other than a + doc.""" + nlp = English() + + @Language.component("test_component_good_pipe") + def good_pipe(doc): + return doc + + nlp.add_pipe("test_component_good_pipe") + nlp("text") + nlp.remove_pipe("test_component_good_pipe") + + @Language.component("test_component_bad_pipe") + def bad_pipe(doc): + return doc.text + + nlp.add_pipe("test_component_bad_pipe") + with pytest.raises(ValueError, match="instead of a Doc"): + nlp("text") From 4a615cacd2af35bbbcf9e735da19ce92480b6cf6 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Fri, 2 Sep 2022 09:08:40 +0200 Subject: [PATCH 132/138] Consolidate and freeze symbols (#11352) * Consolidate and freeze symbols Instead of having symbol values defined in three potentially conflicting places (`spacy.attrs`, `spacy.parts_of_speech`, `spacy.symbols`), define all symbols in `spacy.symbols` and reference those values in `spacy.attrs` and `spacy.parts_of_speech`. Remove deprecated and placeholder symbols from `spacy.attrs.IDS`. Make `spacy.attrs.NAMES` and `spacy.symbols.NAMES` reverse dicts rather than lists in order to support future use of hash values in `attr_id_t`. Minor changes: * Use `uint64_t` for attrs in `Doc.to_array` to support future use of hash values * Remove unneeded attrs filter for error message in `Doc.to_array` * Remove unused attr `SENT_END` * Handle dynamic size of attr_id_t in Doc.to_array * Undo added warnings * Refactor to make Doc.to_array more similar to Doc.from_array * Improve refactoring --- spacy/attrs.pxd | 129 +++------- spacy/attrs.pyx | 49 +--- spacy/parts_of_speech.pxd | 38 +-- spacy/schemas.py | 2 +- spacy/strings.pyx | 4 +- spacy/symbols.pxd | 15 +- spacy/symbols.pyx | 6 +- spacy/tests/test_symbols.py | 467 ++++++++++++++++++++++++++++++++++++ spacy/tokens/doc.pyx | 20 +- 9 files changed, 551 insertions(+), 179 deletions(-) create mode 100644 spacy/tests/test_symbols.py diff --git a/spacy/attrs.pxd b/spacy/attrs.pxd index 33d5372de..b8a7a1f08 100644 --- a/spacy/attrs.pxd +++ b/spacy/attrs.pxd @@ -1,98 +1,49 @@ -# Reserve 64 values for flag features from . cimport symbols cdef enum attr_id_t: - NULL_ATTR - IS_ALPHA - IS_ASCII - IS_DIGIT - IS_LOWER - IS_PUNCT - IS_SPACE - IS_TITLE - IS_UPPER - LIKE_URL - LIKE_NUM - LIKE_EMAIL - IS_STOP - IS_OOV_DEPRECATED - IS_BRACKET - IS_QUOTE - IS_LEFT_PUNCT - IS_RIGHT_PUNCT - IS_CURRENCY + NULL_ATTR = 0 + IS_ALPHA = symbols.IS_ALPHA + IS_ASCII = symbols.IS_ASCII + IS_DIGIT = symbols.IS_DIGIT + IS_LOWER = symbols.IS_LOWER + IS_PUNCT = symbols.IS_PUNCT + IS_SPACE = symbols.IS_SPACE + IS_TITLE = symbols.IS_TITLE + IS_UPPER = symbols.IS_UPPER + LIKE_URL = symbols.LIKE_URL + LIKE_NUM = symbols.LIKE_NUM + LIKE_EMAIL = symbols.LIKE_EMAIL + IS_STOP = symbols.IS_STOP + IS_BRACKET = symbols.IS_BRACKET + IS_QUOTE = symbols.IS_QUOTE + IS_LEFT_PUNCT = symbols.IS_LEFT_PUNCT + IS_RIGHT_PUNCT = symbols.IS_RIGHT_PUNCT + IS_CURRENCY = symbols.IS_CURRENCY - FLAG19 = 19 - FLAG20 - FLAG21 - FLAG22 - FLAG23 - FLAG24 - FLAG25 - FLAG26 - FLAG27 - FLAG28 - FLAG29 - FLAG30 - FLAG31 - FLAG32 - FLAG33 - FLAG34 - FLAG35 - FLAG36 - FLAG37 - FLAG38 - FLAG39 - FLAG40 - FLAG41 - FLAG42 - FLAG43 - FLAG44 - FLAG45 - FLAG46 - FLAG47 - FLAG48 - FLAG49 - FLAG50 - FLAG51 - FLAG52 - FLAG53 - FLAG54 - FLAG55 - FLAG56 - FLAG57 - FLAG58 - FLAG59 - FLAG60 - FLAG61 - FLAG62 - FLAG63 + ID = symbols.ID + ORTH = symbols.ORTH + LOWER = symbols.LOWER + NORM = symbols.NORM + SHAPE = symbols.SHAPE + PREFIX = symbols.PREFIX + SUFFIX = symbols.SUFFIX - ID - ORTH - LOWER - NORM - SHAPE - PREFIX - SUFFIX + LENGTH = symbols.LENGTH + CLUSTER = symbols.CLUSTER + LEMMA = symbols.LEMMA + POS = symbols.POS + TAG = symbols.TAG + DEP = symbols.DEP + ENT_IOB = symbols.ENT_IOB + ENT_TYPE = symbols.ENT_TYPE + HEAD = symbols.HEAD + SENT_START = symbols.SENT_START + SPACY = symbols.SPACY + PROB = symbols.PROB - LENGTH - CLUSTER - LEMMA - POS - TAG - DEP - ENT_IOB - ENT_TYPE - HEAD - SENT_START - SPACY - PROB - - LANG + LANG = symbols.LANG ENT_KB_ID = symbols.ENT_KB_ID - MORPH + MORPH = symbols.MORPH ENT_ID = symbols.ENT_ID - IDX - SENT_END \ No newline at end of file + IDX = symbols.IDX diff --git a/spacy/attrs.pyx b/spacy/attrs.pyx index 7b6fd9e94..9b0ae3400 100644 --- a/spacy/attrs.pyx +++ b/spacy/attrs.pyx @@ -16,57 +16,11 @@ IDS = { "LIKE_NUM": LIKE_NUM, "LIKE_EMAIL": LIKE_EMAIL, "IS_STOP": IS_STOP, - "IS_OOV_DEPRECATED": IS_OOV_DEPRECATED, "IS_BRACKET": IS_BRACKET, "IS_QUOTE": IS_QUOTE, "IS_LEFT_PUNCT": IS_LEFT_PUNCT, "IS_RIGHT_PUNCT": IS_RIGHT_PUNCT, "IS_CURRENCY": IS_CURRENCY, - "FLAG19": FLAG19, - "FLAG20": FLAG20, - "FLAG21": FLAG21, - "FLAG22": FLAG22, - "FLAG23": FLAG23, - "FLAG24": FLAG24, - "FLAG25": FLAG25, - "FLAG26": FLAG26, - "FLAG27": FLAG27, - "FLAG28": FLAG28, - "FLAG29": FLAG29, - "FLAG30": FLAG30, - "FLAG31": FLAG31, - "FLAG32": FLAG32, - "FLAG33": FLAG33, - "FLAG34": FLAG34, - "FLAG35": FLAG35, - "FLAG36": FLAG36, - "FLAG37": FLAG37, - "FLAG38": FLAG38, - "FLAG39": FLAG39, - "FLAG40": FLAG40, - "FLAG41": FLAG41, - "FLAG42": FLAG42, - "FLAG43": FLAG43, - "FLAG44": FLAG44, - "FLAG45": FLAG45, - "FLAG46": FLAG46, - "FLAG47": FLAG47, - "FLAG48": FLAG48, - "FLAG49": FLAG49, - "FLAG50": FLAG50, - "FLAG51": FLAG51, - "FLAG52": FLAG52, - "FLAG53": FLAG53, - "FLAG54": FLAG54, - "FLAG55": FLAG55, - "FLAG56": FLAG56, - "FLAG57": FLAG57, - "FLAG58": FLAG58, - "FLAG59": FLAG59, - "FLAG60": FLAG60, - "FLAG61": FLAG61, - "FLAG62": FLAG62, - "FLAG63": FLAG63, "ID": ID, "ORTH": ORTH, "LOWER": LOWER, @@ -92,8 +46,7 @@ IDS = { } -# ATTR IDs, in order of the symbol -NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])] +NAMES = {v: k for k, v in IDS.items()} locals().update(IDS) diff --git a/spacy/parts_of_speech.pxd b/spacy/parts_of_speech.pxd index 0bf5b4789..67390ad63 100644 --- a/spacy/parts_of_speech.pxd +++ b/spacy/parts_of_speech.pxd @@ -3,22 +3,22 @@ from . cimport symbols cpdef enum univ_pos_t: NO_TAG = 0 ADJ = symbols.ADJ - ADP - ADV - AUX - CONJ - CCONJ # U20 - DET - INTJ - NOUN - NUM - PART - PRON - PROPN - PUNCT - SCONJ - SYM - VERB - X - EOL - SPACE + ADP = symbols.ADP + ADV = symbols.ADV + AUX = symbols.AUX + CONJ = symbols.CONJ + CCONJ = symbols.CCONJ # U20 + DET = symbols.DET + INTJ = symbols.INTJ + NOUN = symbols.NOUN + NUM = symbols.NUM + PART = symbols.PART + PRON = symbols.PRON + PROPN = symbols.PROPN + PUNCT = symbols.PUNCT + SCONJ = symbols.SCONJ + SYM = symbols.SYM + VERB = symbols.VERB + X = symbols.X + EOL = symbols.EOL + SPACE = symbols.SPACE diff --git a/spacy/schemas.py b/spacy/schemas.py index 048082134..a38421fa0 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -144,7 +144,7 @@ def validate_init_settings( def validate_token_pattern(obj: list) -> List[str]: # Try to convert non-string keys (e.g. {ORTH: "foo"} -> {"ORTH": "foo"}) - get_key = lambda k: NAMES[k] if isinstance(k, int) and k < len(NAMES) else k + get_key = lambda k: NAMES[k] if isinstance(k, int) and k in NAMES else k if isinstance(obj, list): converted = [] for pattern in obj: diff --git a/spacy/strings.pyx b/spacy/strings.pyx index c5f218342..e86682733 100644 --- a/spacy/strings.pyx +++ b/spacy/strings.pyx @@ -147,7 +147,7 @@ cdef class StringStore: elif _try_coerce_to_hash(string_or_id, &str_hash): if str_hash == 0: return "" - elif str_hash < len(SYMBOLS_BY_INT): + elif str_hash in SYMBOLS_BY_INT: return SYMBOLS_BY_INT[str_hash] else: utf8str = self._map.get(str_hash) @@ -223,7 +223,7 @@ cdef class StringStore: # TODO: Raise an error instead return self._map.get(string_or_id) is not NULL - if str_hash < len(SYMBOLS_BY_INT): + if str_hash in SYMBOLS_BY_INT: return True else: return self._map.get(str_hash) is not NULL diff --git a/spacy/symbols.pxd b/spacy/symbols.pxd index bc15d9b80..f5d7784dc 100644 --- a/spacy/symbols.pxd +++ b/spacy/symbols.pxd @@ -1,5 +1,6 @@ +# DO NOT EDIT! The symbols are frozen as of spaCy v3.0.0. cdef enum symbol_t: - NIL + NIL = 0 IS_ALPHA IS_ASCII IS_DIGIT @@ -65,7 +66,7 @@ cdef enum symbol_t: FLAG62 FLAG63 - ID + ID = 64 ORTH LOWER NORM @@ -385,7 +386,7 @@ cdef enum symbol_t: DEPRECATED275 DEPRECATED276 - PERSON + PERSON = 380 NORP FACILITY ORG @@ -405,7 +406,7 @@ cdef enum symbol_t: ORDINAL CARDINAL - acomp + acomp = 398 advcl advmod agent @@ -458,12 +459,12 @@ cdef enum symbol_t: rcmod root xcomp - acl - ENT_KB_ID + ENT_KB_ID = 452 MORPH ENT_ID IDX - _ + _ = 456 + # DO NOT ADD ANY NEW SYMBOLS! diff --git a/spacy/symbols.pyx b/spacy/symbols.pyx index b0345c710..fbfc6f10d 100644 --- a/spacy/symbols.pyx +++ b/spacy/symbols.pyx @@ -469,11 +469,7 @@ IDS = { } -def sort_nums(x): - return x[1] - - -NAMES = [it[0] for it in sorted(IDS.items(), key=sort_nums)] +NAMES = {v: k for k, v in IDS.items()} # Unfortunate hack here, to work around problem with long cpdef enum # (which is generating an enormous amount of C++ in Cython 0.24+) # We keep the enum cdef, and just make sure the names are available to Python diff --git a/spacy/tests/test_symbols.py b/spacy/tests/test_symbols.py new file mode 100644 index 000000000..fb034acca --- /dev/null +++ b/spacy/tests/test_symbols.py @@ -0,0 +1,467 @@ +import pytest +from spacy.symbols import IDS, NAMES + +V3_SYMBOLS = { + "": 0, + "IS_ALPHA": 1, + "IS_ASCII": 2, + "IS_DIGIT": 3, + "IS_LOWER": 4, + "IS_PUNCT": 5, + "IS_SPACE": 6, + "IS_TITLE": 7, + "IS_UPPER": 8, + "LIKE_URL": 9, + "LIKE_NUM": 10, + "LIKE_EMAIL": 11, + "IS_STOP": 12, + "IS_OOV_DEPRECATED": 13, + "IS_BRACKET": 14, + "IS_QUOTE": 15, + "IS_LEFT_PUNCT": 16, + "IS_RIGHT_PUNCT": 17, + "IS_CURRENCY": 18, + "FLAG19": 19, + "FLAG20": 20, + "FLAG21": 21, + "FLAG22": 22, + "FLAG23": 23, + "FLAG24": 24, + "FLAG25": 25, + "FLAG26": 26, + "FLAG27": 27, + "FLAG28": 28, + "FLAG29": 29, + "FLAG30": 30, + "FLAG31": 31, + "FLAG32": 32, + "FLAG33": 33, + "FLAG34": 34, + "FLAG35": 35, + "FLAG36": 36, + "FLAG37": 37, + "FLAG38": 38, + "FLAG39": 39, + "FLAG40": 40, + "FLAG41": 41, + "FLAG42": 42, + "FLAG43": 43, + "FLAG44": 44, + "FLAG45": 45, + "FLAG46": 46, + "FLAG47": 47, + "FLAG48": 48, + "FLAG49": 49, + "FLAG50": 50, + "FLAG51": 51, + "FLAG52": 52, + "FLAG53": 53, + "FLAG54": 54, + "FLAG55": 55, + "FLAG56": 56, + "FLAG57": 57, + "FLAG58": 58, + "FLAG59": 59, + "FLAG60": 60, + "FLAG61": 61, + "FLAG62": 62, + "FLAG63": 63, + "ID": 64, + "ORTH": 65, + "LOWER": 66, + "NORM": 67, + "SHAPE": 68, + "PREFIX": 69, + "SUFFIX": 70, + "LENGTH": 71, + "CLUSTER": 72, + "LEMMA": 73, + "POS": 74, + "TAG": 75, + "DEP": 76, + "ENT_IOB": 77, + "ENT_TYPE": 78, + "ENT_ID": 454, + "ENT_KB_ID": 452, + "HEAD": 79, + "SENT_START": 80, + "SPACY": 81, + "PROB": 82, + "LANG": 83, + "IDX": 455, + "ADJ": 84, + "ADP": 85, + "ADV": 86, + "AUX": 87, + "CONJ": 88, + "CCONJ": 89, + "DET": 90, + "INTJ": 91, + "NOUN": 92, + "NUM": 93, + "PART": 94, + "PRON": 95, + "PROPN": 96, + "PUNCT": 97, + "SCONJ": 98, + "SYM": 99, + "VERB": 100, + "X": 101, + "EOL": 102, + "SPACE": 103, + "DEPRECATED001": 104, + "DEPRECATED002": 105, + "DEPRECATED003": 106, + "DEPRECATED004": 107, + "DEPRECATED005": 108, + "DEPRECATED006": 109, + "DEPRECATED007": 110, + "DEPRECATED008": 111, + "DEPRECATED009": 112, + "DEPRECATED010": 113, + "DEPRECATED011": 114, + "DEPRECATED012": 115, + "DEPRECATED013": 116, + "DEPRECATED014": 117, + "DEPRECATED015": 118, + "DEPRECATED016": 119, + "DEPRECATED017": 120, + "DEPRECATED018": 121, + "DEPRECATED019": 122, + "DEPRECATED020": 123, + "DEPRECATED021": 124, + "DEPRECATED022": 125, + "DEPRECATED023": 126, + "DEPRECATED024": 127, + "DEPRECATED025": 128, + "DEPRECATED026": 129, + "DEPRECATED027": 130, + "DEPRECATED028": 131, + "DEPRECATED029": 132, + "DEPRECATED030": 133, + "DEPRECATED031": 134, + "DEPRECATED032": 135, + "DEPRECATED033": 136, + "DEPRECATED034": 137, + "DEPRECATED035": 138, + "DEPRECATED036": 139, + "DEPRECATED037": 140, + "DEPRECATED038": 141, + "DEPRECATED039": 142, + "DEPRECATED040": 143, + "DEPRECATED041": 144, + "DEPRECATED042": 145, + "DEPRECATED043": 146, + "DEPRECATED044": 147, + "DEPRECATED045": 148, + "DEPRECATED046": 149, + "DEPRECATED047": 150, + "DEPRECATED048": 151, + "DEPRECATED049": 152, + "DEPRECATED050": 153, + "DEPRECATED051": 154, + "DEPRECATED052": 155, + "DEPRECATED053": 156, + "DEPRECATED054": 157, + "DEPRECATED055": 158, + "DEPRECATED056": 159, + "DEPRECATED057": 160, + "DEPRECATED058": 161, + "DEPRECATED059": 162, + "DEPRECATED060": 163, + "DEPRECATED061": 164, + "DEPRECATED062": 165, + "DEPRECATED063": 166, + "DEPRECATED064": 167, + "DEPRECATED065": 168, + "DEPRECATED066": 169, + "DEPRECATED067": 170, + "DEPRECATED068": 171, + "DEPRECATED069": 172, + "DEPRECATED070": 173, + "DEPRECATED071": 174, + "DEPRECATED072": 175, + "DEPRECATED073": 176, + "DEPRECATED074": 177, + "DEPRECATED075": 178, + "DEPRECATED076": 179, + "DEPRECATED077": 180, + "DEPRECATED078": 181, + "DEPRECATED079": 182, + "DEPRECATED080": 183, + "DEPRECATED081": 184, + "DEPRECATED082": 185, + "DEPRECATED083": 186, + "DEPRECATED084": 187, + "DEPRECATED085": 188, + "DEPRECATED086": 189, + "DEPRECATED087": 190, + "DEPRECATED088": 191, + "DEPRECATED089": 192, + "DEPRECATED090": 193, + "DEPRECATED091": 194, + "DEPRECATED092": 195, + "DEPRECATED093": 196, + "DEPRECATED094": 197, + "DEPRECATED095": 198, + "DEPRECATED096": 199, + "DEPRECATED097": 200, + "DEPRECATED098": 201, + "DEPRECATED099": 202, + "DEPRECATED100": 203, + "DEPRECATED101": 204, + "DEPRECATED102": 205, + "DEPRECATED103": 206, + "DEPRECATED104": 207, + "DEPRECATED105": 208, + "DEPRECATED106": 209, + "DEPRECATED107": 210, + "DEPRECATED108": 211, + "DEPRECATED109": 212, + "DEPRECATED110": 213, + "DEPRECATED111": 214, + "DEPRECATED112": 215, + "DEPRECATED113": 216, + "DEPRECATED114": 217, + "DEPRECATED115": 218, + "DEPRECATED116": 219, + "DEPRECATED117": 220, + "DEPRECATED118": 221, + "DEPRECATED119": 222, + "DEPRECATED120": 223, + "DEPRECATED121": 224, + "DEPRECATED122": 225, + "DEPRECATED123": 226, + "DEPRECATED124": 227, + "DEPRECATED125": 228, + "DEPRECATED126": 229, + "DEPRECATED127": 230, + "DEPRECATED128": 231, + "DEPRECATED129": 232, + "DEPRECATED130": 233, + "DEPRECATED131": 234, + "DEPRECATED132": 235, + "DEPRECATED133": 236, + "DEPRECATED134": 237, + "DEPRECATED135": 238, + "DEPRECATED136": 239, + "DEPRECATED137": 240, + "DEPRECATED138": 241, + "DEPRECATED139": 242, + "DEPRECATED140": 243, + "DEPRECATED141": 244, + "DEPRECATED142": 245, + "DEPRECATED143": 246, + "DEPRECATED144": 247, + "DEPRECATED145": 248, + "DEPRECATED146": 249, + "DEPRECATED147": 250, + "DEPRECATED148": 251, + "DEPRECATED149": 252, + "DEPRECATED150": 253, + "DEPRECATED151": 254, + "DEPRECATED152": 255, + "DEPRECATED153": 256, + "DEPRECATED154": 257, + "DEPRECATED155": 258, + "DEPRECATED156": 259, + "DEPRECATED157": 260, + "DEPRECATED158": 261, + "DEPRECATED159": 262, + "DEPRECATED160": 263, + "DEPRECATED161": 264, + "DEPRECATED162": 265, + "DEPRECATED163": 266, + "DEPRECATED164": 267, + "DEPRECATED165": 268, + "DEPRECATED166": 269, + "DEPRECATED167": 270, + "DEPRECATED168": 271, + "DEPRECATED169": 272, + "DEPRECATED170": 273, + "DEPRECATED171": 274, + "DEPRECATED172": 275, + "DEPRECATED173": 276, + "DEPRECATED174": 277, + "DEPRECATED175": 278, + "DEPRECATED176": 279, + "DEPRECATED177": 280, + "DEPRECATED178": 281, + "DEPRECATED179": 282, + "DEPRECATED180": 283, + "DEPRECATED181": 284, + "DEPRECATED182": 285, + "DEPRECATED183": 286, + "DEPRECATED184": 287, + "DEPRECATED185": 288, + "DEPRECATED186": 289, + "DEPRECATED187": 290, + "DEPRECATED188": 291, + "DEPRECATED189": 292, + "DEPRECATED190": 293, + "DEPRECATED191": 294, + "DEPRECATED192": 295, + "DEPRECATED193": 296, + "DEPRECATED194": 297, + "DEPRECATED195": 298, + "DEPRECATED196": 299, + "DEPRECATED197": 300, + "DEPRECATED198": 301, + "DEPRECATED199": 302, + "DEPRECATED200": 303, + "DEPRECATED201": 304, + "DEPRECATED202": 305, + "DEPRECATED203": 306, + "DEPRECATED204": 307, + "DEPRECATED205": 308, + "DEPRECATED206": 309, + "DEPRECATED207": 310, + "DEPRECATED208": 311, + "DEPRECATED209": 312, + "DEPRECATED210": 313, + "DEPRECATED211": 314, + "DEPRECATED212": 315, + "DEPRECATED213": 316, + "DEPRECATED214": 317, + "DEPRECATED215": 318, + "DEPRECATED216": 319, + "DEPRECATED217": 320, + "DEPRECATED218": 321, + "DEPRECATED219": 322, + "DEPRECATED220": 323, + "DEPRECATED221": 324, + "DEPRECATED222": 325, + "DEPRECATED223": 326, + "DEPRECATED224": 327, + "DEPRECATED225": 328, + "DEPRECATED226": 329, + "DEPRECATED227": 330, + "DEPRECATED228": 331, + "DEPRECATED229": 332, + "DEPRECATED230": 333, + "DEPRECATED231": 334, + "DEPRECATED232": 335, + "DEPRECATED233": 336, + "DEPRECATED234": 337, + "DEPRECATED235": 338, + "DEPRECATED236": 339, + "DEPRECATED237": 340, + "DEPRECATED238": 341, + "DEPRECATED239": 342, + "DEPRECATED240": 343, + "DEPRECATED241": 344, + "DEPRECATED242": 345, + "DEPRECATED243": 346, + "DEPRECATED244": 347, + "DEPRECATED245": 348, + "DEPRECATED246": 349, + "DEPRECATED247": 350, + "DEPRECATED248": 351, + "DEPRECATED249": 352, + "DEPRECATED250": 353, + "DEPRECATED251": 354, + "DEPRECATED252": 355, + "DEPRECATED253": 356, + "DEPRECATED254": 357, + "DEPRECATED255": 358, + "DEPRECATED256": 359, + "DEPRECATED257": 360, + "DEPRECATED258": 361, + "DEPRECATED259": 362, + "DEPRECATED260": 363, + "DEPRECATED261": 364, + "DEPRECATED262": 365, + "DEPRECATED263": 366, + "DEPRECATED264": 367, + "DEPRECATED265": 368, + "DEPRECATED266": 369, + "DEPRECATED267": 370, + "DEPRECATED268": 371, + "DEPRECATED269": 372, + "DEPRECATED270": 373, + "DEPRECATED271": 374, + "DEPRECATED272": 375, + "DEPRECATED273": 376, + "DEPRECATED274": 377, + "DEPRECATED275": 378, + "DEPRECATED276": 379, + "PERSON": 380, + "NORP": 381, + "FACILITY": 382, + "ORG": 383, + "GPE": 384, + "LOC": 385, + "PRODUCT": 386, + "EVENT": 387, + "WORK_OF_ART": 388, + "LANGUAGE": 389, + "DATE": 391, + "TIME": 392, + "PERCENT": 393, + "MONEY": 394, + "QUANTITY": 395, + "ORDINAL": 396, + "CARDINAL": 397, + "acomp": 398, + "advcl": 399, + "advmod": 400, + "agent": 401, + "amod": 402, + "appos": 403, + "attr": 404, + "aux": 405, + "auxpass": 406, + "cc": 407, + "ccomp": 408, + "complm": 409, + "conj": 410, + "cop": 411, + "csubj": 412, + "csubjpass": 413, + "dep": 414, + "det": 415, + "dobj": 416, + "expl": 417, + "hmod": 418, + "hyph": 419, + "infmod": 420, + "intj": 421, + "iobj": 422, + "mark": 423, + "meta": 424, + "neg": 425, + "nmod": 426, + "nn": 427, + "npadvmod": 428, + "nsubj": 429, + "nsubjpass": 430, + "num": 431, + "number": 432, + "oprd": 433, + "obj": 434, + "obl": 435, + "parataxis": 436, + "partmod": 437, + "pcomp": 438, + "pobj": 439, + "poss": 440, + "possessive": 441, + "preconj": 442, + "prep": 443, + "prt": 444, + "punct": 445, + "quantmod": 446, + "rcmod": 448, + "relcl": 447, + "root": 449, + "xcomp": 450, + "acl": 451, + "LAW": 390, + "MORPH": 453, + "_": 456, +} + + +def test_frozen_symbols(): + assert IDS == V3_SYMBOLS + assert NAMES == {v: k for k, v in IDS.items()} diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index 2956f357c..85d76efb3 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -974,22 +974,26 @@ cdef class Doc: py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, "upper") else id_) for id_ in py_attr_ids] except KeyError as msg: - keys = [k for k in IDS.keys() if not k.startswith("FLAG")] + keys = list(IDS.keys()) raise KeyError(Errors.E983.format(dict="IDS", key=msg, keys=keys)) from None # Make an array from the attributes --- otherwise our inner loop is # Python dict iteration. - cdef np.ndarray attr_ids = numpy.asarray(py_attr_ids, dtype="i") - output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.uint64) + cdef Pool mem = Pool() + cdef int n_attrs = len(py_attr_ids) + cdef attr_id_t* c_attr_ids + if n_attrs > 0: + c_attr_ids = mem.alloc(n_attrs, sizeof(attr_id_t)) + for i, attr_id in enumerate(py_attr_ids): + c_attr_ids[i] = attr_id + output = numpy.ndarray(shape=(self.length, n_attrs), dtype=numpy.uint64) c_output = output.data - c_attr_ids = attr_ids.data cdef TokenC* token - cdef int nr_attr = attr_ids.shape[0] for i in range(self.length): token = &self.c[i] - for j in range(nr_attr): - c_output[i*nr_attr + j] = get_token_attr(token, c_attr_ids[j]) + for j in range(n_attrs): + c_output[i*n_attrs + j] = get_token_attr(token, c_attr_ids[j]) # Handle 1d case - return output if len(attr_ids) >= 2 else output.reshape((self.length,)) + return output if n_attrs >= 2 else output.reshape((self.length,)) def count_by(self, attr_id_t attr_id, exclude=None, object counts=None): """Count the frequencies of a given attribute. Produces a dict of From d1760ebe027852a10b3ba7c5c7a187859bdae76b Mon Sep 17 00:00:00 2001 From: Madeesh Kannan Date: Fri, 2 Sep 2022 09:09:48 +0200 Subject: [PATCH 133/138] Better handling of unexpected types in `SetPredicate` (#11312) * `Matcher`: Better type checking of values in `SetPredicate` `SetPredicate`: Emit warning and return `False` on unexpected value types * Rename `value_type_mismatch` variable * Inline warning * Remove unexpected type warning from `_SetPredicate` * Ensure that `str` values are not interpreted as sequences Check elements of sequence values for convertibility to `str` or `int` * Add more `INTERSECT` and `IN` test cases * Test for inputs with multiple characters * Return `False` early instead of using a boolean flag * Remove superfluous `int` check, parentheses * Apply suggestions from code review Co-authored-by: Adriane Boyd * Appy suggestions from code review * Clarify test comment Co-authored-by: Adriane Boyd --- spacy/matcher/matcher.pyx | 23 +++++++++++++++-------- spacy/tests/matcher/test_matcher_api.py | 20 +++++++++++++++++++- 2 files changed, 34 insertions(+), 9 deletions(-) diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx index 5105f69ed..e1dba01a2 100644 --- a/spacy/matcher/matcher.pyx +++ b/spacy/matcher/matcher.pyx @@ -1,5 +1,5 @@ # cython: infer_types=True, cython: profile=True -from typing import List +from typing import List, Iterable from libcpp.vector cimport vector from libc.stdint cimport int32_t, int8_t @@ -867,20 +867,27 @@ class _SetPredicate: def __call__(self, Token token): if self.is_extension: - value = get_string_id(token._.get(self.attr)) + value = token._.get(self.attr) else: value = get_token_attr_for_matcher(token.c, self.attr) - if self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"): + if self.predicate in ("IN", "NOT_IN"): + if isinstance(value, (str, int)): + value = get_string_id(value) + else: + return False + elif self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"): + # ensure that all values are enclosed in a set if self.attr == MORPH: # break up MORPH into individual Feat=Val values value = set(get_string_id(v) for v in MorphAnalysis.from_id(self.vocab, value)) + elif isinstance(value, (str, int)): + value = set((get_string_id(value),)) + elif isinstance(value, Iterable) and all(isinstance(v, (str, int)) for v in value): + value = set(get_string_id(v) for v in value) else: - # treat a single value as a list - if isinstance(value, (str, int)): - value = set([get_string_id(value)]) - else: - value = set(get_string_id(v) for v in value) + return False + if self.predicate == "IN": return value in self.value elif self.predicate == "NOT_IN": diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py index 7c16da9f8..ac905eeb4 100644 --- a/spacy/tests/matcher/test_matcher_api.py +++ b/spacy/tests/matcher/test_matcher_api.py @@ -368,6 +368,16 @@ def test_matcher_intersect_value_operator(en_vocab): doc[0]._.ext = ["A", "B"] assert len(matcher(doc)) == 1 + # INTERSECTS matches nothing for iterables that aren't all str or int + matcher = Matcher(en_vocab) + pattern = [{"_": {"ext": {"INTERSECTS": ["Abx", "C"]}}}] + matcher.add("M", [pattern]) + doc = Doc(en_vocab, words=["a", "b", "c"]) + doc[0]._.ext = [["Abx"], "B"] + assert len(matcher(doc)) == 0 + doc[0]._.ext = ["Abx", "B"] + assert len(matcher(doc)) == 1 + # INTERSECTS with an empty pattern list matches nothing matcher = Matcher(en_vocab) pattern = [{"_": {"ext": {"INTERSECTS": []}}}] @@ -476,14 +486,22 @@ def test_matcher_extension_set_membership(en_vocab): assert len(matches) == 0 -@pytest.mark.xfail(reason="IN predicate must handle sequence values in extensions") def test_matcher_extension_in_set_predicate(en_vocab): matcher = Matcher(en_vocab) Token.set_extension("ext", default=[]) pattern = [{"_": {"ext": {"IN": ["A", "C"]}}}] matcher.add("M", [pattern]) doc = Doc(en_vocab, words=["a", "b", "c"]) + + # The IN predicate expects an exact match between the + # extension value and one of the pattern's values. doc[0]._.ext = ["A", "B"] + assert len(matcher(doc)) == 0 + + doc[0]._.ext = ["A"] + assert len(matcher(doc)) == 0 + + doc[0]._.ext = "A" assert len(matcher(doc)) == 1 From 71884d0942c9b45f0ce5408496aec1aff2f0a4b7 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 2 Sep 2022 11:43:20 +0200 Subject: [PATCH 134/138] Auto-format code with black (#11427) Co-authored-by: explosion-bot --- spacy/lang/la/__init__.py | 2 +- spacy/lang/la/lex_attrs.py | 4 +- spacy/lang/la/tokenizer_exceptions.py | 70 ++++++++++++++++++++++----- spacy/tests/conftest.py | 2 +- spacy/tests/lang/la/test_exception.py | 1 + spacy/tests/lang/la/test_text.py | 4 +- 6 files changed, 67 insertions(+), 16 deletions(-) diff --git a/spacy/lang/la/__init__.py b/spacy/lang/la/__init__.py index 5f2cccee3..15b87c5b9 100644 --- a/spacy/lang/la/__init__.py +++ b/spacy/lang/la/__init__.py @@ -6,7 +6,7 @@ from .lex_attrs import LEX_ATTRS class LatinDefaults(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS - stop_words = STOP_WORDS + stop_words = STOP_WORDS lex_attr_getters = LEX_ATTRS diff --git a/spacy/lang/la/lex_attrs.py b/spacy/lang/la/lex_attrs.py index 9348a811a..9efb4dd3c 100644 --- a/spacy/lang/la/lex_attrs.py +++ b/spacy/lang/la/lex_attrs.py @@ -2,7 +2,9 @@ from ...attrs import LIKE_NUM import re # cf. Goyvaerts/Levithan 2009; case-insensitive, allow 4 -roman_numerals_compile = re.compile(r'(?i)^(?=[MDCLXVI])M*(C[MD]|D?C{0,4})(X[CL]|L?X{0,4})(I[XV]|V?I{0,4})$') +roman_numerals_compile = re.compile( + r"(?i)^(?=[MDCLXVI])M*(C[MD]|D?C{0,4})(X[CL]|L?X{0,4})(I[XV]|V?I{0,4})$" +) _num_words = set( """ diff --git a/spacy/lang/la/tokenizer_exceptions.py b/spacy/lang/la/tokenizer_exceptions.py index 905304188..060f6e085 100644 --- a/spacy/lang/la/tokenizer_exceptions.py +++ b/spacy/lang/la/tokenizer_exceptions.py @@ -9,21 +9,67 @@ _exc = { "tecum": [{ORTH: "te"}, {ORTH: "cum"}], "nobiscum": [{ORTH: "nobis"}, {ORTH: "cum"}], "vobiscum": [{ORTH: "vobis"}, {ORTH: "cum"}], - "uobiscum": [{ORTH: "uobis"}, {ORTH: "cum"}], + "uobiscum": [{ORTH: "uobis"}, {ORTH: "cum"}], } for orth in [ - - 'A.', 'Agr.', 'Ap.', 'C.', 'Cn.', 'D.', 'F.', 'K.', 'L.', "M'.", 'M.', 'Mam.', 'N.', 'Oct.', - 'Opet.', 'P.', 'Paul.', 'Post.', 'Pro.', 'Q.', 'S.', 'Ser.', 'Sert.', 'Sex.', 'St.', 'Sta.', - 'T.', 'Ti.', 'V.', 'Vol.', 'Vop.', 'U.', 'Uol.', 'Uop.', - - 'Ian.', 'Febr.', 'Mart.', 'Apr.', 'Mai.', 'Iun.', 'Iul.', 'Aug.', 'Sept.', 'Oct.', 'Nov.', 'Nou.', - 'Dec.', - - 'Non.', 'Id.', 'A.D.', - - 'Coll.', 'Cos.', 'Ord.', 'Pl.', 'S.C.', 'Suff.', 'Trib.', + "A.", + "Agr.", + "Ap.", + "C.", + "Cn.", + "D.", + "F.", + "K.", + "L.", + "M'.", + "M.", + "Mam.", + "N.", + "Oct.", + "Opet.", + "P.", + "Paul.", + "Post.", + "Pro.", + "Q.", + "S.", + "Ser.", + "Sert.", + "Sex.", + "St.", + "Sta.", + "T.", + "Ti.", + "V.", + "Vol.", + "Vop.", + "U.", + "Uol.", + "Uop.", + "Ian.", + "Febr.", + "Mart.", + "Apr.", + "Mai.", + "Iun.", + "Iul.", + "Aug.", + "Sept.", + "Oct.", + "Nov.", + "Nou.", + "Dec.", + "Non.", + "Id.", + "A.D.", + "Coll.", + "Cos.", + "Ord.", + "Pl.", + "S.C.", + "Suff.", + "Trib.", ]: _exc[orth] = [{ORTH: orth}] diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index 0395ba7ca..742bfcc6a 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -258,7 +258,7 @@ def ko_tokenizer_tokenizer(): @pytest.fixture(scope="module") def la_tokenizer(): - return get_lang_class("la")().tokenizer + return get_lang_class("la")().tokenizer @pytest.fixture(scope="session") diff --git a/spacy/tests/lang/la/test_exception.py b/spacy/tests/lang/la/test_exception.py index 04bc1d489..966ae22cf 100644 --- a/spacy/tests/lang/la/test_exception.py +++ b/spacy/tests/lang/la/test_exception.py @@ -1,5 +1,6 @@ import pytest + def test_la_tokenizer_handles_exc_in_text(la_tokenizer): text = "scio te omnia facturum, ut nobiscum quam primum sis" tokens = la_tokenizer(text) diff --git a/spacy/tests/lang/la/test_text.py b/spacy/tests/lang/la/test_text.py index 11676b92b..48e7359a4 100644 --- a/spacy/tests/lang/la/test_text.py +++ b/spacy/tests/lang/la/test_text.py @@ -1,6 +1,7 @@ import pytest from spacy.lang.la.lex_attrs import like_num + @pytest.mark.parametrize( "text,match", [ @@ -13,7 +14,7 @@ from spacy.lang.la.lex_attrs import like_num ("ix", True), ("MMXXII", True), ("0", True), - ("1", True), + ("1", True), ("quattuor", True), ("decem", True), ("tertius", True), @@ -27,6 +28,7 @@ def test_lex_attrs_like_number(la_tokenizer, text, match): assert len(tokens) == 1 assert tokens[0].like_num == match + @pytest.mark.parametrize("word", ["quinque"]) def test_la_lex_attrs_capitals(word): assert like_num(word) From 977dc33312dd189b5b4ae1d791031d090c169c24 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Fri, 2 Sep 2022 18:58:21 +0900 Subject: [PATCH 135/138] Add a way to get the URL to download a pipeline to the CLI (#11175) * Add a dry run flag to download * Remove --dry-run, add --url option to `spacy info` instead * Make mypy happy * Print only the URL, so it's easier to use in scripts * Don't add the egg hash unless downloading an sdist * Update spacy/cli/info.py Co-authored-by: Sofie Van Landeghem * Add two implementations of requirements * Clean up requirements sample slightly This should make mypy happy * Update URL help string * Remove requirements option * Add url option to docs * Add URL to spacy info model output, when available * Add types-setuptools to testing reqs * Add types-setuptools to requirements * Add "compatible", expand docstring * Update spacy/cli/info.py Co-authored-by: Adriane Boyd * Run prettier on CLI docs * Update docs Add a sidebar about finding download URLs, with some examples of the new command. * Add download URLs to table on model page * Apply suggestions from code review Co-authored-by: Adriane Boyd * Updates from review * download url -> download link * Update docs Co-authored-by: Sofie Van Landeghem Co-authored-by: Adriane Boyd --- requirements.txt | 1 + spacy/cli/download.py | 32 ++++++++++--- spacy/cli/info.py | 58 +++++++++++++++++++++++- spacy/tests/package/test_requirements.py | 1 + website/docs/api/cli.md | 17 +++---- website/docs/usage/models.md | 36 ++++++++++----- website/src/templates/models.js | 10 ++++ 7 files changed, 127 insertions(+), 28 deletions(-) diff --git a/requirements.txt b/requirements.txt index 3b8d66e0e..3e8501b2f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -34,4 +34,5 @@ mypy>=0.910,<0.970; platform_machine!='aarch64' types-dataclasses>=0.1.3; python_version < "3.7" types-mock>=0.1.1 types-requests +types-setuptools>=57.0.0 black>=22.0,<23.0 diff --git a/spacy/cli/download.py b/spacy/cli/download.py index b7de88729..0c9a32b93 100644 --- a/spacy/cli/download.py +++ b/spacy/cli/download.py @@ -20,7 +20,7 @@ def download_cli( ctx: typer.Context, model: str = Arg(..., help="Name of pipeline package to download"), direct: bool = Opt(False, "--direct", "-d", "-D", help="Force direct download of name + version"), - sdist: bool = Opt(False, "--sdist", "-S", help="Download sdist (.tar.gz) archive instead of pre-built binary wheel") + sdist: bool = Opt(False, "--sdist", "-S", help="Download sdist (.tar.gz) archive instead of pre-built binary wheel"), # fmt: on ): """ @@ -36,7 +36,12 @@ def download_cli( download(model, direct, sdist, *ctx.args) -def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) -> None: +def download( + model: str, + direct: bool = False, + sdist: bool = False, + *pip_args, +) -> None: if ( not (is_package("spacy") or is_package("spacy-nightly")) and "--no-deps" not in pip_args @@ -50,13 +55,10 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) - "dependencies, you'll have to install them manually." ) pip_args = pip_args + ("--no-deps",) - suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX - dl_tpl = "{m}-{v}/{m}-{v}{s}#egg={m}=={v}" if direct: components = model.split("-") model_name = "".join(components[:-1]) version = components[-1] - download_model(dl_tpl.format(m=model_name, v=version, s=suffix), pip_args) else: model_name = model if model in OLD_MODEL_SHORTCUTS: @@ -67,13 +69,26 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) - model_name = OLD_MODEL_SHORTCUTS[model] compatibility = get_compatibility() version = get_version(model_name, compatibility) - download_model(dl_tpl.format(m=model_name, v=version, s=suffix), pip_args) + + filename = get_model_filename(model_name, version, sdist) + + download_model(filename, pip_args) msg.good( "Download and installation successful", f"You can now load the package via spacy.load('{model_name}')", ) +def get_model_filename(model_name: str, version: str, sdist: bool = False) -> str: + dl_tpl = "{m}-{v}/{m}-{v}{s}" + egg_tpl = "#egg={m}=={v}" + suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX + filename = dl_tpl.format(m=model_name, v=version, s=suffix) + if sdist: + filename += egg_tpl.format(m=model_name, v=version) + return filename + + def get_compatibility() -> dict: if is_prerelease_version(about.__version__): version: Optional[str] = about.__version__ @@ -105,6 +120,11 @@ def get_version(model: str, comp: dict) -> str: return comp[model][0] +def get_latest_version(model: str) -> str: + comp = get_compatibility() + return get_version(model, comp) + + def download_model( filename: str, user_pip_args: Optional[Sequence[str]] = None ) -> None: diff --git a/spacy/cli/info.py b/spacy/cli/info.py index e6a1cb616..e6ac4270f 100644 --- a/spacy/cli/info.py +++ b/spacy/cli/info.py @@ -1,10 +1,13 @@ from typing import Optional, Dict, Any, Union, List import platform +import pkg_resources +import json from pathlib import Path from wasabi import Printer, MarkdownRenderer import srsly from ._util import app, Arg, Opt, string_to_list +from .download import get_model_filename, get_latest_version from .. import util from .. import about @@ -16,6 +19,7 @@ def info_cli( markdown: bool = Opt(False, "--markdown", "-md", help="Generate Markdown for GitHub issues"), silent: bool = Opt(False, "--silent", "-s", "-S", help="Don't print anything (just return)"), exclude: str = Opt("labels", "--exclude", "-e", help="Comma-separated keys to exclude from the print-out"), + url: bool = Opt(False, "--url", "-u", help="Print the URL to download the most recent compatible version of the pipeline"), # fmt: on ): """ @@ -23,10 +27,19 @@ def info_cli( print its meta information. Flag --markdown prints details in Markdown for easy copy-pasting to GitHub issues. + Flag --url prints only the download URL of the most recent compatible + version of the pipeline. + DOCS: https://spacy.io/api/cli#info """ exclude = string_to_list(exclude) - info(model, markdown=markdown, silent=silent, exclude=exclude) + info( + model, + markdown=markdown, + silent=silent, + exclude=exclude, + url=url, + ) def info( @@ -35,11 +48,20 @@ def info( markdown: bool = False, silent: bool = True, exclude: Optional[List[str]] = None, + url: bool = False, ) -> Union[str, dict]: msg = Printer(no_print=silent, pretty=not silent) if not exclude: exclude = [] - if model: + if url: + if model is not None: + title = f"Download info for pipeline '{model}'" + data = info_model_url(model) + print(data["download_url"]) + return data + else: + msg.fail("--url option requires a pipeline name", exits=1) + elif model: title = f"Info about pipeline '{model}'" data = info_model(model, silent=silent) else: @@ -99,11 +121,43 @@ def info_model(model: str, *, silent: bool = True) -> Dict[str, Any]: meta["source"] = str(model_path.resolve()) else: meta["source"] = str(model_path) + download_url = info_installed_model_url(model) + if download_url: + meta["download_url"] = download_url return { k: v for k, v in meta.items() if k not in ("accuracy", "performance", "speed") } +def info_installed_model_url(model: str) -> Optional[str]: + """Given a pipeline name, get the download URL if available, otherwise + return None. + + This is only available for pipelines installed as modules that have + dist-info available. + """ + try: + dist = pkg_resources.get_distribution(model) + data = json.loads(dist.get_metadata("direct_url.json")) + return data["url"] + except pkg_resources.DistributionNotFound: + # no such package + return None + except Exception: + # something else, like no file or invalid JSON + return None + +def info_model_url(model: str) -> Dict[str, Any]: + """Return the download URL for the latest version of a pipeline.""" + version = get_latest_version(model) + + filename = get_model_filename(model, version) + download_url = about.__download_url__ + "/" + filename + release_tpl = "https://github.com/explosion/spacy-models/releases/tag/{m}-{v}" + release_url = release_tpl.format(m=model, v=version) + return {"download_url": download_url, "release_url": release_url} + + def get_markdown( data: Dict[str, Any], title: Optional[str] = None, diff --git a/spacy/tests/package/test_requirements.py b/spacy/tests/package/test_requirements.py index e20227455..b403f274f 100644 --- a/spacy/tests/package/test_requirements.py +++ b/spacy/tests/package/test_requirements.py @@ -17,6 +17,7 @@ def test_build_dependencies(): "types-dataclasses", "types-mock", "types-requests", + "types-setuptools", ] # ignore language-specific packages that shouldn't be installed by all libs_ignore_setup = [ diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md index cbd1f794a..e5cd3089b 100644 --- a/website/docs/api/cli.md +++ b/website/docs/api/cli.md @@ -77,14 +77,15 @@ $ python -m spacy info [--markdown] [--silent] [--exclude] $ python -m spacy info [model] [--markdown] [--silent] [--exclude] ``` -| Name | Description | -| ------------------------------------------------ | --------------------------------------------------------------------------------------------- | -| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(option)~~ | -| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ | -| `--silent`, `-s` 2.0.12 | Don't print anything, just return the values. ~~bool (flag)~~ | -| `--exclude`, `-e` | Comma-separated keys to exclude from the print-out. Defaults to `"labels"`. ~~Optional[str]~~ | -| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | -| **PRINTS** | Information about your spaCy installation. | +| Name | Description | +| ------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------- | +| `model` | A trained pipeline, i.e. package name or path (optional). ~~Optional[str] \(option)~~ | +| `--markdown`, `-md` | Print information as Markdown. ~~bool (flag)~~ | +| `--silent`, `-s` 2.0.12 | Don't print anything, just return the values. ~~bool (flag)~~ | +| `--exclude`, `-e` | Comma-separated keys to exclude from the print-out. Defaults to `"labels"`. ~~Optional[str]~~ | +| `--url`, `-u` 3.5.0 | Print the URL to download the most recent compatible version of the pipeline. Requires a pipeline name. ~~bool (flag)~~ | +| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | +| **PRINTS** | Information about your spaCy installation. | ## validate {#validate new="2" tag="command"} diff --git a/website/docs/usage/models.md b/website/docs/usage/models.md index 56992e7e3..6971ac8b4 100644 --- a/website/docs/usage/models.md +++ b/website/docs/usage/models.md @@ -365,15 +365,32 @@ pipeline package can be found. To download a trained pipeline directly using [pip](https://pypi.python.org/pypi/pip), point `pip install` to the URL or local path of the wheel file or archive. Installing the wheel is usually more -efficient. To find the direct link to a package, head over to the -[releases](https://github.com/explosion/spacy-models/releases), right click on -the archive link and copy it to your clipboard. +efficient. + +> #### Pipeline Package URLs {#pipeline-urls} +> +> Pretrained pipeline distributions are hosted on +> [Github Releases](https://github.com/explosion/spacy-models/releases), and you +> can find download links there, as well as on the model page. You can also get +> URLs directly from the command line by using `spacy info` with the `--url` +> flag, which may be useful for automation. +> +> ```bash +> spacy info en_core_web_sm --url +> ``` +> +> This command will print the URL for the latest version of a pipeline +> compatible with the version of spaCy you're using. Note that in order to look +> up the compatibility information an internet connection is required. ```bash # With external URL $ pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0-py3-none-any.whl $ pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz +# Using spacy info to get the external URL +$ pip install $(spacy info en_core_web_sm --url) + # With local file $ pip install /Users/you/en_core_web_sm-3.0.0-py3-none-any.whl $ pip install /Users/you/en_core_web_sm-3.0.0.tar.gz @@ -514,21 +531,16 @@ should be specifying them directly. Because pipeline packages are valid Python packages, you can add them to your application's `requirements.txt`. If you're running your own internal PyPi installation, you can upload the pipeline packages there. pip's -[requirements file format](https://pip.pypa.io/en/latest/reference/pip_install/#requirements-file-format) -supports both package names to download via a PyPi server, as well as direct -URLs. +[requirements file format](https://pip.pypa.io/en/latest/reference/requirements-file-format/) +supports both package names to download via a PyPi server, as well as +[direct URLs](#pipeline-urls). ```text ### requirements.txt spacy>=3.0.0,<4.0.0 -https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz#egg=en_core_web_sm +en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.0/en_core_web_sm-3.4.0-py3-none-any.whl ``` -Specifying `#egg=` with the package name tells pip which package to expect from -the download URL. This way, the package won't be re-downloaded and overwritten -if it's already installed - just like when you're downloading a package from -PyPi. - All pipeline packages are versioned and specify their spaCy dependency. This ensures cross-compatibility and lets you specify exact version requirements for each pipeline. If you've [trained](/usage/training) your own pipeline, you can diff --git a/website/src/templates/models.js b/website/src/templates/models.js index df53f8c3c..16a2360d5 100644 --- a/website/src/templates/models.js +++ b/website/src/templates/models.js @@ -76,6 +76,7 @@ const MODEL_META = { benchmark_ner: 'NER accuracy', benchmark_speed: 'Speed', compat: 'Latest compatible package version for your spaCy installation', + download_link: 'Download link for the pipeline', } const LABEL_SCHEME_META = { @@ -138,6 +139,13 @@ function formatAccuracy(data, lang) { .filter(item => item) } +function formatDownloadLink(lang, name, version) { + const fullName = `${lang}_${name}-${version}` + const filename = `${fullName}-py3-none-any.whl` + const url = `https://github.com/explosion/spacy-models/releases/download/${fullName}/${filename}` + return {filename} +} + function formatModelMeta(data) { return { fullName: `${data.lang}_${data.name}-${data.version}`, @@ -154,6 +162,7 @@ function formatModelMeta(data) { labels: isEmptyObj(data.labels) ? null : data.labels, vectors: formatVectors(data.vectors), accuracy: formatAccuracy(data.performance, data.lang), + download_link: formatDownloadLink(data.lang, data.name, data.version), } } @@ -244,6 +253,7 @@ const Model = ({ { label: 'Components', content: components, help: MODEL_META.components }, { label: 'Pipeline', content: pipeline, help: MODEL_META.pipeline }, { label: 'Vectors', content: meta.vectors, help: MODEL_META.vecs }, + { label: 'Download Link', content: meta.download_link, help: MODEL_META.download_link }, { label: 'Sources', content: sources, help: MODEL_META.sources }, { label: 'Author', content: author }, { label: 'License', content: license }, From ff0522f8daac603e4dfb2773e1a73da61acc621d Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Thu, 1 Sep 2022 11:35:52 +0900 Subject: [PATCH 136/138] Fix asent pip package name --- website/meta/universe.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 6c8caa6a6..9145855c6 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1192,7 +1192,7 @@ "slogan": "Fast, flexible and transparent sentiment analysis", "description": "Asent is a rule-based sentiment analysis library for Python made using spaCy. It is inspired by VADER, but uses a more modular ruleset, that allows the user to change e.g. the method for finding negations. Furthermore it includes visualisers to visualize the model predictions, making the model easily interpretable.", "github": "kennethenevoldsen/asent", - "pip": "aseny", + "pip": "asent", "code_example": [ "import spacy", "import asent", From efdbb722c5072e2137f13408e0bc0e3976715a01 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Dani=C3=ABl=20de=20Kok?= Date: Tue, 13 Sep 2022 09:51:12 +0200 Subject: [PATCH 137/138] Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem --- spacy/pipeline/edit_tree_lemmatizer.py | 29 ++++- spacy/pipeline/entity_linker.py | 108 ++++++++++++++++-- spacy/pipeline/morphologizer.pyx | 29 ++++- spacy/pipeline/senter.pyx | 33 ++++-- spacy/pipeline/spancat.py | 30 ++++- spacy/pipeline/tagger.pyx | 37 ++++-- spacy/pipeline/textcat.py | 33 ++++-- spacy/pipeline/textcat_multilabel.py | 14 ++- spacy/pipeline/trainable_pipe.pxd | 1 + spacy/pipeline/trainable_pipe.pyx | 11 +- .../pipeline/test_edit_tree_lemmatizer.py | 25 ++++ spacy/tests/pipeline/test_entity_linker.py | 68 ++++++++++- spacy/tests/pipeline/test_morphologizer.py | 24 ++++ spacy/tests/pipeline/test_senter.py | 25 ++++ spacy/tests/pipeline/test_spancat.py | 20 ++++ spacy/tests/pipeline/test_tagger.py | 22 ++++ spacy/tests/pipeline/test_textcat.py | 43 ++++++- spacy/tokens/doc.pxd | 2 + spacy/tokens/doc.pyi | 3 +- spacy/tokens/doc.pyx | 1 + website/docs/api/doc.md | 33 +++--- website/docs/api/edittreelemmatizer.md | 17 +-- website/docs/api/entitylinker.md | 27 ++--- website/docs/api/morphologizer.md | 17 +-- website/docs/api/sentencerecognizer.md | 11 +- website/docs/api/spancategorizer.md | 17 +-- website/docs/api/tagger.md | 13 ++- website/docs/api/textcategorizer.md | 17 +-- 28 files changed, 580 insertions(+), 130 deletions(-) diff --git a/spacy/pipeline/edit_tree_lemmatizer.py b/spacy/pipeline/edit_tree_lemmatizer.py index b7d615f6d..37aa9663b 100644 --- a/spacy/pipeline/edit_tree_lemmatizer.py +++ b/spacy/pipeline/edit_tree_lemmatizer.py @@ -7,7 +7,7 @@ import numpy as np import srsly from thinc.api import Config, Model, SequenceCategoricalCrossentropy -from thinc.types import Floats2d, Ints1d, Ints2d +from thinc.types import ArrayXd, Floats2d, Ints1d from ._edit_tree_internals.edit_trees import EditTrees from ._edit_tree_internals.schemas import validate_edit_tree @@ -21,6 +21,9 @@ from ..vocab import Vocab from .. import util +ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]] + + default_model_config = """ [model] @architectures = "spacy.Tagger.v2" @@ -49,6 +52,7 @@ DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["mo "overwrite": False, "top_k": 1, "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + "save_activations": False, }, default_score_weights={"lemma_acc": 1.0}, ) @@ -61,6 +65,7 @@ def make_edit_tree_lemmatizer( overwrite: bool, top_k: int, scorer: Optional[Callable], + save_activations: bool, ): """Construct an EditTreeLemmatizer component.""" return EditTreeLemmatizer( @@ -72,6 +77,7 @@ def make_edit_tree_lemmatizer( overwrite=overwrite, top_k=top_k, scorer=scorer, + save_activations=save_activations, ) @@ -91,6 +97,7 @@ class EditTreeLemmatizer(TrainablePipe): overwrite: bool = False, top_k: int = 1, scorer: Optional[Callable] = lemmatizer_score, + save_activations: bool = False, ): """ Construct an edit tree lemmatizer. @@ -102,6 +109,7 @@ class EditTreeLemmatizer(TrainablePipe): frequency in the training data. overwrite (bool): overwrite existing lemma annotations. top_k (int): try to apply at most the k most probable edit trees. + save_activations (bool): save model activations in Doc when annotating. """ self.vocab = vocab self.model = model @@ -116,6 +124,7 @@ class EditTreeLemmatizer(TrainablePipe): self.cfg: Dict[str, Any] = {"labels": []} self.scorer = scorer + self.save_activations = save_activations def get_loss( self, examples: Iterable[Example], scores: List[Floats2d] @@ -144,21 +153,24 @@ class EditTreeLemmatizer(TrainablePipe): return float(loss), d_scores - def predict(self, docs: Iterable[Doc]) -> List[Ints2d]: + def predict(self, docs: Iterable[Doc]) -> ActivationsT: n_docs = len(list(docs)) if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. n_labels = len(self.cfg["labels"]) - guesses: List[Ints2d] = [ + guesses: List[Ints1d] = [ + self.model.ops.alloc((0,), dtype="i") for doc in docs + ] + scores: List[Floats2d] = [ self.model.ops.alloc((0, n_labels), dtype="i") for doc in docs ] assert len(guesses) == n_docs - return guesses + return {"probabilities": scores, "tree_ids": guesses} scores = self.model.predict(docs) assert len(scores) == n_docs guesses = self._scores2guesses(docs, scores) assert len(guesses) == n_docs - return guesses + return {"probabilities": scores, "tree_ids": guesses} def _scores2guesses(self, docs, scores): guesses = [] @@ -186,8 +198,13 @@ class EditTreeLemmatizer(TrainablePipe): return guesses - def set_annotations(self, docs: Iterable[Doc], batch_tree_ids): + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT): + batch_tree_ids = activations["tree_ids"] for i, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + for act_name, acts in activations.items(): + doc.activations[self.name][act_name] = acts[i] doc_tree_ids = batch_tree_ids[i] if hasattr(doc_tree_ids, "get"): doc_tree_ids = doc_tree_ids.get() diff --git a/spacy/pipeline/entity_linker.py b/spacy/pipeline/entity_linker.py index 73a90b268..ac05cb840 100644 --- a/spacy/pipeline/entity_linker.py +++ b/spacy/pipeline/entity_linker.py @@ -1,5 +1,7 @@ -from typing import Optional, Iterable, Callable, Dict, Union, List, Any -from thinc.types import Floats2d +from typing import Optional, Iterable, Callable, Dict, Sequence, Union, List, Any +from typing import cast +from numpy import dtype +from thinc.types import Floats1d, Floats2d, Ints1d, Ragged from pathlib import Path from itertools import islice import srsly @@ -21,6 +23,11 @@ from ..util import SimpleFrozenList, registry from .. import util from ..scorer import Scorer + +ActivationsT = Dict[str, Union[List[Ragged], List[str]]] + +KNOWLEDGE_BASE_IDS = "kb_ids" + # See #9050 BACKWARD_OVERWRITE = True @@ -57,6 +64,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"}, "use_gold_ents": True, "threshold": None, + "save_activations": False, }, default_score_weights={ "nel_micro_f": 1.0, @@ -79,6 +87,7 @@ def make_entity_linker( scorer: Optional[Callable], use_gold_ents: bool, threshold: Optional[float] = None, + save_activations: bool, ): """Construct an EntityLinker component. @@ -97,6 +106,7 @@ def make_entity_linker( component must provide entity annotations. threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold, prediction is discarded. If None, predictions are not filtered by any threshold. + save_activations (bool): save model activations in Doc when annotating. """ if not model.attrs.get("include_span_maker", False): @@ -128,6 +138,7 @@ def make_entity_linker( scorer=scorer, use_gold_ents=use_gold_ents, threshold=threshold, + save_activations=save_activations, ) @@ -164,6 +175,7 @@ class EntityLinker(TrainablePipe): scorer: Optional[Callable] = entity_linker_score, use_gold_ents: bool, threshold: Optional[float] = None, + save_activations: bool = False, ) -> None: """Initialize an entity linker. @@ -212,6 +224,7 @@ class EntityLinker(TrainablePipe): self.scorer = scorer self.use_gold_ents = use_gold_ents self.threshold = threshold + self.save_activations = save_activations def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): """Define the KB of this pipe by providing a function that will @@ -397,7 +410,7 @@ class EntityLinker(TrainablePipe): loss = loss / len(entity_encodings) return float(loss), out - def predict(self, docs: Iterable[Doc]) -> List[str]: + def predict(self, docs: Iterable[Doc]) -> ActivationsT: """Apply the pipeline's model to a batch of docs, without modifying them. Returns the KB IDs for each entity in each doc, including NIL if there is no prediction. @@ -410,13 +423,20 @@ class EntityLinker(TrainablePipe): self.validate_kb() entity_count = 0 final_kb_ids: List[str] = [] - xp = self.model.ops.xp + ops = self.model.ops + xp = ops.xp + docs_ents: List[Ragged] = [] + docs_scores: List[Ragged] = [] if not docs: - return final_kb_ids + return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores} if isinstance(docs, Doc): docs = [docs] - for i, doc in enumerate(docs): + for doc in docs: + doc_ents: List[Ints1d] = [] + doc_scores: List[Floats1d] = [] if len(doc) == 0: + docs_scores.append(Ragged(ops.alloc1f(0), ops.alloc1i(0))) + docs_ents.append(Ragged(xp.zeros(0, dtype="uint64"), ops.alloc1i(0))) continue sentences = [s for s in doc.sents] # Looping through each entity (TODO: rewrite) @@ -439,14 +459,32 @@ class EntityLinker(TrainablePipe): if ent.label_ in self.labels_discard: # ignoring this entity - setting to NIL final_kb_ids.append(self.NIL) + self._add_activations( + doc_scores=doc_scores, + doc_ents=doc_ents, + scores=[0.0], + ents=[0], + ) else: candidates = list(self.get_candidates(self.kb, ent)) if not candidates: # no prediction possible for this entity - setting to NIL final_kb_ids.append(self.NIL) + self._add_activations( + doc_scores=doc_scores, + doc_ents=doc_ents, + scores=[0.0], + ents=[0], + ) elif len(candidates) == 1 and self.threshold is None: # shortcut for efficiency reasons: take the 1 candidate final_kb_ids.append(candidates[0].entity_) + self._add_activations( + doc_scores=doc_scores, + doc_ents=doc_ents, + scores=[1.0], + ents=[candidates[0].entity_], + ) else: random.shuffle(candidates) # set all prior probabilities to 0 if incl_prior=False @@ -479,27 +517,48 @@ class EntityLinker(TrainablePipe): if self.threshold is None or scores.max() >= self.threshold else EntityLinker.NIL ) + self._add_activations( + doc_scores=doc_scores, + doc_ents=doc_ents, + scores=scores, + ents=[c.entity for c in candidates], + ) + self._add_doc_activations( + docs_scores=docs_scores, + docs_ents=docs_ents, + doc_scores=doc_scores, + doc_ents=doc_ents, + ) if not (len(final_kb_ids) == entity_count): err = Errors.E147.format( method="predict", msg="result variables not of equal length" ) raise RuntimeError(err) - return final_kb_ids + return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores} - def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None: + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None: """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. - kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict. + activations (ActivationsT): The activations used for setting annotations, produced + by EntityLinker.predict. DOCS: https://spacy.io/api/entitylinker#set_annotations """ + kb_ids = cast(List[str], activations[KNOWLEDGE_BASE_IDS]) count_ents = len([ent for doc in docs for ent in doc.ents]) if count_ents != len(kb_ids): raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids))) i = 0 overwrite = self.cfg["overwrite"] - for doc in docs: + for j, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + for act_name, acts in activations.items(): + if act_name != KNOWLEDGE_BASE_IDS: + # We only copy activations that are Ragged. + doc.activations[self.name][act_name] = cast(Ragged, acts[j]) + for ent in doc.ents: kb_id = kb_ids[i] i += 1 @@ -598,3 +657,32 @@ class EntityLinker(TrainablePipe): def add_label(self, label): raise NotImplementedError + + def _add_doc_activations( + self, + *, + docs_scores: List[Ragged], + docs_ents: List[Ragged], + doc_scores: List[Floats1d], + doc_ents: List[Ints1d], + ): + if not self.save_activations: + return + ops = self.model.ops + lengths = ops.asarray1i([s.shape[0] for s in doc_scores]) + docs_scores.append(Ragged(ops.flatten(doc_scores), lengths)) + docs_ents.append(Ragged(ops.flatten(doc_ents), lengths)) + + def _add_activations( + self, + *, + doc_scores: List[Floats1d], + doc_ents: List[Ints1d], + scores: Sequence[float], + ents: Sequence[int], + ): + if not self.save_activations: + return + ops = self.model.ops + doc_scores.append(ops.asarray1f(scores)) + doc_ents.append(ops.asarray1i(ents, dtype="uint64")) diff --git a/spacy/pipeline/morphologizer.pyx b/spacy/pipeline/morphologizer.pyx index eec1e42e1..782a1dabe 100644 --- a/spacy/pipeline/morphologizer.pyx +++ b/spacy/pipeline/morphologizer.pyx @@ -1,7 +1,8 @@ # cython: infer_types=True, profile=True, binding=True -from typing import Optional, Union, Dict, Callable +from typing import Callable, Dict, Iterable, List, Optional, Union import srsly from thinc.api import SequenceCategoricalCrossentropy, Model, Config +from thinc.types import Floats2d, Ints1d from itertools import islice from ..tokens.doc cimport Doc @@ -13,7 +14,7 @@ from ..symbols import POS from ..language import Language from ..errors import Errors from .pipe import deserialize_config -from .tagger import Tagger +from .tagger import ActivationsT, Tagger from .. import util from ..scorer import Scorer from ..training import validate_examples, validate_get_examples @@ -52,7 +53,13 @@ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "morphologizer", assigns=["token.morph", "token.pos"], - default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False, "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}}, + default_config={ + "model": DEFAULT_MORPH_MODEL, + "overwrite": True, + "extend": False, + "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, + "save_activations": False, + }, default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None}, ) def make_morphologizer( @@ -62,8 +69,10 @@ def make_morphologizer( overwrite: bool, extend: bool, scorer: Optional[Callable], + save_activations: bool, ): - return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer) + return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer, + save_activations=save_activations) def morphologizer_score(examples, **kwargs): @@ -95,6 +104,7 @@ class Morphologizer(Tagger): overwrite: bool = BACKWARD_OVERWRITE, extend: bool = BACKWARD_EXTEND, scorer: Optional[Callable] = morphologizer_score, + save_activations: bool = False, ): """Initialize a morphologizer. @@ -105,6 +115,7 @@ class Morphologizer(Tagger): scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_token_attr for the attributes "pos" and "morph" and Scorer.score_token_attr_per_feat for the attribute "morph". + save_activations (bool): save model activations in Doc when annotating. DOCS: https://spacy.io/api/morphologizer#init """ @@ -124,6 +135,7 @@ class Morphologizer(Tagger): } self.cfg = dict(sorted(cfg.items())) self.scorer = scorer + self.save_activations = save_activations @property def labels(self): @@ -217,14 +229,15 @@ class Morphologizer(Tagger): assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) - def set_annotations(self, docs, batch_tag_ids): + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. - batch_tag_ids: The IDs to set, produced by Morphologizer.predict. + activations (ActivationsT): The activations used for setting annotations, produced by Morphologizer.predict. DOCS: https://spacy.io/api/morphologizer#set_annotations """ + batch_tag_ids = activations["label_ids"] if isinstance(docs, Doc): docs = [docs] cdef Doc doc @@ -236,6 +249,10 @@ class Morphologizer(Tagger): # to allocate a compatible container out of the iterable. labels = tuple(self.labels) for i, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + for act_name, acts in activations.items(): + doc.activations[self.name][act_name] = acts[i] doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() diff --git a/spacy/pipeline/senter.pyx b/spacy/pipeline/senter.pyx index 6808fe70e..93a7ee796 100644 --- a/spacy/pipeline/senter.pyx +++ b/spacy/pipeline/senter.pyx @@ -1,13 +1,14 @@ # cython: infer_types=True, profile=True, binding=True -from typing import Optional, Callable +from typing import Dict, Iterable, Optional, Callable, List, Union from itertools import islice import srsly from thinc.api import Model, SequenceCategoricalCrossentropy, Config +from thinc.types import Floats2d, Ints1d from ..tokens.doc cimport Doc -from .tagger import Tagger +from .tagger import ActivationsT, Tagger from ..language import Language from ..errors import Errors from ..scorer import Scorer @@ -38,11 +39,21 @@ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "senter", assigns=["token.is_sent_start"], - default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}}, + default_config={ + "model": DEFAULT_SENTER_MODEL, + "overwrite": False, + "scorer": {"@scorers": "spacy.senter_scorer.v1"}, + "save_activations": False, + }, default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0}, ) -def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]): - return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer) +def make_senter(nlp: Language, + name: str, + model: Model, + overwrite: bool, + scorer: Optional[Callable], + save_activations: bool): + return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, save_activations=save_activations) def senter_score(examples, **kwargs): @@ -72,6 +83,7 @@ class SentenceRecognizer(Tagger): *, overwrite=BACKWARD_OVERWRITE, scorer=senter_score, + save_activations: bool = False, ): """Initialize a sentence recognizer. @@ -81,6 +93,7 @@ class SentenceRecognizer(Tagger): losses during training. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_spans for the attribute "sents". + save_activations (bool): save model activations in Doc when annotating. DOCS: https://spacy.io/api/sentencerecognizer#init """ @@ -90,6 +103,7 @@ class SentenceRecognizer(Tagger): self._rehearsal_model = None self.cfg = {"overwrite": overwrite} self.scorer = scorer + self.save_activations = save_activations @property def labels(self): @@ -107,19 +121,24 @@ class SentenceRecognizer(Tagger): def label_data(self): return None - def set_annotations(self, docs, batch_tag_ids): + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. - batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict. + activations (ActivationsT): The activations used for setting annotations, produced by SentenceRecognizer.predict. DOCS: https://spacy.io/api/sentencerecognizer#set_annotations """ + batch_tag_ids = activations["label_ids"] if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef bint overwrite = self.cfg["overwrite"] for i, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + for act_name, acts in activations.items(): + doc.activations[self.name][act_name] = acts[i] doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() diff --git a/spacy/pipeline/spancat.py b/spacy/pipeline/spancat.py index 1b7a9eecb..c517991f5 100644 --- a/spacy/pipeline/spancat.py +++ b/spacy/pipeline/spancat.py @@ -1,4 +1,5 @@ from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast +from typing import Union from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops from thinc.api import Optimizer from thinc.types import Ragged, Ints2d, Floats2d, Ints1d @@ -16,6 +17,9 @@ from ..errors import Errors from ..util import registry +ActivationsT = Dict[str, Union[Floats2d, Ragged]] + + spancat_default_config = """ [model] @architectures = "spacy.SpanCategorizer.v1" @@ -106,6 +110,7 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester: "model": DEFAULT_SPANCAT_MODEL, "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]}, "scorer": {"@scorers": "spacy.spancat_scorer.v1"}, + "save_activations": False, }, default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0}, ) @@ -118,6 +123,7 @@ def make_spancat( scorer: Optional[Callable], threshold: float, max_positive: Optional[int], + save_activations: bool, ) -> "SpanCategorizer": """Create a SpanCategorizer component. The span categorizer consists of two parts: a suggester function that proposes candidate spans, and a labeller @@ -138,6 +144,7 @@ def make_spancat( 0.5. max_positive (Optional[int]): Maximum number of labels to consider positive per span. Defaults to None, indicating no limit. + save_activations (bool): save model activations in Doc when annotating. """ return SpanCategorizer( nlp.vocab, @@ -148,6 +155,7 @@ def make_spancat( max_positive=max_positive, name=name, scorer=scorer, + save_activations=save_activations, ) @@ -186,6 +194,7 @@ class SpanCategorizer(TrainablePipe): threshold: float = 0.5, max_positive: Optional[int] = None, scorer: Optional[Callable] = spancat_score, + save_activations: bool = False, ) -> None: """Initialize the span categorizer. vocab (Vocab): The shared vocabulary. @@ -218,6 +227,7 @@ class SpanCategorizer(TrainablePipe): self.model = model self.name = name self.scorer = scorer + self.save_activations = save_activations @property def key(self) -> str: @@ -260,7 +270,7 @@ class SpanCategorizer(TrainablePipe): """ return list(self.labels) - def predict(self, docs: Iterable[Doc]): + def predict(self, docs: Iterable[Doc]) -> ActivationsT: """Apply the pipeline's model to a batch of docs, without modifying them. docs (Iterable[Doc]): The documents to predict. @@ -270,7 +280,7 @@ class SpanCategorizer(TrainablePipe): """ indices = self.suggester(docs, ops=self.model.ops) scores = self.model.predict((docs, indices)) # type: ignore - return indices, scores + return {"indices": indices, "scores": scores} def set_candidates( self, docs: Iterable[Doc], *, candidates_key: str = "candidates" @@ -290,19 +300,29 @@ class SpanCategorizer(TrainablePipe): for index in candidates.dataXd: doc.spans[candidates_key].append(doc[index[0] : index[1]]) - def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None: + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None: """Modify a batch of Doc objects, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. - scores: The scores to set, produced by SpanCategorizer.predict. + activations: ActivationsT: The activations, produced by SpanCategorizer.predict. DOCS: https://spacy.io/api/spancategorizer#set_annotations """ labels = self.labels - indices, scores = indices_scores + + indices = activations["indices"] + assert isinstance(indices, Ragged) + scores = cast(Floats2d, activations["scores"]) + offset = 0 for i, doc in enumerate(docs): indices_i = indices[i].dataXd + if self.save_activations: + doc.activations[self.name] = {} + doc.activations[self.name]["indices"] = indices_i + doc.activations[self.name]["scores"] = scores[ + offset : offset + indices.lengths[i] + ] doc.spans[self.key] = self._make_span_group( doc, indices_i, scores[offset : offset + indices.lengths[i]], labels # type: ignore[arg-type] ) diff --git a/spacy/pipeline/tagger.pyx b/spacy/pipeline/tagger.pyx index d6ecbf084..3b4715ce5 100644 --- a/spacy/pipeline/tagger.pyx +++ b/spacy/pipeline/tagger.pyx @@ -1,9 +1,9 @@ # cython: infer_types=True, profile=True, binding=True -from typing import Callable, Optional +from typing import Callable, Dict, Iterable, List, Optional, Union import numpy import srsly from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config -from thinc.types import Floats2d +from thinc.types import Floats2d, Ints1d import warnings from itertools import islice @@ -22,6 +22,9 @@ from ..training import validate_examples, validate_get_examples from ..util import registry from .. import util + +ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]] + # See #9050 BACKWARD_OVERWRITE = False @@ -45,7 +48,13 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "tagger", assigns=["token.tag"], - default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!"}, + default_config={ + "model": DEFAULT_TAGGER_MODEL, + "overwrite": False, + "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, + "neg_prefix": "!", + "save_activations": False, + }, default_score_weights={"tag_acc": 1.0}, ) def make_tagger( @@ -55,6 +64,7 @@ def make_tagger( overwrite: bool, scorer: Optional[Callable], neg_prefix: str, + save_activations: bool, ): """Construct a part-of-speech tagger component. @@ -63,7 +73,8 @@ def make_tagger( in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to 1). """ - return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix) + return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix, + save_activations=save_activations) def tagger_score(examples, **kwargs): @@ -89,6 +100,7 @@ class Tagger(TrainablePipe): overwrite=BACKWARD_OVERWRITE, scorer=tagger_score, neg_prefix="!", + save_activations: bool = False, ): """Initialize a part-of-speech tagger. @@ -98,6 +110,7 @@ class Tagger(TrainablePipe): losses during training. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_token_attr for the attribute "tag". + save_activations (bool): save model activations in Doc when annotating. DOCS: https://spacy.io/api/tagger#init """ @@ -108,6 +121,7 @@ class Tagger(TrainablePipe): cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix} self.cfg = dict(sorted(cfg.items())) self.scorer = scorer + self.save_activations = save_activations @property def labels(self): @@ -126,7 +140,7 @@ class Tagger(TrainablePipe): """Data about the labels currently added to the component.""" return tuple(self.cfg["labels"]) - def predict(self, docs): + def predict(self, docs) -> ActivationsT: """Apply the pipeline's model to a batch of docs, without modifying them. docs (Iterable[Doc]): The documents to predict. @@ -139,12 +153,12 @@ class Tagger(TrainablePipe): n_labels = len(self.labels) guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs] assert len(guesses) == len(docs) - return guesses + return {"probabilities": guesses, "label_ids": guesses} scores = self.model.predict(docs) assert len(scores) == len(docs), (len(scores), len(docs)) guesses = self._scores2guesses(scores) assert len(guesses) == len(docs) - return guesses + return {"probabilities": scores, "label_ids": guesses} def _scores2guesses(self, scores): guesses = [] @@ -155,14 +169,15 @@ class Tagger(TrainablePipe): guesses.append(doc_guesses) return guesses - def set_annotations(self, docs, batch_tag_ids): + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. - batch_tag_ids: The IDs to set, produced by Tagger.predict. + activations (ActivationsT): The activations used for setting annotations, produced by Tagger.predict. DOCS: https://spacy.io/api/tagger#set_annotations """ + batch_tag_ids = activations["label_ids"] if isinstance(docs, Doc): docs = [docs] cdef Doc doc @@ -170,6 +185,10 @@ class Tagger(TrainablePipe): cdef bint overwrite = self.cfg["overwrite"] labels = self.labels for i, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + for act_name, acts in activations.items(): + doc.activations[self.name][act_name] = acts[i] doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index c45f819fc..506cdb61c 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -1,4 +1,4 @@ -from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any +from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any, Union from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config from thinc.types import Floats2d import numpy @@ -14,6 +14,9 @@ from ..util import registry from ..vocab import Vocab +ActivationsT = Dict[str, Floats2d] + + single_label_default_config = """ [model] @architectures = "spacy.TextCatEnsemble.v2" @@ -75,6 +78,7 @@ subword_features = true "threshold": 0.5, "model": DEFAULT_SINGLE_TEXTCAT_MODEL, "scorer": {"@scorers": "spacy.textcat_scorer.v1"}, + "save_activations": False, }, default_score_weights={ "cats_score": 1.0, @@ -96,6 +100,7 @@ def make_textcat( model: Model[List[Doc], List[Floats2d]], threshold: float, scorer: Optional[Callable], + save_activations: bool, ) -> "TextCategorizer": """Create a TextCategorizer component. The text categorizer predicts categories over a whole document. It can learn one or more labels, and the labels are considered @@ -105,8 +110,16 @@ def make_textcat( scores for each category. threshold (float): Cutoff to consider a prediction "positive". scorer (Optional[Callable]): The scoring method. + save_activations (bool): save model activations in Doc when annotating. """ - return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer) + return TextCategorizer( + nlp.vocab, + model, + name, + threshold=threshold, + scorer=scorer, + save_activations=save_activations, + ) def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: @@ -137,6 +150,7 @@ class TextCategorizer(TrainablePipe): *, threshold: float, scorer: Optional[Callable] = textcat_score, + save_activations: bool = False, ) -> None: """Initialize a text categorizer for single-label classification. @@ -157,6 +171,7 @@ class TextCategorizer(TrainablePipe): cfg = {"labels": [], "threshold": threshold, "positive_label": None} self.cfg = dict(cfg) self.scorer = scorer + self.save_activations = save_activations @property def support_missing_values(self): @@ -181,7 +196,7 @@ class TextCategorizer(TrainablePipe): """ return self.labels # type: ignore[return-value] - def predict(self, docs: Iterable[Doc]): + def predict(self, docs: Iterable[Doc]) -> ActivationsT: """Apply the pipeline's model to a batch of docs, without modifying them. docs (Iterable[Doc]): The documents to predict. @@ -194,12 +209,12 @@ class TextCategorizer(TrainablePipe): tensors = [doc.tensor for doc in docs] xp = self.model.ops.xp scores = xp.zeros((len(list(docs)), len(self.labels))) - return scores + return {"probabilities": scores} scores = self.model.predict(docs) scores = self.model.ops.asarray(scores) - return scores + return {"probabilities": scores} - def set_annotations(self, docs: Iterable[Doc], scores) -> None: + def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None: """Modify a batch of Doc objects, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. @@ -207,9 +222,13 @@ class TextCategorizer(TrainablePipe): DOCS: https://spacy.io/api/textcategorizer#set_annotations """ + probs = activations["probabilities"] for i, doc in enumerate(docs): + if self.save_activations: + doc.activations[self.name] = {} + doc.activations[self.name]["probabilities"] = probs[i] for j, label in enumerate(self.labels): - doc.cats[label] = float(scores[i, j]) + doc.cats[label] = float(probs[i, j]) def update( self, diff --git a/spacy/pipeline/textcat_multilabel.py b/spacy/pipeline/textcat_multilabel.py index e33a885f8..3a6dd0b0c 100644 --- a/spacy/pipeline/textcat_multilabel.py +++ b/spacy/pipeline/textcat_multilabel.py @@ -1,4 +1,4 @@ -from typing import Iterable, Optional, Dict, List, Callable, Any +from typing import Iterable, Optional, Dict, List, Callable, Any, Union from thinc.types import Floats2d from thinc.api import Model, Config @@ -75,6 +75,7 @@ subword_features = true "threshold": 0.5, "model": DEFAULT_MULTI_TEXTCAT_MODEL, "scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"}, + "save_activations": False, }, default_score_weights={ "cats_score": 1.0, @@ -96,6 +97,7 @@ def make_multilabel_textcat( model: Model[List[Doc], List[Floats2d]], threshold: float, scorer: Optional[Callable], + save_activations: bool, ) -> "TextCategorizer": """Create a TextCategorizer component. The text categorizer predicts categories over a whole document. It can learn one or more labels, and the labels are considered @@ -107,7 +109,12 @@ def make_multilabel_textcat( threshold (float): Cutoff to consider a prediction "positive". """ return MultiLabel_TextCategorizer( - nlp.vocab, model, name, threshold=threshold, scorer=scorer + nlp.vocab, + model, + name, + threshold=threshold, + scorer=scorer, + save_activations=save_activations, ) @@ -139,6 +146,7 @@ class MultiLabel_TextCategorizer(TextCategorizer): *, threshold: float, scorer: Optional[Callable] = textcat_multilabel_score, + save_activations: bool = False, ) -> None: """Initialize a text categorizer for multi-label classification. @@ -147,6 +155,7 @@ class MultiLabel_TextCategorizer(TextCategorizer): name (str): The component instance name, used to add entries to the losses during training. threshold (float): Cutoff to consider a prediction "positive". + save_activations (bool): save model activations in Doc when annotating. DOCS: https://spacy.io/api/textcategorizer#init """ @@ -157,6 +166,7 @@ class MultiLabel_TextCategorizer(TextCategorizer): cfg = {"labels": [], "threshold": threshold} self.cfg = dict(cfg) self.scorer = scorer + self.save_activations = save_activations @property def support_missing_values(self): diff --git a/spacy/pipeline/trainable_pipe.pxd b/spacy/pipeline/trainable_pipe.pxd index 65daa8b22..180f86f45 100644 --- a/spacy/pipeline/trainable_pipe.pxd +++ b/spacy/pipeline/trainable_pipe.pxd @@ -6,3 +6,4 @@ cdef class TrainablePipe(Pipe): cdef public object model cdef public object cfg cdef public object scorer + cdef bint _save_activations diff --git a/spacy/pipeline/trainable_pipe.pyx b/spacy/pipeline/trainable_pipe.pyx index 76b0733cf..c82f2830c 100644 --- a/spacy/pipeline/trainable_pipe.pyx +++ b/spacy/pipeline/trainable_pipe.pyx @@ -2,11 +2,12 @@ from typing import Iterable, Iterator, Optional, Dict, Tuple, Callable import srsly from thinc.api import set_dropout_rate, Model, Optimizer +import warnings from ..tokens.doc cimport Doc from ..training import validate_examples -from ..errors import Errors +from ..errors import Errors, Warnings from .pipe import Pipe, deserialize_config from .. import util from ..vocab import Vocab @@ -342,3 +343,11 @@ cdef class TrainablePipe(Pipe): deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) return self + + @property + def save_activations(self): + return self._save_activations + + @save_activations.setter + def save_activations(self, save_activations: bool): + self._save_activations = save_activations diff --git a/spacy/tests/pipeline/test_edit_tree_lemmatizer.py b/spacy/tests/pipeline/test_edit_tree_lemmatizer.py index cf541e301..ad2e56729 100644 --- a/spacy/tests/pipeline/test_edit_tree_lemmatizer.py +++ b/spacy/tests/pipeline/test_edit_tree_lemmatizer.py @@ -1,3 +1,4 @@ +from typing import cast import pickle import pytest from hypothesis import given @@ -6,6 +7,7 @@ from spacy import util from spacy.lang.en import English from spacy.language import Language from spacy.pipeline._edit_tree_internals.edit_trees import EditTrees +from spacy.pipeline.trainable_pipe import TrainablePipe from spacy.training import Example from spacy.strings import StringStore from spacy.util import make_tempdir @@ -278,3 +280,26 @@ def test_empty_strings(): no_change = trees.add("xyz", "xyz") empty = trees.add("", "") assert no_change == empty + + +def test_save_activations(): + nlp = English() + lemmatizer = cast(TrainablePipe, nlp.add_pipe("trainable_lemmatizer")) + lemmatizer.min_tree_freq = 1 + train_examples = [] + for t in TRAIN_DATA: + train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) + nlp.initialize(get_examples=lambda: train_examples) + nO = lemmatizer.model.get_dim("nO") + + doc = nlp("This is a test.") + assert "trainable_lemmatizer" not in doc.activations + + lemmatizer.save_activations = True + doc = nlp("This is a test.") + assert list(doc.activations["trainable_lemmatizer"].keys()) == [ + "probabilities", + "tree_ids", + ] + assert doc.activations["trainable_lemmatizer"]["probabilities"].shape == (5, nO) + assert doc.activations["trainable_lemmatizer"]["tree_ids"].shape == (5,) diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index 82bc976bb..75d1feea5 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -1,7 +1,8 @@ -from typing import Callable, Iterable, Dict, Any +from typing import Callable, Iterable, Dict, Any, cast import pytest from numpy.testing import assert_equal +from thinc.types import Ragged from spacy import registry, util from spacy.attrs import ENT_KB_ID @@ -9,7 +10,7 @@ from spacy.compat import pickle from spacy.kb import Candidate, KnowledgeBase, get_candidates from spacy.lang.en import English from spacy.ml import load_kb -from spacy.pipeline import EntityLinker +from spacy.pipeline import EntityLinker, TrainablePipe from spacy.pipeline.legacy import EntityLinker_v1 from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.scorer import Scorer @@ -1176,3 +1177,66 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]): assert len(doc.ents) == 1 assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL + + +def test_save_activations(): + nlp = English() + vector_length = 3 + assert "Q2146908" not in nlp.vocab.strings + + # Convert the texts to docs to make sure we have doc.ents set for the training examples + train_examples = [] + for text, annotation in TRAIN_DATA: + doc = nlp(text) + train_examples.append(Example.from_dict(doc, annotation)) + + def create_kb(vocab): + # create artificial KB - assign same prior weight to the two russ cochran's + # Q2146908 (Russ Cochran): American golfer + # Q7381115 (Russ Cochran): publisher + mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) + mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) + mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) + mykb.add_alias( + alias="Russ Cochran", + entities=["Q2146908", "Q7381115"], + probabilities=[0.5, 0.5], + ) + return mykb + + # Create the Entity Linker component and add it to the pipeline + entity_linker = cast(TrainablePipe, nlp.add_pipe("entity_linker", last=True)) + assert isinstance(entity_linker, EntityLinker) + entity_linker.set_kb(create_kb) + assert "Q2146908" in entity_linker.vocab.strings + assert "Q2146908" in entity_linker.kb.vocab.strings + + # initialize the NEL pipe + nlp.initialize(get_examples=lambda: train_examples) + + nO = entity_linker.model.get_dim("nO") + + nlp.add_pipe("sentencizer", first=True) + patterns = [ + {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}, + {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}, + ] + ruler = nlp.add_pipe("entity_ruler", before="entity_linker") + ruler.add_patterns(patterns) + + doc = nlp("Russ Cochran was a publisher") + assert "entity_linker" not in doc.activations + + entity_linker.save_activations = True + doc = nlp("Russ Cochran was a publisher") + assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"} + ents = doc.activations["entity_linker"]["ents"] + assert isinstance(ents, Ragged) + assert ents.data.shape == (2, 1) + assert ents.data.dtype == "uint64" + assert ents.lengths.shape == (1,) + scores = doc.activations["entity_linker"]["scores"] + assert isinstance(scores, Ragged) + assert scores.data.shape == (2, 1) + assert scores.data.dtype == "float32" + assert scores.lengths.shape == (1,) diff --git a/spacy/tests/pipeline/test_morphologizer.py b/spacy/tests/pipeline/test_morphologizer.py index 33696bfd8..70fc77304 100644 --- a/spacy/tests/pipeline/test_morphologizer.py +++ b/spacy/tests/pipeline/test_morphologizer.py @@ -1,3 +1,4 @@ +from typing import cast import pytest from numpy.testing import assert_equal @@ -7,6 +8,7 @@ from spacy.lang.en import English from spacy.language import Language from spacy.tests.util import make_tempdir from spacy.morphology import Morphology +from spacy.pipeline import TrainablePipe from spacy.attrs import MORPH from spacy.tokens import Doc @@ -197,3 +199,25 @@ def test_overfitting_IO(): gold_pos_tags = ["NOUN", "NOUN", "NOUN", "NOUN"] assert [str(t.morph) for t in doc] == gold_morphs assert [t.pos_ for t in doc] == gold_pos_tags + + +def test_save_activations(): + nlp = English() + morphologizer = cast(TrainablePipe, nlp.add_pipe("morphologizer")) + train_examples = [] + for inst in TRAIN_DATA: + train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1])) + nlp.initialize(get_examples=lambda: train_examples) + + doc = nlp("This is a test.") + assert "morphologizer" not in doc.activations + + morphologizer.save_activations = True + doc = nlp("This is a test.") + assert "morphologizer" in doc.activations + assert set(doc.activations["morphologizer"].keys()) == { + "label_ids", + "probabilities", + } + assert doc.activations["morphologizer"]["probabilities"].shape == (5, 6) + assert doc.activations["morphologizer"]["label_ids"].shape == (5,) diff --git a/spacy/tests/pipeline/test_senter.py b/spacy/tests/pipeline/test_senter.py index 047f59bef..3deac9e9a 100644 --- a/spacy/tests/pipeline/test_senter.py +++ b/spacy/tests/pipeline/test_senter.py @@ -1,3 +1,4 @@ +from typing import cast import pytest from numpy.testing import assert_equal from spacy.attrs import SENT_START @@ -6,6 +7,7 @@ from spacy import util from spacy.training import Example from spacy.lang.en import English from spacy.language import Language +from spacy.pipeline import TrainablePipe from spacy.tests.util import make_tempdir @@ -101,3 +103,26 @@ def test_overfitting_IO(): # test internal pipe labels vs. Language.pipe_labels with hidden labels assert nlp.get_pipe("senter").labels == ("I", "S") assert "senter" not in nlp.pipe_labels + + +def test_save_activations(): + # Test if activations are correctly added to Doc when requested. + nlp = English() + senter = cast(TrainablePipe, nlp.add_pipe("senter")) + + train_examples = [] + for t in TRAIN_DATA: + train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) + + nlp.initialize(get_examples=lambda: train_examples) + nO = senter.model.get_dim("nO") + + doc = nlp("This is a test.") + assert "senter" not in doc.activations + + senter.save_activations = True + doc = nlp("This is a test.") + assert "senter" in doc.activations + assert set(doc.activations["senter"].keys()) == {"label_ids", "probabilities"} + assert doc.activations["senter"]["probabilities"].shape == (5, nO) + assert doc.activations["senter"]["label_ids"].shape == (5,) diff --git a/spacy/tests/pipeline/test_spancat.py b/spacy/tests/pipeline/test_spancat.py index 95e9aeb57..4fb26c7e7 100644 --- a/spacy/tests/pipeline/test_spancat.py +++ b/spacy/tests/pipeline/test_spancat.py @@ -419,3 +419,23 @@ def test_set_candidates(): assert len(docs[0].spans["candidates"]) == 9 assert docs[0].spans["candidates"][0].text == "Just" assert docs[0].spans["candidates"][4].text == "Just a" + + +def test_save_activations(): + # Test if activations are correctly added to Doc when requested. + nlp = English() + spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY}) + train_examples = make_examples(nlp) + nlp.initialize(get_examples=lambda: train_examples) + nO = spancat.model.get_dim("nO") + assert nO == 2 + assert set(spancat.labels) == {"LOC", "PERSON"} + + doc = nlp("This is a test.") + assert "spancat" not in doc.activations + + spancat.save_activations = True + doc = nlp("This is a test.") + assert set(doc.activations["spancat"].keys()) == {"indices", "scores"} + assert doc.activations["spancat"]["indices"].shape == (12, 2) + assert doc.activations["spancat"]["scores"].shape == (12, nO) diff --git a/spacy/tests/pipeline/test_tagger.py b/spacy/tests/pipeline/test_tagger.py index 96e75851e..a0c71198e 100644 --- a/spacy/tests/pipeline/test_tagger.py +++ b/spacy/tests/pipeline/test_tagger.py @@ -1,3 +1,4 @@ +from typing import cast import pytest from numpy.testing import assert_equal from spacy.attrs import TAG @@ -6,6 +7,7 @@ from spacy import util from spacy.training import Example from spacy.lang.en import English from spacy.language import Language +from spacy.pipeline import TrainablePipe from thinc.api import compounding from ..util import make_tempdir @@ -211,6 +213,26 @@ def test_overfitting_IO(): assert doc3[0].tag_ != "N" +def test_save_activations(): + # Test if activations are correctly added to Doc when requested. + nlp = English() + tagger = cast(TrainablePipe, nlp.add_pipe("tagger")) + train_examples = [] + for t in TRAIN_DATA: + train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) + nlp.initialize(get_examples=lambda: train_examples) + + doc = nlp("This is a test.") + assert "tagger" not in doc.activations + + tagger.save_activations = True + doc = nlp("This is a test.") + assert "tagger" in doc.activations + assert set(doc.activations["tagger"].keys()) == {"label_ids", "probabilities"} + assert doc.activations["tagger"]["probabilities"].shape == (5, len(TAGS)) + assert doc.activations["tagger"]["label_ids"].shape == (5,) + + def test_tagger_requires_labels(): nlp = English() nlp.add_pipe("tagger") diff --git a/spacy/tests/pipeline/test_textcat.py b/spacy/tests/pipeline/test_textcat.py index 0bb036a33..c1f61a3c0 100644 --- a/spacy/tests/pipeline/test_textcat.py +++ b/spacy/tests/pipeline/test_textcat.py @@ -1,3 +1,4 @@ +from typing import cast import random import numpy.random @@ -11,7 +12,7 @@ from spacy import util from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat from spacy.lang.en import English from spacy.language import Language -from spacy.pipeline import TextCategorizer +from spacy.pipeline import TextCategorizer, TrainablePipe from spacy.pipeline.textcat import single_label_bow_config from spacy.pipeline.textcat import single_label_cnn_config from spacy.pipeline.textcat import single_label_default_config @@ -285,7 +286,7 @@ def test_issue9904(): nlp.initialize(get_examples) examples = get_examples() - scores = textcat.predict([eg.predicted for eg in examples]) + scores = textcat.predict([eg.predicted for eg in examples])["probabilities"] loss = textcat.get_loss(examples, scores)[0] loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0] @@ -871,3 +872,41 @@ def test_textcat_multi_threshold(): scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0}) assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0 + + +def test_save_activations(): + nlp = English() + textcat = cast(TrainablePipe, nlp.add_pipe("textcat")) + + train_examples = [] + for text, annotations in TRAIN_DATA_SINGLE_LABEL: + train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) + nlp.initialize(get_examples=lambda: train_examples) + nO = textcat.model.get_dim("nO") + + doc = nlp("This is a test.") + assert "textcat" not in doc.activations + + textcat.save_activations = True + doc = nlp("This is a test.") + assert list(doc.activations["textcat"].keys()) == ["probabilities"] + assert doc.activations["textcat"]["probabilities"].shape == (nO,) + + +def test_save_activations_multi(): + nlp = English() + textcat = cast(TrainablePipe, nlp.add_pipe("textcat_multilabel")) + + train_examples = [] + for text, annotations in TRAIN_DATA_MULTI_LABEL: + train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) + nlp.initialize(get_examples=lambda: train_examples) + nO = textcat.model.get_dim("nO") + + doc = nlp("This is a test.") + assert "textcat_multilabel" not in doc.activations + + textcat.save_activations = True + doc = nlp("This is a test.") + assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"] + assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,) diff --git a/spacy/tokens/doc.pxd b/spacy/tokens/doc.pxd index 57d087958..83a940cbb 100644 --- a/spacy/tokens/doc.pxd +++ b/spacy/tokens/doc.pxd @@ -50,6 +50,8 @@ cdef class Doc: cdef public float sentiment + cdef public dict activations + cdef public dict user_hooks cdef public dict user_token_hooks cdef public dict user_span_hooks diff --git a/spacy/tokens/doc.pyi b/spacy/tokens/doc.pyi index ae1324a8a..763c1fd2f 100644 --- a/spacy/tokens/doc.pyi +++ b/spacy/tokens/doc.pyi @@ -1,7 +1,7 @@ from typing import Callable, Protocol, Iterable, Iterator, Optional from typing import Union, Tuple, List, Dict, Any, overload from cymem.cymem import Pool -from thinc.types import Floats1d, Floats2d, Ints2d +from thinc.types import ArrayXd, Floats1d, Floats2d, Ints2d, Ragged from .span import Span from .token import Token from .span_groups import SpanGroups @@ -22,6 +22,7 @@ class Doc: max_length: int length: int sentiment: float + activations: Dict[str, Dict[str, Union[ArrayXd, Ragged]]] cats: Dict[str, float] user_hooks: Dict[str, Callable[..., Any]] user_token_hooks: Dict[str, Callable[..., Any]] diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index 85d76efb3..6969515c3 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -245,6 +245,7 @@ cdef class Doc: self.length = 0 self.sentiment = 0.0 self.cats = {} + self.activations = {} self.user_hooks = {} self.user_token_hooks = {} self.user_span_hooks = {} diff --git a/website/docs/api/doc.md b/website/docs/api/doc.md index f97f4ad83..136e7785d 100644 --- a/website/docs/api/doc.md +++ b/website/docs/api/doc.md @@ -751,22 +751,23 @@ The L2 norm of the document's vector representation. ## Attributes {#attributes} -| Name | Description | -| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- | -| `text` | A string representation of the document text. ~~str~~ | -| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ | -| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ | -| `vocab` | The store of lexical types. ~~Vocab~~ | -| `tensor` 2 | Container for dense vector representations. ~~numpy.ndarray~~ | -| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ | -| `lang` 2.1 | Language of the document's vocabulary. ~~int~~ | -| `lang_` 2.1 | Language of the document's vocabulary. ~~str~~ | -| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ | -| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ | -| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ | -| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ | -| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ | -| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | +| Name | Description | +| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------- | +| `text` | A string representation of the document text. ~~str~~ | +| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ | +| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ | +| `vocab` | The store of lexical types. ~~Vocab~~ | +| `tensor` 2 | Container for dense vector representations. ~~numpy.ndarray~~ | +| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ | +| `lang` 2.1 | Language of the document's vocabulary. ~~int~~ | +| `lang_` 2.1 | Language of the document's vocabulary. ~~str~~ | +| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ | +| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ | +| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ | +| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ | +| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ | +| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | +| `activations` 4.0 | A dictionary of activations per trainable pipe (available when the `save_activations` option of a pipe is enabled). ~~Dict[str, Option[Any]]~~ | ## Serialization fields {#serialization-fields} diff --git a/website/docs/api/edittreelemmatizer.md b/website/docs/api/edittreelemmatizer.md index 63e4bf910..8bee74316 100644 --- a/website/docs/api/edittreelemmatizer.md +++ b/website/docs/api/edittreelemmatizer.md @@ -44,14 +44,15 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("trainable_lemmatizer", config=config, name="lemmatizer") > ``` -| Setting | Description | -| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | -| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ | -| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ | -| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | -| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ | -| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ | +| Setting | Description | +| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ | +| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ | +| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"tree_ids"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/edit_tree_lemmatizer.py diff --git a/website/docs/api/entitylinker.md b/website/docs/api/entitylinker.md index 43e08a39c..07dd02634 100644 --- a/website/docs/api/entitylinker.md +++ b/website/docs/api/entitylinker.md @@ -52,19 +52,20 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("entity_linker", config=config) > ``` -| Setting | Description | -| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | -| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | -| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | -| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | -| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | -| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ | -| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | -| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | -| `threshold` 3.4 | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ | +| Setting | Description | +| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | +| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | +| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | +| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | +| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | +| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ | +| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"ents"` and `"scores"`. ~~Union[bool, list[str]]~~ | +| `threshold` 3.4 | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/entity_linker.py diff --git a/website/docs/api/morphologizer.md b/website/docs/api/morphologizer.md index fda6d1fa6..97444b157 100644 --- a/website/docs/api/morphologizer.md +++ b/website/docs/api/morphologizer.md @@ -42,12 +42,13 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("morphologizer", config=config) > ``` -| Setting | Description | -| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | -| `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ | -| `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | +| Setting | Description | +| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ | +| `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx @@ -399,8 +400,8 @@ coarse-grained POS as the feature `POS`. > assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels > ``` -| Name | Description | -| ----------- | ------------------------------------------------------ | +| Name | Description | +| ----------- | --------------------------------------------------------- | | **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ | ## Morphologizer.label_data {#label_data tag="property" new="3"} diff --git a/website/docs/api/sentencerecognizer.md b/website/docs/api/sentencerecognizer.md index 2f50350ae..03744e1b5 100644 --- a/website/docs/api/sentencerecognizer.md +++ b/website/docs/api/sentencerecognizer.md @@ -39,11 +39,12 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("senter", config=config) > ``` -| Setting | Description | -| ---------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | -| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ | +| Setting | Description | +| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/senter.pyx diff --git a/website/docs/api/spancategorizer.md b/website/docs/api/spancategorizer.md index 58a06bcf5..e07ad3577 100644 --- a/website/docs/api/spancategorizer.md +++ b/website/docs/api/spancategorizer.md @@ -52,14 +52,15 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("spancat", config=config) > ``` -| Setting | Description | -| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | -| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ | -| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | -| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | -| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | -| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ | +| Setting | Description | +| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ | +| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ | +| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ | +| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | +| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"indices"` and `"scores"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/spancat.py diff --git a/website/docs/api/tagger.md b/website/docs/api/tagger.md index 90a49b197..0d77d9bf4 100644 --- a/website/docs/api/tagger.md +++ b/website/docs/api/tagger.md @@ -40,12 +40,13 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("tagger", config=config) > ``` -| Setting | Description | -| ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | -| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | -| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ | -| `neg_prefix` 3.2.1 | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ | +| Setting | Description | +| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ | +| `neg_prefix` 3.2.1 | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/tagger.pyx diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md index 042b4ab76..d8a609693 100644 --- a/website/docs/api/textcategorizer.md +++ b/website/docs/api/textcategorizer.md @@ -117,14 +117,15 @@ Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#create_pipe). -| Name | Description | -| -------------- | -------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | -| _keyword-only_ | | -| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | -| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | +| Name | Description | +| ----------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | +| `save_activations` 4.0 | Save activations in `Doc` when annotating. The supported activations is `"probabilities"`. ~~Union[bool, list[str]]~~ | ## TextCategorizer.\_\_call\_\_ {#call tag="method"} From 5157e4e8235786438c6c463fa7003de17c43b649 Mon Sep 17 00:00:00 2001 From: Sofie Van Landeghem Date: Thu, 15 Sep 2022 17:06:58 +0200 Subject: [PATCH 138/138] disable mypy run for Python 3.10 (#11508) (#11512) --- .github/azure-steps.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml index 18224ba8c..c7722391f 100644 --- a/.github/azure-steps.yml +++ b/.github/azure-steps.yml @@ -27,6 +27,7 @@ steps: - script: python -m mypy spacy displayName: 'Run mypy' + condition: ne(variables['python_version'], '3.10') - task: DeleteFiles@1 inputs: