Merge pull request #11958 from adrianeboyd/backport/v3.3.2

Backport bug fixes to v3.3.x
This commit is contained in:
Adriane Boyd 2022-12-14 16:15:14 +01:00 committed by GitHub
commit 4e032da3b9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 205 additions and 109 deletions

View File

@ -1,9 +1,6 @@
parameters: parameters:
python_version: '' python_version: ''
architecture: '' architecture: 'x64'
prefix: ''
gpu: false
num_build_jobs: 1
steps: steps:
- task: UsePythonVersion@0 - task: UsePythonVersion@0
@ -16,16 +13,16 @@ steps:
displayName: 'Set variables' displayName: 'Set variables'
- script: | - script: |
${{ parameters.prefix }} python -m pip install -U pip setuptools python -m pip install -U build pip setuptools
${{ parameters.prefix }} python -m pip install -U -r requirements.txt python -m pip install -U -r requirements.txt
displayName: "Install dependencies" displayName: "Install dependencies"
- script: | - script: |
${{ parameters.prefix }} python setup.py build_ext --inplace -j ${{ parameters.num_build_jobs }} python -m build --sdist
${{ parameters.prefix }} python setup.py sdist --formats=gztar displayName: "Build sdist"
displayName: "Compile and build sdist"
- script: python -m mypy spacy - script: |
python -m mypy spacy
displayName: 'Run mypy' displayName: 'Run mypy'
condition: ne(variables['python_version'], '3.10') condition: ne(variables['python_version'], '3.10')
@ -34,35 +31,24 @@ steps:
contents: "spacy" contents: "spacy"
displayName: "Delete source directory" displayName: "Delete source directory"
- task: DeleteFiles@1
inputs:
contents: "*.egg-info"
displayName: "Delete egg-info directory"
- script: | - script: |
${{ parameters.prefix }} python -m pip freeze --exclude torch --exclude cupy-cuda110 > installed.txt python -m pip freeze > installed.txt
${{ parameters.prefix }} python -m pip uninstall -y -r installed.txt python -m pip uninstall -y -r installed.txt
displayName: "Uninstall all packages" displayName: "Uninstall all packages"
- bash: | - bash: |
${{ parameters.prefix }} SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1) SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
${{ parameters.prefix }} python -m pip install dist/$SDIST python -m pip install dist/$SDIST
displayName: "Install from sdist" displayName: "Install from sdist"
- script: | - script: |
${{ parameters.prefix }} python -m pip install -U -r requirements.txt python -W error -c "import spacy"
displayName: "Install test requirements" displayName: "Test import"
- script: |
${{ parameters.prefix }} python -m pip install -U cupy-cuda110 -f https://github.com/cupy/cupy/releases/v9.0.0
${{ parameters.prefix }} python -m pip install "torch==1.7.1+cu110" -f https://download.pytorch.org/whl/torch_stable.html
displayName: "Install GPU requirements"
condition: eq(${{ parameters.gpu }}, true)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy
displayName: "Run CPU tests"
condition: eq(${{ parameters.gpu }}, false)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy -p spacy.tests.enable_gpu
displayName: "Run GPU tests"
condition: eq(${{ parameters.gpu }}, true)
- script: | - script: |
python -m spacy download ca_core_news_sm python -m spacy download ca_core_news_sm
@ -105,13 +91,21 @@ steps:
displayName: 'Test assemble CLI vectors warning' displayName: 'Test assemble CLI vectors warning'
condition: eq(variables['python_version'], '3.8') condition: eq(variables['python_version'], '3.8')
- script: |
python -m pip install -U -r requirements.txt
displayName: "Install test requirements"
- script: |
python -m pytest --pyargs spacy -W error
displayName: "Run CPU tests"
- script: |
python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.10'))
- script: | - script: |
python .github/validate_universe_json.py website/meta/universe.json python .github/validate_universe_json.py website/meta/universe.json
displayName: 'Test website/meta/universe.json' displayName: 'Test website/meta/universe.json'
condition: eq(variables['python_version'], '3.8') condition: eq(variables['python_version'], '3.8')
- script: |
${{ parameters.prefix }} python -m pip install thinc-apple-ops
${{ parameters.prefix }} python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.9'))

View File

@ -6,7 +6,7 @@ repos:
language_version: python3.7 language_version: python3.7
additional_dependencies: ['click==8.0.4'] additional_dependencies: ['click==8.0.4']
- repo: https://gitlab.com/pycqa/flake8 - repo: https://gitlab.com/pycqa/flake8
rev: 3.9.2 rev: 5.0.4
hooks: hooks:
- id: flake8 - id: flake8
args: args:

View File

@ -31,7 +31,7 @@ jobs:
inputs: inputs:
versionSpec: "3.7" versionSpec: "3.7"
- script: | - script: |
pip install flake8==3.9.2 pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics
displayName: "flake8" displayName: "flake8"
@ -41,7 +41,7 @@ jobs:
matrix: matrix:
# We're only running one platform per Python version to speed up builds # We're only running one platform per Python version to speed up builds
Python36Linux: Python36Linux:
imageName: "ubuntu-latest" imageName: "ubuntu-20.04"
python.version: "3.6" python.version: "3.6"
# Python36Windows: # Python36Windows:
# imageName: "windows-latest" # imageName: "windows-latest"
@ -50,7 +50,7 @@ jobs:
# imageName: "macos-latest" # imageName: "macos-latest"
# python.version: "3.6" # python.version: "3.6"
# Python37Linux: # Python37Linux:
# imageName: "ubuntu-latest" # imageName: "ubuntu-20.04"
# python.version: "3.7" # python.version: "3.7"
Python37Windows: Python37Windows:
imageName: "windows-latest" imageName: "windows-latest"
@ -92,20 +92,3 @@ jobs:
- template: .github/azure-steps.yml - template: .github/azure-steps.yml
parameters: parameters:
python_version: '$(python.version)' python_version: '$(python.version)'
architecture: 'x64'
# - job: "TestGPU"
# dependsOn: "Validate"
# strategy:
# matrix:
# Python38LinuxX64_GPU:
# python.version: '3.8'
# pool:
# name: "LinuxX64_GPU"
# steps:
# - template: .github/azure-steps.yml
# parameters:
# python_version: '$(python.version)'
# architecture: 'x64'
# gpu: true
# num_build_jobs: 24

View File

@ -12,6 +12,7 @@ srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.5.0 typer>=0.3.0,<0.5.0
pathy>=0.3.5 pathy>=0.3.5
smart-open>=5.2.1,<7.0.0
# Third party dependencies # Third party dependencies
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0

View File

@ -51,9 +51,10 @@ install_requires =
wasabi>=0.9.1,<1.1.0 wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0 srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0
# Third-party dependencies
typer>=0.3.0,<0.5.0 typer>=0.3.0,<0.5.0
pathy>=0.3.5 pathy>=0.3.5
# Third-party dependencies smart-open>=5.2.1,<7.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0

View File

@ -1,6 +1,6 @@
# fmt: off # fmt: off
__title__ = "spacy" __title__ = "spacy"
__version__ = "3.3.1" __version__ = "3.3.2"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download" __download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects" __projects__ = "https://github.com/explosion/projects"

View File

@ -358,7 +358,7 @@ def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False)
if dest.exists() and not force: if dest.exists() and not force:
return None return None
src = str(src) src = str(src)
with smart_open.open(src, mode="rb", ignore_ext=True) as input_file: with smart_open.open(src, mode="rb", compression="disable") as input_file:
with dest.open(mode="wb") as output_file: with dest.open(mode="wb") as output_file:
shutil.copyfileobj(input_file, output_file) shutil.copyfileobj(input_file, output_file)

View File

@ -227,12 +227,13 @@ def parse_spans(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
"kb_id": span.kb_id_ if span.kb_id_ else "", "kb_id": span.kb_id_ if span.kb_id_ else "",
"kb_url": kb_url_template.format(span.kb_id_) if kb_url_template else "#", "kb_url": kb_url_template.format(span.kb_id_) if kb_url_template else "#",
} }
for span in doc.spans[spans_key] for span in doc.spans.get(spans_key, [])
] ]
tokens = [token.text for token in doc] tokens = [token.text for token in doc]
if not spans: if not spans:
warnings.warn(Warnings.W117.format(spans_key=spans_key)) keys = list(doc.spans.keys())
warnings.warn(Warnings.W117.format(spans_key=spans_key, keys=keys))
title = doc.user_data.get("title", None) if hasattr(doc, "user_data") else None title = doc.user_data.get("title", None) if hasattr(doc, "user_data") else None
settings = get_doc_settings(doc) settings = get_doc_settings(doc)
return { return {

View File

@ -195,7 +195,7 @@ class Warnings(metaclass=ErrorsWithCodes):
W117 = ("No spans to visualize found in Doc object with spans_key: '{spans_key}'. If this is " W117 = ("No spans to visualize found in Doc object with spans_key: '{spans_key}'. If this is "
"surprising to you, make sure the Doc was processed using a model " "surprising to you, make sure the Doc was processed using a model "
"that supports span categorization, and check the `doc.spans[spans_key]` " "that supports span categorization, and check the `doc.spans[spans_key]` "
"property manually if necessary.") "property manually if necessary.\n\nAvailable keys: {keys}")
W118 = ("Term '{term}' not found in glossary. It may however be explained in documentation " W118 = ("Term '{term}' not found in glossary. It may however be explained in documentation "
"for the corpora used to train the language. Please check " "for the corpora used to train the language. Please check "
"`nlp.meta[\"sources\"]` for any relevant links.") "`nlp.meta[\"sources\"]` for any relevant links.")
@ -335,6 +335,11 @@ class Errors(metaclass=ErrorsWithCodes):
"clear the existing vectors and resize the table.") "clear the existing vectors and resize the table.")
E074 = ("Error interpreting compiled match pattern: patterns are expected " E074 = ("Error interpreting compiled match pattern: patterns are expected "
"to end with the attribute {attr}. Got: {bad_attr}.") "to end with the attribute {attr}. Got: {bad_attr}.")
E079 = ("Error computing states in beam: number of predicted beams "
"({pbeams}) does not equal number of gold beams ({gbeams}).")
E080 = ("Duplicate state found in beam: {key}.")
E081 = ("Error getting gradient in beam: number of histories ({n_hist}) "
"does not equal number of losses ({losses}).")
E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), " E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), "
"projective heads ({n_proj_heads}) and labels ({n_labels}) do not " "projective heads ({n_proj_heads}) and labels ({n_labels}) do not "
"match.") "match.")

View File

@ -3,7 +3,7 @@ from ..punctuation import TOKENIZER_INFIXES as BASE_TOKENIZER_INFIXES
_infixes = ( _infixes = (
["·", "", "\(", "\)"] ["·", "", r"\(", r"\)"]
+ [r"(?<=[0-9])~(?=[0-9-])"] + [r"(?<=[0-9])~(?=[0-9-])"]
+ LIST_QUOTES + LIST_QUOTES
+ BASE_TOKENIZER_INFIXES + BASE_TOKENIZER_INFIXES

View File

@ -22,9 +22,15 @@ def forward(model, X, is_train):
nP = model.get_dim("nP") nP = model.get_dim("nP")
nI = model.get_dim("nI") nI = model.get_dim("nI")
W = model.get_param("W") W = model.get_param("W")
Yf = model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True) # Preallocate array for layer output, including padding.
Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP)
model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:])
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP)) Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
Yf = model.ops.xp.vstack((model.get_param("pad"), Yf))
# Set padding. Padding has shape (1, nF, nO, nP). Unfortunately, we cannot
# change its shape to (nF, nO, nP) without breaking existing models. So
# we'll squeeze the first dimension here.
Yf[0] = model.ops.xp.squeeze(model.get_param("pad"), 0)
def backward(dY_ids): def backward(dY_ids):
# This backprop is particularly tricky, because we get back a different # This backprop is particularly tricky, because we get back a different

View File

@ -331,9 +331,9 @@ class EditTreeLemmatizer(TrainablePipe):
tree = dict(tree) tree = dict(tree)
if "orig" in tree: if "orig" in tree:
tree["orig"] = self.vocab.strings[tree["orig"]] tree["orig"] = self.vocab.strings.add(tree["orig"])
if "orig" in tree: if "orig" in tree:
tree["subst"] = self.vocab.strings[tree["subst"]] tree["subst"] = self.vocab.strings.add(tree["subst"])
trees.append(tree) trees.append(tree)

View File

@ -269,7 +269,10 @@ class SpanCategorizer(TrainablePipe):
DOCS: https://spacy.io/api/spancategorizer#predict DOCS: https://spacy.io/api/spancategorizer#predict
""" """
indices = self.suggester(docs, ops=self.model.ops) indices = self.suggester(docs, ops=self.model.ops)
scores = self.model.predict((docs, indices)) # type: ignore if indices.lengths.sum() == 0:
scores = self.model.ops.alloc2f(0, 0)
else:
scores = self.model.predict((docs, indices)) # type: ignore
return indices, scores return indices, scores
def set_candidates( def set_candidates(

View File

@ -123,14 +123,14 @@ def test_doc_from_array_heads_in_bounds(en_vocab):
# head before start # head before start
arr = doc.to_array(["HEAD"]) arr = doc.to_array(["HEAD"])
arr[0] = -1 arr[0] = numpy.int32(-1).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words) doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError): with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr) doc_from_array.from_array(["HEAD"], arr)
# head after end # head after end
arr = doc.to_array(["HEAD"]) arr = doc.to_array(["HEAD"])
arr[0] = 5 arr[0] = numpy.int32(5).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words) doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError): with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr) doc_from_array.from_array(["HEAD"], arr)

View File

@ -3,6 +3,7 @@ import weakref
import numpy import numpy
from numpy.testing import assert_array_equal from numpy.testing import assert_array_equal
import pytest import pytest
import warnings
from thinc.api import NumpyOps, get_current_ops from thinc.api import NumpyOps, get_current_ops
from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS
@ -529,9 +530,9 @@ def test_doc_from_array_sent_starts(en_vocab):
# no warning using default attrs # no warning using default attrs
attrs = doc._get_array_attrs() attrs = doc._get_array_attrs()
arr = doc.to_array(attrs) arr = doc.to_array(attrs)
with pytest.warns(None) as record: with warnings.catch_warnings():
warnings.simplefilter("error")
new_doc.from_array(attrs, arr) new_doc.from_array(attrs, arr)
assert len(record) == 0
# only SENT_START uses SENT_START # only SENT_START uses SENT_START
attrs = [SENT_START] attrs = [SENT_START]
arr = doc.to_array(attrs) arr = doc.to_array(attrs)

View File

@ -2,6 +2,9 @@ import pytest
from spacy.tokens import Doc from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_ru_doc_lemmatization(ru_lemmatizer): def test_ru_doc_lemmatization(ru_lemmatizer):
words = ["мама", "мыла", "раму"] words = ["мама", "мыла", "раму"]
pos = ["NOUN", "VERB", "NOUN"] pos = ["NOUN", "VERB", "NOUN"]

View File

@ -1,6 +1,10 @@
import pytest
from spacy.tokens import Doc from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_uk_lemmatizer(uk_lemmatizer): def test_uk_lemmatizer(uk_lemmatizer):
"""Check that the default uk lemmatizer runs.""" """Check that the default uk lemmatizer runs."""
doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"]) doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"])

View File

@ -1,4 +1,5 @@
import pytest import pytest
import warnings
import srsly import srsly
from mock import Mock from mock import Mock
@ -344,13 +345,13 @@ def test_phrase_matcher_validation(en_vocab):
matcher.add("TEST1", [doc1]) matcher.add("TEST1", [doc1])
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
matcher.add("TEST2", [doc2]) matcher.add("TEST2", [doc2])
with pytest.warns(None) as record: with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST3", [doc3]) matcher.add("TEST3", [doc3])
assert not record.list
matcher = PhraseMatcher(en_vocab, attr="POS", validate=True) matcher = PhraseMatcher(en_vocab, attr="POS", validate=True)
with pytest.warns(None) as record: with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST4", [doc2]) matcher.add("TEST4", [doc2])
assert not record.list
def test_attr_validation(en_vocab): def test_attr_validation(en_vocab):

View File

@ -60,10 +60,45 @@ def test_initialize_from_labels():
nlp2 = Language() nlp2 = Language()
lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer") lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer")
lemmatizer2.initialize( lemmatizer2.initialize(
get_examples=lambda: train_examples, # We want to check that the strings in replacement nodes are
# added to the string store. Avoid that they get added through
# the examples.
get_examples=lambda: train_examples[:1],
labels=lemmatizer.label_data, labels=lemmatizer.label_data,
) )
assert lemmatizer2.tree2label == {1: 0, 3: 1, 4: 2, 6: 3} assert lemmatizer2.tree2label == {1: 0, 3: 1, 4: 2, 6: 3}
assert lemmatizer2.label_data == {
"trees": [
{"orig": "S", "subst": "s"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 0,
"suffix_tree": 4294967295,
},
{"orig": "s", "subst": ""},
{
"prefix_len": 0,
"suffix_len": 1,
"prefix_tree": 4294967295,
"suffix_tree": 2,
},
{
"prefix_len": 0,
"suffix_len": 0,
"prefix_tree": 4294967295,
"suffix_tree": 4294967295,
},
{"orig": "E", "subst": "e"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 5,
"suffix_tree": 4294967295,
},
],
"labels": (1, 3, 4, 6),
}
def test_no_data(): def test_no_data():

View File

@ -1048,6 +1048,10 @@ def test_no_gold_ents(patterns):
for eg in train_examples: for eg in train_examples:
eg.predicted = ruler(eg.predicted) eg.predicted = ruler(eg.predicted)
# Entity ruler is no longer needed (initialization below wipes out the
# patterns and causes warnings)
nlp.remove_pipe("entity_ruler")
def create_kb(vocab): def create_kb(vocab):
# create artificial KB # create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)

View File

@ -372,24 +372,39 @@ def test_overfitting_IO_overlapping():
def test_zero_suggestions(): def test_zero_suggestions():
# Test with a suggester that returns 0 suggestions # Test with a suggester that can return 0 suggestions
@registry.misc("test_zero_suggester") @registry.misc("test_mixed_zero_suggester")
def make_zero_suggester(): def make_mixed_zero_suggester():
def zero_suggester(docs, *, ops=None): def mixed_zero_suggester(docs, *, ops=None):
if ops is None: if ops is None:
ops = get_current_ops() ops = get_current_ops()
return Ragged( spans = []
ops.xp.zeros((0, 0), dtype="i"), ops.xp.zeros((len(docs),), dtype="i") lengths = []
) for doc in docs:
if len(doc) > 0 and len(doc) % 2 == 0:
spans.append((0, 1))
lengths.append(1)
else:
lengths.append(0)
spans = ops.asarray2i(spans)
lengths_array = ops.asarray1i(lengths)
if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
return output
return zero_suggester return mixed_zero_suggester
fix_random_seed(0) fix_random_seed(0)
nlp = English() nlp = English()
spancat = nlp.add_pipe( spancat = nlp.add_pipe(
"spancat", "spancat",
config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY}, config={
"suggester": {"@misc": "test_mixed_zero_suggester"},
"spans_key": SPAN_KEY,
},
) )
train_examples = make_examples(nlp) train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
@ -397,6 +412,16 @@ def test_zero_suggestions():
assert set(spancat.labels) == {"LOC", "PERSON"} assert set(spancat.labels) == {"LOC", "PERSON"}
nlp.update(train_examples, sgd=optimizer) nlp.update(train_examples, sgd=optimizer)
# empty doc
nlp("")
# single doc with zero suggestions
nlp("one")
# single doc with one suggestion
nlp("two two")
# batch with mixed zero/one suggestions
list(nlp.pipe(["one", "two two", "three three three", "", "four four four four"]))
# batch with no suggestions
list(nlp.pipe(["", "one", "three three three"]))
def test_set_candidates(): def test_set_candidates():

View File

@ -15,6 +15,7 @@ from spacy.cli._util import is_subpath_of, load_project_config
from spacy.cli._util import parse_config_overrides, string_to_list from spacy.cli._util import parse_config_overrides, string_to_list
from spacy.cli._util import substitute_project_variables from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands from spacy.cli._util import validate_project_commands
from spacy.cli._util import upload_file, download_file
from spacy.cli.debug_data import _compile_gold, _get_labels_from_model from spacy.cli.debug_data import _compile_gold, _get_labels_from_model
from spacy.cli.debug_data import _get_labels_from_spancat from spacy.cli.debug_data import _get_labels_from_spancat
from spacy.cli.debug_data import _get_distribution, _get_kl_divergence from spacy.cli.debug_data import _get_distribution, _get_kl_divergence
@ -855,3 +856,18 @@ def test_span_length_freq_dist_output_must_be_correct():
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold) span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold assert sum(span_freqs.values()) >= threshold
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2] assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]
def test_upload_download_local_file():
with make_tempdir() as d1, make_tempdir() as d2:
filename = "f.txt"
content = "content"
local_file = d1 / filename
remote_file = d2 / filename
with local_file.open(mode="w") as file_:
file_.write(content)
upload_file(local_file, remote_file)
local_file.unlink()
download_file(remote_file, local_file)
with local_file.open(mode="r") as file_:
assert file_.read() == content

View File

@ -203,6 +203,16 @@ def test_displacy_parse_spans_different_spans_key(en_vocab):
] ]
def test_displacy_parse_empty_spans_key(en_vocab):
"""Test that having an unset spans key doesn't raise an error"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["custom"] = [Span(doc, 3, 6, "BANK")]
with pytest.warns(UserWarning, match="W117"):
spans = displacy.parse_spans(doc)
assert isinstance(spans, dict)
def test_displacy_parse_ents(en_vocab): def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format.""" """Test that named entities on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])

View File

@ -23,7 +23,7 @@ def get_textcat_bow_kwargs():
def get_textcat_cnn_kwargs(): def get_textcat_cnn_kwargs():
return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13} return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model): def get_all_params(model):
@ -65,7 +65,7 @@ def get_tok2vec_kwargs():
} }
def test_tok2vec(): def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs()) return build_Tok2Vec_model(**get_tok2vec_kwargs())

View File

@ -7,7 +7,7 @@ from ..util import get_cosine, add_vecs_to_vocab
@pytest.fixture @pytest.fixture
def vectors(): def vectors():
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])] return [("apple", [1, 2, 3]), ("orange", [-1, -2, -5])]
@pytest.fixture() @pytest.fixture()
@ -71,19 +71,17 @@ def test_vectors_similarity_DD(vocab, vectors):
def test_vectors_similarity_TD(vocab, vectors): def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2]) doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning): assert isinstance(doc.similarity(doc[0]), float)
assert isinstance(doc.similarity(doc[0]), float) assert isinstance(doc[0].similarity(doc), float)
assert isinstance(doc[0].similarity(doc), float) assert doc.similarity(doc[0]) == doc[0].similarity(doc)
assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors): def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2]) doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning): assert isinstance(doc[:2].similarity(doc[0]), float)
assert isinstance(doc[:2].similarity(doc[0]), float) assert isinstance(doc[0].similarity(doc[-2]), float)
assert isinstance(doc[0].similarity(doc[-2]), float) assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])
def test_vectors_similarity_DS(vocab, vectors): def test_vectors_similarity_DS(vocab, vectors):

View File

@ -359,6 +359,7 @@ cdef class Doc:
for annot in annotations: for annot in annotations:
if annot: if annot:
if annot is heads or annot is sent_starts or annot is ent_iobs: if annot is heads or annot is sent_starts or annot is ent_iobs:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)): for i in range(len(words)):
if attrs.ndim == 1: if attrs.ndim == 1:
attrs[i] = annot[i] attrs[i] = annot[i]
@ -1557,6 +1558,7 @@ cdef class Doc:
for j, (attr, annot) in enumerate(token_annotations.items()): for j, (attr, annot) in enumerate(token_annotations.items()):
if attr is HEAD: if attr is HEAD:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)): for i in range(len(words)):
array[i, j] = annot[i] array[i, j] = annot[i]
elif attr is MORPH: elif attr is MORPH:

View File

@ -299,7 +299,7 @@ cdef class Span:
for ancestor in ancestors: for ancestor in ancestors:
ancestor_i = ancestor.i - self.c.start ancestor_i = ancestor.i - self.c.start
if ancestor_i in range(length): if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i array[i, head_col] = numpy.int32(ancestor_i - i).astype(numpy.uint64)
# if there is no appropriate ancestor, define a new artificial root # if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col] value = array[i, head_col]
@ -307,7 +307,7 @@ cdef class Span:
new_root = old_to_new_root.get(ancestor_i, None) new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None: if new_root is not None:
# take the same artificial root as a previous token from the same sentence # take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i array[i, head_col] = numpy.int32(new_root - i).astype(numpy.uint64)
else: else:
# set this token as the new artificial root # set this token as the new artificial root
array[i, head_col] = 0 array[i, head_col] = 0

View File

@ -353,26 +353,27 @@ def _annot2array(vocab, tok_annot, doc_annot):
if key not in IDS: if key not in IDS:
raise ValueError(Errors.E974.format(obj="token", key=key)) raise ValueError(Errors.E974.format(obj="token", key=key))
elif key in ["ORTH", "SPACY"]: elif key in ["ORTH", "SPACY"]:
pass continue
elif key == "HEAD": elif key == "HEAD":
attrs.append(key) attrs.append(key)
values.append([h-i if h is not None else 0 for i, h in enumerate(value)]) row = [h-i if h is not None else 0 for i, h in enumerate(value)]
elif key == "DEP": elif key == "DEP":
attrs.append(key) attrs.append(key)
values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]) row = [vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]
elif key == "SENT_START": elif key == "SENT_START":
attrs.append(key) attrs.append(key)
values.append([to_ternary_int(v) for v in value]) row = [to_ternary_int(v) for v in value]
elif key == "MORPH": elif key == "MORPH":
attrs.append(key) attrs.append(key)
values.append([vocab.morphology.add(v) for v in value]) row = [vocab.morphology.add(v) for v in value]
else: else:
attrs.append(key) attrs.append(key)
if not all(isinstance(v, str) for v in value): if not all(isinstance(v, str) for v in value):
types = set([type(v) for v in value]) types = set([type(v) for v in value])
raise TypeError(Errors.E969.format(field=key, types=types)) from None raise TypeError(Errors.E969.format(field=key, types=types)) from None
values.append([vocab.strings.add(v) for v in value]) row = [vocab.strings.add(v) for v in value]
array = numpy.asarray(values, dtype="uint64") values.append([numpy.array(v, dtype=numpy.int32).astype(numpy.uint64) if v < 0 else v for v in row])
array = numpy.array(values, dtype=numpy.uint64)
return attrs, array.T return attrs, array.T

View File

@ -337,3 +337,5 @@ def ensure_shape(vectors_loc):
# store all the results in a list in memory # store all the results in a list in memory
lines2 = open_file(vectors_loc) lines2 = open_file(vectors_loc)
yield from lines2 yield from lines2
lines2.close()
lines.close()