diff --git a/.github/contributors/Pantalaymon.md b/.github/contributors/Pantalaymon.md new file mode 100644 index 000000000..f017f2947 --- /dev/null +++ b/.github/contributors/Pantalaymon.md @@ -0,0 +1,106 @@ +# spaCy contributor agreement + +This spaCy Contributor Agreement (**"SCA"**) is based on the +[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). +The SCA applies to any contribution that you make to any product or project +managed by us (the **"project"**), and sets out the intellectual property rights +you grant to us in the contributed materials. The term **"us"** shall mean +[ExplosionAI GmbH](https://explosion.ai/legal). The term +**"you"** shall mean the person or entity identified below. + +If you agree to be bound by these terms, fill in the information requested +below and include the filled-in version with your first pull request, under the +folder [`.github/contributors/`](/.github/contributors/). The name of the file +should be your GitHub username, with the extension `.md`. For example, the user +example_user would create the file `.github/contributors/example_user.md`. + +Read this agreement carefully before signing. These terms and conditions +constitute a binding legal agreement. + +## Contributor Agreement + +1. The term "contribution" or "contributed materials" means any source code, +object code, patch, tool, sample, graphic, specification, manual, +documentation, or any other material posted or submitted by you to the project. + +2. With respect to any worldwide copyrights, or copyright applications and +registrations, in your contribution: + + * you hereby assign to us joint ownership, and to the extent that such + assignment is or becomes invalid, ineffective or unenforceable, you hereby + grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, + royalty-free, unrestricted license to exercise all rights under those + copyrights. This includes, at our option, the right to sublicense these same + rights to third parties through multiple levels of sublicensees or other + licensing arrangements; + + * you agree that each of us can do all things in relation to your + contribution as if each of us were the sole owners, and if one of us makes + a derivative work of your contribution, the one who makes the derivative + work (or has it made will be the sole owner of that derivative work; + + * you agree that you will not assert any moral rights in your contribution + against us, our licensees or transferees; + + * you agree that we may register a copyright in your contribution and + exercise all ownership rights associated with it; and + + * you agree that neither of us has any duty to consult with, obtain the + consent of, pay or render an accounting to the other for any use or + distribution of your contribution. + +3. With respect to any patents you own, or that you can license without payment +to any third party, you hereby grant to us a perpetual, irrevocable, +non-exclusive, worldwide, no-charge, royalty-free license to: + + * make, have made, use, sell, offer to sell, import, and otherwise transfer + your contribution in whole or in part, alone or in combination with or + included in any product, work or materials arising out of the project to + which your contribution was submitted, and + + * at our option, to sublicense these same rights to third parties through + multiple levels of sublicensees or other licensing arrangements. + +4. Except as set out above, you keep all right, title, and interest in your +contribution. The rights that you grant to us under these terms are effective +on the date you first submitted a contribution to us, even if your submission +took place before the date you sign these terms. + +5. You covenant, represent, warrant and agree that: + + * Each contribution that you submit is and shall be an original work of + authorship and you can legally grant the rights set out in this SCA; + + * to the best of your knowledge, each contribution will not violate any + third party's copyrights, trademarks, patents, or other intellectual + property rights; and + + * each contribution shall be in compliance with U.S. export control laws and + other applicable export and import laws. You agree to notify us if you + become aware of any circumstance which would make any of the foregoing + representations inaccurate in any respect. We may publicly disclose your + participation in the project, including the fact that you have signed the SCA. + +6. This SCA is governed by the laws of the State of California and applicable +U.S. Federal law. Any choice of law rules will not apply. + +7. Please place an “x” on one of the applicable statement below. Please do NOT +mark both statements: + + * [x] I am signing on behalf of myself as an individual and no other person + or entity, including my employer, has or will have rights with respect to my + contributions. + + * [ ] I am signing on behalf of my employer or a legal entity and I have the + actual authority to contractually bind that entity. + +## Contributor Details + +| Field | Entry | +|------------------------------- | -------------------- | +| Name |Valentin-Gabriel Soumah| +| Company name (if applicable) | | +| Title or role (if applicable) | | +| Date | 2021-11-23 | +| GitHub username | Pantalaymon | +| Website (optional) | | diff --git a/.github/contributors/avi197.md b/.github/contributors/avi197.md new file mode 100644 index 000000000..903d7db4c --- /dev/null +++ b/.github/contributors/avi197.md @@ -0,0 +1,106 @@ +# spaCy contributor agreement + +This spaCy Contributor Agreement (**"SCA"**) is based on the +[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). +The SCA applies to any contribution that you make to any product or project +managed by us (the **"project"**), and sets out the intellectual property rights +you grant to us in the contributed materials. The term **"us"** shall mean +[ExplosionAI GmbH](https://explosion.ai/legal). The term +**"you"** shall mean the person or entity identified below. + +If you agree to be bound by these terms, fill in the information requested +below and include the filled-in version with your first pull request, under the +folder [`.github/contributors/`](/.github/contributors/). The name of the file +should be your GitHub username, with the extension `.md`. For example, the user +example_user would create the file `.github/contributors/example_user.md`. + +Read this agreement carefully before signing. These terms and conditions +constitute a binding legal agreement. + +## Contributor Agreement + +1. The term "contribution" or "contributed materials" means any source code, +object code, patch, tool, sample, graphic, specification, manual, +documentation, or any other material posted or submitted by you to the project. + +2. With respect to any worldwide copyrights, or copyright applications and +registrations, in your contribution: + + * you hereby assign to us joint ownership, and to the extent that such + assignment is or becomes invalid, ineffective or unenforceable, you hereby + grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, + royalty-free, unrestricted license to exercise all rights under those + copyrights. This includes, at our option, the right to sublicense these same + rights to third parties through multiple levels of sublicensees or other + licensing arrangements; + + * you agree that each of us can do all things in relation to your + contribution as if each of us were the sole owners, and if one of us makes + a derivative work of your contribution, the one who makes the derivative + work (or has it made will be the sole owner of that derivative work; + + * you agree that you will not assert any moral rights in your contribution + against us, our licensees or transferees; + + * you agree that we may register a copyright in your contribution and + exercise all ownership rights associated with it; and + + * you agree that neither of us has any duty to consult with, obtain the + consent of, pay or render an accounting to the other for any use or + distribution of your contribution. + +3. With respect to any patents you own, or that you can license without payment +to any third party, you hereby grant to us a perpetual, irrevocable, +non-exclusive, worldwide, no-charge, royalty-free license to: + + * make, have made, use, sell, offer to sell, import, and otherwise transfer + your contribution in whole or in part, alone or in combination with or + included in any product, work or materials arising out of the project to + which your contribution was submitted, and + + * at our option, to sublicense these same rights to third parties through + multiple levels of sublicensees or other licensing arrangements. + +4. Except as set out above, you keep all right, title, and interest in your +contribution. The rights that you grant to us under these terms are effective +on the date you first submitted a contribution to us, even if your submission +took place before the date you sign these terms. + +5. You covenant, represent, warrant and agree that: + + * Each contribution that you submit is and shall be an original work of + authorship and you can legally grant the rights set out in this SCA; + + * to the best of your knowledge, each contribution will not violate any + third party's copyrights, trademarks, patents, or other intellectual + property rights; and + + * each contribution shall be in compliance with U.S. export control laws and + other applicable export and import laws. You agree to notify us if you + become aware of any circumstance which would make any of the foregoing + representations inaccurate in any respect. We may publicly disclose your + participation in the project, including the fact that you have signed the SCA. + +6. This SCA is governed by the laws of the State of California and applicable +U.S. Federal law. Any choice of law rules will not apply. + +7. Please place an “x” on one of the applicable statement below. Please do NOT +mark both statements: + + * [x] I am signing on behalf of myself as an individual and no other person + or entity, including my employer, has or will have rights with respect to my + contributions. + + * [ ] I am signing on behalf of my employer or a legal entity and I have the + actual authority to contractually bind that entity. + +## Contributor Details + +| Field | Entry | +|------------------------------- | -------------------- | +| Name | Son Pham | +| Company name (if applicable) | | +| Title or role (if applicable) | | +| Date | 09/10/2021 | +| GitHub username | Avi197 | +| Website (optional) | | diff --git a/.github/contributors/fgaim.md b/.github/contributors/fgaim.md new file mode 100644 index 000000000..1c3b409b4 --- /dev/null +++ b/.github/contributors/fgaim.md @@ -0,0 +1,106 @@ +# spaCy contributor agreement + +This spaCy Contributor Agreement (**"SCA"**) is based on the +[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). +The SCA applies to any contribution that you make to any product or project +managed by us (the **"project"**), and sets out the intellectual property rights +you grant to us in the contributed materials. The term **"us"** shall mean +[ExplosionAI GmbH](https://explosion.ai/legal). The term +**"you"** shall mean the person or entity identified below. + +If you agree to be bound by these terms, fill in the information requested +below and include the filled-in version with your first pull request, under the +folder [`.github/contributors/`](/.github/contributors/). The name of the file +should be your GitHub username, with the extension `.md`. For example, the user +example_user would create the file `.github/contributors/example_user.md`. + +Read this agreement carefully before signing. These terms and conditions +constitute a binding legal agreement. + +## Contributor Agreement + +1. The term "contribution" or "contributed materials" means any source code, +object code, patch, tool, sample, graphic, specification, manual, +documentation, or any other material posted or submitted by you to the project. + +2. With respect to any worldwide copyrights, or copyright applications and +registrations, in your contribution: + + * you hereby assign to us joint ownership, and to the extent that such + assignment is or becomes invalid, ineffective or unenforceable, you hereby + grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, + royalty-free, unrestricted license to exercise all rights under those + copyrights. This includes, at our option, the right to sublicense these same + rights to third parties through multiple levels of sublicensees or other + licensing arrangements; + + * you agree that each of us can do all things in relation to your + contribution as if each of us were the sole owners, and if one of us makes + a derivative work of your contribution, the one who makes the derivative + work (or has it made will be the sole owner of that derivative work; + + * you agree that you will not assert any moral rights in your contribution + against us, our licensees or transferees; + + * you agree that we may register a copyright in your contribution and + exercise all ownership rights associated with it; and + + * you agree that neither of us has any duty to consult with, obtain the + consent of, pay or render an accounting to the other for any use or + distribution of your contribution. + +3. With respect to any patents you own, or that you can license without payment +to any third party, you hereby grant to us a perpetual, irrevocable, +non-exclusive, worldwide, no-charge, royalty-free license to: + + * make, have made, use, sell, offer to sell, import, and otherwise transfer + your contribution in whole or in part, alone or in combination with or + included in any product, work or materials arising out of the project to + which your contribution was submitted, and + + * at our option, to sublicense these same rights to third parties through + multiple levels of sublicensees or other licensing arrangements. + +4. Except as set out above, you keep all right, title, and interest in your +contribution. The rights that you grant to us under these terms are effective +on the date you first submitted a contribution to us, even if your submission +took place before the date you sign these terms. + +5. You covenant, represent, warrant and agree that: + + * Each contribution that you submit is and shall be an original work of + authorship and you can legally grant the rights set out in this SCA; + + * to the best of your knowledge, each contribution will not violate any + third party's copyrights, trademarks, patents, or other intellectual + property rights; and + + * each contribution shall be in compliance with U.S. export control laws and + other applicable export and import laws. You agree to notify us if you + become aware of any circumstance which would make any of the foregoing + representations inaccurate in any respect. We may publicly disclose your + participation in the project, including the fact that you have signed the SCA. + +6. This SCA is governed by the laws of the State of California and applicable +U.S. Federal law. Any choice of law rules will not apply. + +7. Please place an “x” on one of the applicable statement below. Please do NOT +mark both statements: + + * [x] I am signing on behalf of myself as an individual and no other person + or entity, including my employer, has or will have rights with respect to my + contributions. + + * [ ] I am signing on behalf of my employer or a legal entity and I have the + actual authority to contractually bind that entity. + +## Contributor Details + +| Field | Entry | +|------------------------------- | -------------------- | +| Name | Fitsum Gaim | +| Company name (if applicable) | | +| Title or role (if applicable) | | +| Date | 2021-08-07 | +| GitHub username | fgaim | +| Website (optional) | | diff --git a/.github/contributors/syrull.md b/.github/contributors/syrull.md new file mode 100644 index 000000000..82cdade12 --- /dev/null +++ b/.github/contributors/syrull.md @@ -0,0 +1,106 @@ +# spaCy contributor agreement + +This spaCy Contributor Agreement (**"SCA"**) is based on the +[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). +The SCA applies to any contribution that you make to any product or project +managed by us (the **"project"**), and sets out the intellectual property rights +you grant to us in the contributed materials. The term **"us"** shall mean +[ExplosionAI GmbH](https://explosion.ai/legal). The term +**"you"** shall mean the person or entity identified below. + +If you agree to be bound by these terms, fill in the information requested +below and include the filled-in version with your first pull request, under the +folder [`.github/contributors/`](/.github/contributors/). The name of the file +should be your GitHub username, with the extension `.md`. For example, the user +example_user would create the file `.github/contributors/example_user.md`. + +Read this agreement carefully before signing. These terms and conditions +constitute a binding legal agreement. + +## Contributor Agreement + +1. The term "contribution" or "contributed materials" means any source code, +object code, patch, tool, sample, graphic, specification, manual, +documentation, or any other material posted or submitted by you to the project. + +2. With respect to any worldwide copyrights, or copyright applications and +registrations, in your contribution: + + * you hereby assign to us joint ownership, and to the extent that such + assignment is or becomes invalid, ineffective or unenforceable, you hereby + grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, + royalty-free, unrestricted license to exercise all rights under those + copyrights. This includes, at our option, the right to sublicense these same + rights to third parties through multiple levels of sublicensees or other + licensing arrangements; + + * you agree that each of us can do all things in relation to your + contribution as if each of us were the sole owners, and if one of us makes + a derivative work of your contribution, the one who makes the derivative + work (or has it made will be the sole owner of that derivative work; + + * you agree that you will not assert any moral rights in your contribution + against us, our licensees or transferees; + + * you agree that we may register a copyright in your contribution and + exercise all ownership rights associated with it; and + + * you agree that neither of us has any duty to consult with, obtain the + consent of, pay or render an accounting to the other for any use or + distribution of your contribution. + +3. With respect to any patents you own, or that you can license without payment +to any third party, you hereby grant to us a perpetual, irrevocable, +non-exclusive, worldwide, no-charge, royalty-free license to: + + * make, have made, use, sell, offer to sell, import, and otherwise transfer + your contribution in whole or in part, alone or in combination with or + included in any product, work or materials arising out of the project to + which your contribution was submitted, and + + * at our option, to sublicense these same rights to third parties through + multiple levels of sublicensees or other licensing arrangements. + +4. Except as set out above, you keep all right, title, and interest in your +contribution. The rights that you grant to us under these terms are effective +on the date you first submitted a contribution to us, even if your submission +took place before the date you sign these terms. + +5. You covenant, represent, warrant and agree that: + + * Each contribution that you submit is and shall be an original work of + authorship and you can legally grant the rights set out in this SCA; + + * to the best of your knowledge, each contribution will not violate any + third party's copyrights, trademarks, patents, or other intellectual + property rights; and + + * each contribution shall be in compliance with U.S. export control laws and + other applicable export and import laws. You agree to notify us if you + become aware of any circumstance which would make any of the foregoing + representations inaccurate in any respect. We may publicly disclose your + participation in the project, including the fact that you have signed the SCA. + +6. This SCA is governed by the laws of the State of California and applicable +U.S. Federal law. Any choice of law rules will not apply. + +7. Please place an “x” on one of the applicable statement below. Please do NOT +mark both statements: + + * [x] I am signing on behalf of myself as an individual and no other person + or entity, including my employer, has or will have rights with respect to my + contributions. + + * [ ] I am signing on behalf of my employer or a legal entity and I have the + actual authority to contractually bind that entity. + +## Contributor Details + +| Field | Entry | +|------------------------------- | -------------------- | +| Name | Dimitar Ganev | +| Company name (if applicable) | | +| Title or role (if applicable) | | +| Date | 2021/8/2 | +| GitHub username | syrull | +| Website (optional) | | diff --git a/.gitignore b/.gitignore index ac72f2bbf..60036a475 100644 --- a/.gitignore +++ b/.gitignore @@ -9,6 +9,7 @@ keys/ spacy/tests/package/setup.cfg spacy/tests/package/pyproject.toml spacy/tests/package/requirements.txt +spacy/tests/universe/universe.json # Website website/.cache/ diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index a4d321aa3..9a7d0744a 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -143,15 +143,25 @@ Changes to `.py` files will be effective immediately. ### Fixing bugs When fixing a bug, first create an -[issue](https://github.com/explosion/spaCy/issues) if one does not already exist. -The description text can be very short – we don't want to make this too +[issue](https://github.com/explosion/spaCy/issues) if one does not already +exist. The description text can be very short – we don't want to make this too bureaucratic. -Next, create a test file named `test_issue[ISSUE NUMBER].py` in the -[`spacy/tests/regression`](spacy/tests/regression) folder. Test for the bug -you're fixing, and make sure the test fails. Next, add and commit your test file -referencing the issue number in the commit message. Finally, fix the bug, make -sure your test passes and reference the issue in your commit message. +Next, add a test to the relevant file in the +[`spacy/tests`](spacy/tests)folder. Then add a [pytest +mark](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers), +`@pytest.mark.issue(NUMBER)`, to reference the issue number. + +```python +# Assume you're fixing Issue #1234 +@pytest.mark.issue(1234) +def test_issue1234(): + ... +``` + +Test for the bug you're fixing, and make sure the test fails. Next, add and +commit your test file. Finally, fix the bug, make sure your test passes and +reference the issue number in your pull request description. 📖 **For more information on how to add tests, check out the [tests README](spacy/tests/README.md).** diff --git a/LICENSE b/LICENSE index 86f501b92..d76864579 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ The MIT License (MIT) -Copyright (C) 2016-2021 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal +Copyright (C) 2016-2022 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/MANIFEST.in b/MANIFEST.in index c1524d460..b7826e456 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,11 +1,8 @@ -recursive-include include *.h recursive-include spacy *.pyi *.pyx *.pxd *.txt *.cfg *.jinja *.toml include LICENSE include README.md include pyproject.toml include spacy/py.typed -recursive-exclude spacy/lang *.json -recursive-include spacy/lang *.json.gz -recursive-include spacy/cli *.json *.yml +recursive-include spacy/cli *.yml recursive-include licenses * recursive-exclude spacy *.cpp diff --git a/README.md b/README.md index 61d5449a4..57d76fb45 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the MIT license. -💫 **Version 3.0 out now!** +💫 **Version 3.2 out now!** [Check out the release notes here.](https://github.com/explosion/spaCy/releases) [![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8) diff --git a/azure-pipelines.yml b/azure-pipelines.yml index 4291b6e0a..71a793911 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -23,7 +23,7 @@ jobs: # defined in .flake8 and overwrites the selected codes. - job: "Validate" pool: - vmImage: "ubuntu-18.04" + vmImage: "ubuntu-latest" steps: - task: UsePythonVersion@0 inputs: @@ -39,49 +39,49 @@ jobs: matrix: # We're only running one platform per Python version to speed up builds Python36Linux: - imageName: "ubuntu-18.04" + imageName: "ubuntu-latest" python.version: "3.6" # Python36Windows: - # imageName: "windows-2019" + # imageName: "windows-latest" # python.version: "3.6" # Python36Mac: - # imageName: "macos-10.14" + # imageName: "macos-latest" # python.version: "3.6" # Python37Linux: - # imageName: "ubuntu-18.04" + # imageName: "ubuntu-latest" # python.version: "3.7" Python37Windows: - imageName: "windows-2019" + imageName: "windows-latest" python.version: "3.7" # Python37Mac: - # imageName: "macos-10.14" + # imageName: "macos-latest" # python.version: "3.7" # Python38Linux: - # imageName: "ubuntu-18.04" + # imageName: "ubuntu-latest" # python.version: "3.8" # Python38Windows: - # imageName: "windows-2019" + # imageName: "windows-latest" # python.version: "3.8" Python38Mac: - imageName: "macos-10.14" + imageName: "macos-latest" python.version: "3.8" Python39Linux: - imageName: "ubuntu-18.04" + imageName: "ubuntu-latest" python.version: "3.9" # Python39Windows: - # imageName: "windows-2019" + # imageName: "windows-latest" # python.version: "3.9" # Python39Mac: - # imageName: "macos-10.14" + # imageName: "macos-latest" # python.version: "3.9" Python310Linux: - imageName: "ubuntu-20.04" + imageName: "ubuntu-latest" python.version: "3.10" Python310Windows: - imageName: "windows-2019" + imageName: "windows-latest" python.version: "3.10" Python310Mac: - imageName: "macos-10.15" + imageName: "macos-latest" python.version: "3.10" maxParallel: 4 pool: diff --git a/extra/DEVELOPER_DOCS/Code Conventions.md b/extra/DEVELOPER_DOCS/Code Conventions.md index 7a3f6996f..eba466c46 100644 --- a/extra/DEVELOPER_DOCS/Code Conventions.md +++ b/extra/DEVELOPER_DOCS/Code Conventions.md @@ -444,7 +444,7 @@ spaCy uses the [`pytest`](http://doc.pytest.org/) framework for testing. Tests f When adding tests, make sure to use descriptive names and only test for one behavior at a time. Tests should be grouped into modules dedicated to the same type of functionality and some test modules are organized as directories of test files related to the same larger area of the library, e.g. `matcher` or `tokenizer`. -Regression tests are tests that refer to bugs reported in specific issues. They should live in the `regression` module and are named according to the issue number (e.g. `test_issue1234.py`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first. Every once in a while, we go through the `regression` module and group tests together into larger files by issue number, in groups of 500 to 1000 numbers. This prevents us from ending up with too many individual files over time. +Regression tests are tests that refer to bugs reported in specific issues. They should live in the relevant module of the test suite, named according to the issue number (e.g., `test_issue1234.py`), and [marked](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers) appropriately (e.g. `@pytest.mark.issue(1234)`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first. The test suite also provides [fixtures](https://github.com/explosion/spaCy/blob/master/spacy/tests/conftest.py) for different language tokenizers that can be used as function arguments of the same name and will be passed in automatically. Those should only be used for tests related to those specific languages. We also have [test utility functions](https://github.com/explosion/spaCy/blob/master/spacy/tests/util.py) for common operations, like creating a temporary file. diff --git a/requirements.txt b/requirements.txt index 36cf5c58e..8d7372cfe 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,6 @@ # Our libraries spacy-legacy>=3.0.8,<3.1.0 +spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 thinc>=8.0.12,<8.1.0 @@ -17,6 +18,7 @@ requests>=2.13.0,<3.0.0 tqdm>=4.38.0,<5.0.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0 jinja2 +langcodes>=3.2.0,<4.0.0 # Official Python utilities setuptools packaging>=20.0 @@ -29,7 +31,7 @@ pytest-timeout>=1.3.0,<2.0.0 mock>=2.0.0,<3.0.0 flake8>=3.8.0,<3.10.0 hypothesis>=3.27.0,<7.0.0 -mypy>=0.910 +mypy==0.910 types-dataclasses>=0.1.3; python_version < "3.7" types-mock>=0.1.1 types-requests diff --git a/setup.cfg b/setup.cfg index dc31228e5..586a044ff 100644 --- a/setup.cfg +++ b/setup.cfg @@ -42,6 +42,7 @@ setup_requires = install_requires = # Our libraries spacy-legacy>=3.0.8,<3.1.0 + spacy-loggers>=1.0.0,<2.0.0 murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 @@ -62,6 +63,7 @@ install_requires = setuptools packaging>=20.0 typing_extensions>=3.7.4,<4.0.0.0; python_version < "3.8" + langcodes>=3.2.0,<4.0.0 [options.entry_points] console_scripts = @@ -69,43 +71,45 @@ console_scripts = [options.extras_require] lookups = - spacy_lookups_data>=1.0.2,<1.1.0 + spacy_lookups_data>=1.0.3,<1.1.0 transformers = - spacy_transformers>=1.0.1,<1.2.0 + spacy_transformers>=1.1.2,<1.2.0 ray = spacy_ray>=0.1.0,<1.0.0 cuda = - cupy>=5.0.0b4,<10.0.0 + cupy>=5.0.0b4,<11.0.0 cuda80 = - cupy-cuda80>=5.0.0b4,<10.0.0 + cupy-cuda80>=5.0.0b4,<11.0.0 cuda90 = - cupy-cuda90>=5.0.0b4,<10.0.0 + cupy-cuda90>=5.0.0b4,<11.0.0 cuda91 = - cupy-cuda91>=5.0.0b4,<10.0.0 + cupy-cuda91>=5.0.0b4,<11.0.0 cuda92 = - cupy-cuda92>=5.0.0b4,<10.0.0 + cupy-cuda92>=5.0.0b4,<11.0.0 cuda100 = - cupy-cuda100>=5.0.0b4,<10.0.0 + cupy-cuda100>=5.0.0b4,<11.0.0 cuda101 = - cupy-cuda101>=5.0.0b4,<10.0.0 + cupy-cuda101>=5.0.0b4,<11.0.0 cuda102 = - cupy-cuda102>=5.0.0b4,<10.0.0 + cupy-cuda102>=5.0.0b4,<11.0.0 cuda110 = - cupy-cuda110>=5.0.0b4,<10.0.0 + cupy-cuda110>=5.0.0b4,<11.0.0 cuda111 = - cupy-cuda111>=5.0.0b4,<10.0.0 + cupy-cuda111>=5.0.0b4,<11.0.0 cuda112 = - cupy-cuda112>=5.0.0b4,<10.0.0 + cupy-cuda112>=5.0.0b4,<11.0.0 cuda113 = - cupy-cuda113>=5.0.0b4,<10.0.0 + cupy-cuda113>=5.0.0b4,<11.0.0 cuda114 = - cupy-cuda114>=5.0.0b4,<10.0.0 + cupy-cuda114>=5.0.0b4,<11.0.0 +cuda115 = + cupy-cuda115>=5.0.0b4,<11.0.0 apple = thinc-apple-ops>=0.0.4,<1.0.0 # Language tokenizers with external dependencies ja = - sudachipy>=0.4.9 - sudachidict_core>=20200330 + sudachipy>=0.5.2,!=0.6.1 + sudachidict_core>=20211220 ko = natto-py==0.9.0 th = diff --git a/setup.py b/setup.py index 1397a8d01..486324184 100755 --- a/setup.py +++ b/setup.py @@ -78,6 +78,7 @@ COPY_FILES = { ROOT / "setup.cfg": PACKAGE_ROOT / "tests" / "package", ROOT / "pyproject.toml": PACKAGE_ROOT / "tests" / "package", ROOT / "requirements.txt": PACKAGE_ROOT / "tests" / "package", + ROOT / "website" / "meta" / "universe.json": PACKAGE_ROOT / "tests" / "universe", } diff --git a/spacy/about.py b/spacy/about.py index e6846f8d4..c253d5052 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -1,6 +1,6 @@ # fmt: off __title__ = "spacy" -__version__ = "3.1.4" +__version__ = "3.2.1" __download_url__ = "https://github.com/explosion/spacy-models/releases/download" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __projects__ = "https://github.com/explosion/projects" diff --git a/spacy/attrs.pyx b/spacy/attrs.pyx index 9122de17b..dc8eed7c3 100644 --- a/spacy/attrs.pyx +++ b/spacy/attrs.pyx @@ -1,3 +1,6 @@ +from .errors import Errors + +IOB_STRINGS = ("", "I", "O", "B") IDS = { "": NULL_ATTR, @@ -64,7 +67,6 @@ IDS = { "FLAG61": FLAG61, "FLAG62": FLAG62, "FLAG63": FLAG63, - "ID": ID, "ORTH": ORTH, "LOWER": LOWER, @@ -72,7 +74,6 @@ IDS = { "SHAPE": SHAPE, "PREFIX": PREFIX, "SUFFIX": SUFFIX, - "LENGTH": LENGTH, "LEMMA": LEMMA, "POS": POS, @@ -87,7 +88,7 @@ IDS = { "SPACY": SPACY, "LANG": LANG, "MORPH": MORPH, - "IDX": IDX + "IDX": IDX, } @@ -109,28 +110,66 @@ def intify_attrs(stringy_attrs, strings_map=None, _do_deprecated=False): """ inty_attrs = {} if _do_deprecated: - if 'F' in stringy_attrs: + if "F" in stringy_attrs: stringy_attrs["ORTH"] = stringy_attrs.pop("F") - if 'L' in stringy_attrs: + if "L" in stringy_attrs: stringy_attrs["LEMMA"] = stringy_attrs.pop("L") - if 'pos' in stringy_attrs: + if "pos" in stringy_attrs: stringy_attrs["TAG"] = stringy_attrs.pop("pos") - if 'morph' in stringy_attrs: - morphs = stringy_attrs.pop('morph') - if 'number' in stringy_attrs: - stringy_attrs.pop('number') - if 'tenspect' in stringy_attrs: - stringy_attrs.pop('tenspect') + if "morph" in stringy_attrs: + morphs = stringy_attrs.pop("morph") + if "number" in stringy_attrs: + stringy_attrs.pop("number") + if "tenspect" in stringy_attrs: + stringy_attrs.pop("tenspect") morph_keys = [ - 'PunctType', 'PunctSide', 'Other', 'Degree', 'AdvType', 'Number', - 'VerbForm', 'PronType', 'Aspect', 'Tense', 'PartType', 'Poss', - 'Hyph', 'ConjType', 'NumType', 'Foreign', 'VerbType', 'NounType', - 'Gender', 'Mood', 'Negative', 'Tense', 'Voice', 'Abbr', - 'Derivation', 'Echo', 'Foreign', 'NameType', 'NounType', 'NumForm', - 'NumValue', 'PartType', 'Polite', 'StyleVariant', - 'PronType', 'AdjType', 'Person', 'Variant', 'AdpType', - 'Reflex', 'Negative', 'Mood', 'Aspect', 'Case', - 'Polarity', 'PrepCase', 'Animacy' # U20 + "PunctType", + "PunctSide", + "Other", + "Degree", + "AdvType", + "Number", + "VerbForm", + "PronType", + "Aspect", + "Tense", + "PartType", + "Poss", + "Hyph", + "ConjType", + "NumType", + "Foreign", + "VerbType", + "NounType", + "Gender", + "Mood", + "Negative", + "Tense", + "Voice", + "Abbr", + "Derivation", + "Echo", + "Foreign", + "NameType", + "NounType", + "NumForm", + "NumValue", + "PartType", + "Polite", + "StyleVariant", + "PronType", + "AdjType", + "Person", + "Variant", + "AdpType", + "Reflex", + "Negative", + "Mood", + "Aspect", + "Case", + "Polarity", + "PrepCase", + "Animacy", # U20 ] for key in morph_keys: if key in stringy_attrs: @@ -142,8 +181,13 @@ def intify_attrs(stringy_attrs, strings_map=None, _do_deprecated=False): for name, value in stringy_attrs.items(): int_key = intify_attr(name) if int_key is not None: - if strings_map is not None and isinstance(value, basestring): - if hasattr(strings_map, 'add'): + if int_key == ENT_IOB: + if value in IOB_STRINGS: + value = IOB_STRINGS.index(value) + elif isinstance(value, str): + raise ValueError(Errors.E1025.format(value=value)) + if strings_map is not None and isinstance(value, str): + if hasattr(strings_map, "add"): value = strings_map.add(value) else: value = strings_map[value] diff --git a/spacy/cli/debug_config.py b/spacy/cli/debug_config.py index 56ee12336..409fac4ed 100644 --- a/spacy/cli/debug_config.py +++ b/spacy/cli/debug_config.py @@ -25,7 +25,7 @@ def debug_config_cli( show_vars: bool = Opt(False, "--show-variables", "-V", help="Show an overview of all variables referenced in the config and their values. This will also reflect variables overwritten on the CLI.") # fmt: on ): - """Debug a config.cfg file and show validation errors. The command will + """Debug a config file and show validation errors. The command will create all objects in the tree and validate them. Note that some config validation errors are blocking and will prevent the rest of the config from being resolved. This means that you may not see all validation errors at diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index 3143e2c62..b9831fe0c 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -14,7 +14,7 @@ from ..training.initialize import get_sourced_components from ..schemas import ConfigSchemaTraining from ..pipeline._parser_internals import nonproj from ..pipeline._parser_internals.nonproj import DELIMITER -from ..pipeline import Morphologizer +from ..pipeline import Morphologizer, SpanCategorizer from ..morphology import Morphology from ..language import Language from ..util import registry, resolve_dot_names @@ -203,6 +203,7 @@ def debug_data( has_low_data_warning = False has_no_neg_warning = False has_ws_ents_error = False + has_boundary_cross_ents_warning = False msg.divider("Named Entity Recognition") msg.info(f"{len(model_labels)} label(s)") @@ -242,12 +243,20 @@ def debug_data( msg.warn(f"No examples for texts WITHOUT new label '{label}'") has_no_neg_warning = True + if gold_train_data["boundary_cross_ents"]: + msg.warn( + f"{gold_train_data['boundary_cross_ents']} entity span(s) crossing sentence boundaries" + ) + has_boundary_cross_ents_warning = True + if not has_low_data_warning: msg.good("Good amount of examples for all labels") if not has_no_neg_warning: msg.good("Examples without occurrences available for all labels") if not has_ws_ents_error: msg.good("No entities consisting of or starting/ending with whitespace") + if not has_boundary_cross_ents_warning: + msg.good("No entities crossing sentence boundaries") if has_low_data_warning: msg.text( @@ -565,6 +574,7 @@ def _compile_gold( "words": Counter(), "roots": Counter(), "ws_ents": 0, + "boundary_cross_ents": 0, "n_words": 0, "n_misaligned_words": 0, "words_missing_vectors": Counter(), @@ -602,6 +612,8 @@ def _compile_gold( if label.startswith(("B-", "U-")): combined_label = label.split("-")[1] data["ner"][combined_label] += 1 + if gold[i].is_sent_start and label.startswith(("I-", "L-")): + data["boundary_cross_ents"] += 1 elif label == "-": data["ner"]["-"] += 1 if "textcat" in factory_names or "textcat_multilabel" in factory_names: @@ -687,8 +699,34 @@ def _get_examples_without_label(data: Sequence[Example], label: str) -> int: return count -def _get_labels_from_model(nlp: Language, pipe_name: str) -> Set[str]: - if pipe_name not in nlp.pipe_names: - return set() - pipe = nlp.get_pipe(pipe_name) - return set(pipe.labels) +def _get_labels_from_model( + nlp: Language, factory_name: str +) -> Set[str]: + pipe_names = [ + pipe_name + for pipe_name in nlp.pipe_names + if nlp.get_pipe_meta(pipe_name).factory == factory_name + ] + labels: Set[str] = set() + for pipe_name in pipe_names: + pipe = nlp.get_pipe(pipe_name) + labels.update(pipe.labels) + return labels + + +def _get_labels_from_spancat( + nlp: Language +) -> Dict[str, Set[str]]: + pipe_names = [ + pipe_name + for pipe_name in nlp.pipe_names + if nlp.get_pipe_meta(pipe_name).factory == "spancat" + ] + labels: Dict[str, Set[str]] = {} + for pipe_name in pipe_names: + pipe = nlp.get_pipe(pipe_name) + assert isinstance(pipe, SpanCategorizer) + if pipe.key not in labels: + labels[pipe.key] = set() + labels[pipe.key].update(pipe.labels) + return labels diff --git a/spacy/cli/init_config.py b/spacy/cli/init_config.py index 530b38eb3..d4cd939c2 100644 --- a/spacy/cli/init_config.py +++ b/spacy/cli/init_config.py @@ -27,7 +27,7 @@ class Optimizations(str, Enum): @init_cli.command("config") def init_config_cli( # fmt: off - output_file: Path = Arg(..., help="File to save config.cfg to or - for stdout (will only output config and no additional logging info)", allow_dash=True), + output_file: Path = Arg(..., help="File to save the config to or - for stdout (will only output config and no additional logging info)", allow_dash=True), lang: str = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"), pipeline: str = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"), optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."), @@ -37,7 +37,7 @@ def init_config_cli( # fmt: on ): """ - Generate a starter config.cfg for training. Based on your requirements + Generate a starter config file for training. Based on your requirements specified via the CLI arguments, this command generates a config with the optimal settings for your use case. This includes the choice of architecture, pretrained weights and related hyperparameters. @@ -66,15 +66,15 @@ def init_config_cli( @init_cli.command("fill-config") def init_fill_config_cli( # fmt: off - base_path: Path = Arg(..., help="Base config to fill", exists=True, dir_okay=False), - output_file: Path = Arg("-", help="File to save config.cfg to (or - for stdout)", allow_dash=True), + base_path: Path = Arg(..., help="Path to base config to fill", exists=True, dir_okay=False), + output_file: Path = Arg("-", help="Path to output .cfg file (or - for stdout)", allow_dash=True), pretraining: bool = Opt(False, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"), diff: bool = Opt(False, "--diff", "-D", help="Print a visual diff highlighting the changes"), code_path: Optional[Path] = Opt(None, "--code-path", "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), # fmt: on ): """ - Fill partial config.cfg with default values. Will add all missing settings + Fill partial config file with default values. Will add all missing settings from the default config and will create all objects, check the registered functions for their default values and update the base config. This command can be used with a config generated via the training quickstart widget: diff --git a/spacy/cli/init_pipeline.py b/spacy/cli/init_pipeline.py index 2a920cdda..d53a61b8e 100644 --- a/spacy/cli/init_pipeline.py +++ b/spacy/cli/init_pipeline.py @@ -20,6 +20,7 @@ def init_vectors_cli( output_dir: Path = Arg(..., help="Pipeline output directory"), prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"), truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"), + mode: str = Opt("default", "--mode", "-m", help="Vectors mode: default or floret"), name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True), @@ -34,7 +35,14 @@ def init_vectors_cli( nlp = util.get_lang_class(lang)() if jsonl_loc is not None: update_lexemes(nlp, jsonl_loc) - convert_vectors(nlp, vectors_loc, truncate=truncate, prune=prune, name=name) + convert_vectors( + nlp, + vectors_loc, + truncate=truncate, + prune=prune, + name=name, + mode=mode, + ) msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors") nlp.to_disk(output_dir) msg.good( diff --git a/spacy/cli/package.py b/spacy/cli/package.py index e76343dc3..f9d2a9af2 100644 --- a/spacy/cli/package.py +++ b/spacy/cli/package.py @@ -4,6 +4,7 @@ from pathlib import Path from wasabi import Printer, MarkdownRenderer, get_raw_input from thinc.api import Config from collections import defaultdict +from catalogue import RegistryError import srsly import sys @@ -212,9 +213,18 @@ def get_third_party_dependencies( if "factory" in component: funcs["factories"].add(component["factory"]) modules = set() + lang = config["nlp"]["lang"] for reg_name, func_names in funcs.items(): for func_name in func_names: - func_info = util.registry.find(reg_name, func_name) + # Try the lang-specific version and fall back + try: + func_info = util.registry.find(reg_name, lang + "." + func_name) + except RegistryError: + try: + func_info = util.registry.find(reg_name, func_name) + except RegistryError as regerr: + # lang-specific version being absent is not actually an issue + raise regerr from None module_name = func_info.get("module") # type: ignore[attr-defined] if module_name: # the code is part of a module, not a --code file modules.add(func_info["module"].split(".")[0]) # type: ignore[index] @@ -397,7 +407,7 @@ def _format_label_scheme(data: Dict[str, Any]) -> str: continue col1 = md.bold(md.code(pipe)) col2 = ", ".join( - [md.code(label.replace("|", "\\|")) for label in labels] + [md.code(str(label).replace("|", "\\|")) for label in labels] ) # noqa: W605 label_data.append((col1, col2)) n_labels += len(labels) diff --git a/spacy/cli/project/assets.py b/spacy/cli/project/assets.py index b5057e401..5e0cdfdf2 100644 --- a/spacy/cli/project/assets.py +++ b/spacy/cli/project/assets.py @@ -1,6 +1,7 @@ from typing import Any, Dict, Optional from pathlib import Path from wasabi import msg +import os import re import shutil import requests @@ -129,10 +130,17 @@ def fetch_asset( the asset failed. """ dest_path = (project_path / dest).resolve() - if dest_path.exists() and checksum: + if dest_path.exists(): # If there's already a file, check for checksum - if checksum == get_checksum(dest_path): - msg.good(f"Skipping download with matching checksum: {dest}") + if checksum: + if checksum == get_checksum(dest_path): + msg.good(f"Skipping download with matching checksum: {dest}") + return + else: + # If there's not a checksum, make sure the file is a possibly valid size + if os.path.getsize(dest_path) == 0: + msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}") + os.remove(dest_path) # We might as well support the user here and create parent directories in # case the asset dir isn't listed as a dir to create in the project.yml if not dest_path.parent.exists(): diff --git a/spacy/cli/templates/quickstart_training.jinja b/spacy/cli/templates/quickstart_training.jinja index 8eaef86b3..cd51e1aff 100644 --- a/spacy/cli/templates/quickstart_training.jinja +++ b/spacy/cli/templates/quickstart_training.jinja @@ -16,8 +16,10 @@ gpu_allocator = null [nlp] lang = "{{ lang }}" -{%- set no_tok2vec = components|length == 1 and (("textcat" in components or "textcat_multilabel" in components) and optimize == "efficiency")-%} -{%- if not no_tok2vec and ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "entity_linker" in components or "textcat" in components or "textcat_multilabel" in components) -%} +{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%} +{%- set with_accuracy = optimize == "accuracy" -%} +{%- set has_accurate_textcat = has_textcat and with_accuracy -%} +{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "entity_linker" in components or has_accurate_textcat) -%} {%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components %} {%- else -%} {%- set full_pipeline = components %} @@ -197,7 +199,7 @@ no_output_layer = false {# NON-TRANSFORMER PIPELINE #} {% else -%} -{% if not no_tok2vec-%} +{% if "tok2vec" in full_pipeline -%} [components.tok2vec] factory = "tok2vec" diff --git a/spacy/default_config.cfg b/spacy/default_config.cfg index ceb7357fc..86a72926e 100644 --- a/spacy/default_config.cfg +++ b/spacy/default_config.cfg @@ -68,12 +68,14 @@ seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 -# Controls early-stopping. 0 disables early stopping. +# Controls early-stopping, i.e., the number of steps to continue without +# improvement before stopping. 0 disables early stopping. patience = 1600 # Number of epochs. 0 means unlimited. If >= 0, train corpus is loaded once in # memory and shuffled within the training loop. -1 means stream train corpus # rather than loading in memory with no shuffling within the training loop. max_epochs = 0 +# Maximum number of update steps to train for. 0 means an unlimited number of steps. max_steps = 20000 eval_frequency = 200 # Control how scores are printed and checkpoints are evaluated. diff --git a/spacy/default_config_pretraining.cfg b/spacy/default_config_pretraining.cfg index 16f767772..d70ecf04c 100644 --- a/spacy/default_config_pretraining.cfg +++ b/spacy/default_config_pretraining.cfg @@ -5,6 +5,7 @@ raw_text = null max_epochs = 1000 dropout = 0.2 n_save_every = null +n_save_epoch = null component = "tok2vec" layer = "" corpus = "corpora.pretrain" diff --git a/spacy/displacy/__init__.py b/spacy/displacy/__init__.py index d9418f675..25d530c83 100644 --- a/spacy/displacy/__init__.py +++ b/spacy/displacy/__init__.py @@ -181,11 +181,19 @@ def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]: def parse_ents(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]: """Generate named entities in [{start: i, end: i, label: 'label'}] format. - doc (Doc): Document do parse. + doc (Doc): Document to parse. + options (Dict[str, Any]): NER-specific visualisation options. RETURNS (dict): Generated entities keyed by text (original text) and ents. """ + kb_url_template = options.get("kb_url_template", None) ents = [ - {"start": ent.start_char, "end": ent.end_char, "label": ent.label_} + { + "start": ent.start_char, + "end": ent.end_char, + "label": ent.label_, + "kb_id": ent.kb_id_ if ent.kb_id_ else "", + "kb_url": kb_url_template.format(ent.kb_id_) if kb_url_template else "#", + } for ent in doc.ents ] if not ents: diff --git a/spacy/displacy/render.py b/spacy/displacy/render.py index 14d741a3d..a032d843b 100644 --- a/spacy/displacy/render.py +++ b/spacy/displacy/render.py @@ -18,7 +18,7 @@ DEFAULT_LABEL_COLORS = { "LOC": "#ff9561", "PERSON": "#aa9cfc", "NORP": "#c887fb", - "FACILITY": "#9cc9cc", + "FAC": "#9cc9cc", "EVENT": "#ffeb80", "LAW": "#ff8197", "LANGUAGE": "#ff8197", diff --git a/spacy/errors.py b/spacy/errors.py index ff1185361..390612123 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -1,18 +1,13 @@ import warnings -def add_codes(err_cls): - """Add error codes to string messages via class attribute names.""" - - class ErrorsWithCodes(err_cls): - def __getattribute__(self, code): - msg = super(ErrorsWithCodes, self).__getattribute__(code) - if code.startswith("__"): # python system attributes like __class__ - return msg - else: - return "[{code}] {msg}".format(code=code, msg=msg) - - return ErrorsWithCodes() +class ErrorsWithCodes(type): + def __getattribute__(self, code): + msg = super().__getattribute__(code) + if code.startswith("__"): # python system attributes like __class__ + return msg + else: + return "[{code}] {msg}".format(code=code, msg=msg) def setup_default_warnings(): @@ -27,6 +22,9 @@ def setup_default_warnings(): # warn once about lemmatizer without required POS filter_warning("once", error_msg=Warnings.W108) + # floret vector table cannot be modified + filter_warning("once", error_msg="[W114]") + def filter_warning(action: str, error_msg: str): """Customize how spaCy should handle a certain warning. @@ -44,8 +42,7 @@ def _escape_warning_msg(msg): # fmt: off -@add_codes -class Warnings: +class Warnings(metaclass=ErrorsWithCodes): W005 = ("Doc object not parsed. This means displaCy won't be able to " "generate a dependency visualization for it. Make sure the Doc " "was processed with a model that supports dependency parsing, and " @@ -192,10 +189,12 @@ class Warnings: "vectors are not identical to current pipeline vectors.") W114 = ("Using multiprocessing with GPU models is not recommended and may " "lead to errors.") + W115 = ("Skipping {method}: the floret vector table cannot be modified. " + "Vectors are calculated from character ngrams.") + W116 = ("Unable to clean attribute '{attr}'.") -@add_codes -class Errors: +class Errors(metaclass=ErrorsWithCodes): E001 = ("No component '{name}' found in pipeline. Available names: {opts}") E002 = ("Can't find factory for '{name}' for language {lang} ({lang_code}). " "This usually happens when spaCy calls `nlp.{method}` with a custom " @@ -284,7 +283,7 @@ class Errors: "you forget to call the `set_extension` method?") E047 = ("Can't assign a value to unregistered extension attribute " "'{name}'. Did you forget to call the `set_extension` method?") - E048 = ("Can't import language {lang} from spacy.lang: {err}") + E048 = ("Can't import language {lang} or any matching language from spacy.lang: {err}") E050 = ("Can't find model '{name}'. It doesn't seem to be a Python " "package or a valid path to a data directory.") E052 = ("Can't find model directory: {path}") @@ -518,13 +517,24 @@ class Errors: E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.") E200 = ("Can't yet set {attr} from Span. Vote for this feature on the " "issue tracker: http://github.com/explosion/spaCy/issues") - E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.") + E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.") # New errors added in v3.x - E866 = ("A SpanGroup is not functional after the corresponding Doc has " + E858 = ("The {mode} vector table does not support this operation. " + "{alternative}") + E859 = ("The floret vector table cannot be modified.") + E860 = ("Can't truncate fasttext-bloom vectors.") + E861 = ("No 'keys' should be provided when initializing floret vectors " + "with 'minn' and 'maxn'.") + E862 = ("'hash_count' must be between 1-4 for floret vectors.") + E863 = ("'maxn' must be greater than or equal to 'minn'.") + E864 = ("The complete vector table 'data' is required to initialize floret " + "vectors.") + E865 = ("A SpanGroup is not functional after the corresponding Doc has " "been garbage collected. To keep using the spans, make sure that " "the corresponding Doc object is still available in the scope of " "your function.") + E866 = ("Expected a string or 'Doc' as input, but got: {type}.") E867 = ("The 'textcat' component requires at least two labels because it " "uses mutually exclusive classes where exactly one label is True " "for each doc. For binary classification tasks, you can use two " @@ -632,7 +642,7 @@ class Errors: E912 = ("Failed to initialize lemmatizer. Missing lemmatizer table(s) found " "for mode '{mode}'. Required tables: {tables}. Found: {found}.") E913 = ("Corpus path can't be None. Maybe you forgot to define it in your " - "config.cfg or override it on the CLI?") + ".cfg file or override it on the CLI?") E914 = ("Executing {name} callback failed. Expected the function to " "return the nlp object but got: {value}. Maybe you forgot to return " "the modified object in your function?") @@ -878,7 +888,13 @@ class Errors: E1021 = ("`pos` value \"{pp}\" is not a valid Universal Dependencies tag. " "Non-UD tags should use the `tag` property.") E1022 = ("Words must be of type str or int, but input is of type '{wtype}'") - + E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't " + "exist.") + E1024 = ("A pattern with ID \"{ent_id}\" is not present in EntityRuler " + "patterns.") + E1025 = ("Cannot intify the value '{value}' as an IOB string. The only " + "supported values are: 'I', 'O', 'B' and ''") + # Deprecated model shortcuts, only used in errors and warnings OLD_MODEL_SHORTCUTS = { diff --git a/spacy/kb.pyx b/spacy/kb.pyx index fed3009da..9a765c8e4 100644 --- a/spacy/kb.pyx +++ b/spacy/kb.pyx @@ -124,7 +124,7 @@ cdef class KnowledgeBase: def get_alias_strings(self): return [self.vocab.strings[x] for x in self._alias_index] - def add_entity(self, unicode entity, float freq, vector[float] entity_vector): + def add_entity(self, str entity, float freq, vector[float] entity_vector): """ Add an entity to the KB, optionally specifying its log probability based on corpus frequency Return the hash of the entity ID/name at the end. @@ -185,15 +185,15 @@ cdef class KnowledgeBase: i += 1 - def contains_entity(self, unicode entity): + def contains_entity(self, str entity): cdef hash_t entity_hash = self.vocab.strings.add(entity) return entity_hash in self._entry_index - def contains_alias(self, unicode alias): + def contains_alias(self, str alias): cdef hash_t alias_hash = self.vocab.strings.add(alias) return alias_hash in self._alias_index - def add_alias(self, unicode alias, entities, probabilities): + def add_alias(self, str alias, entities, probabilities): """ For a given alias, add its potential entities and prior probabilies to the KB. Return the alias_hash at the end @@ -239,7 +239,7 @@ cdef class KnowledgeBase: raise RuntimeError(Errors.E891.format(alias=alias)) return alias_hash - def append_alias(self, unicode alias, unicode entity, float prior_prob, ignore_warnings=False): + def append_alias(self, str alias, str entity, float prior_prob, ignore_warnings=False): """ For an alias already existing in the KB, extend its potential entities with one more. Throw a warning if either the alias or the entity is unknown, @@ -286,7 +286,7 @@ cdef class KnowledgeBase: alias_entry.probs = probs self._aliases_table[alias_index] = alias_entry - def get_alias_candidates(self, unicode alias) -> Iterator[Candidate]: + def get_alias_candidates(self, str alias) -> Iterator[Candidate]: """ Return candidate entities for an alias. Each candidate defines the entity, the original alias, and the prior probability of that alias resolving to that entity. @@ -307,7 +307,7 @@ cdef class KnowledgeBase: for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs) if entry_index != 0] - def get_vector(self, unicode entity): + def get_vector(self, str entity): cdef hash_t entity_hash = self.vocab.strings[entity] # Return an empty list if this entity is unknown in this KB @@ -317,7 +317,7 @@ cdef class KnowledgeBase: return self._vectors_table[self._entries[entry_index].vector_index] - def get_prior_prob(self, unicode entity, unicode alias): + def get_prior_prob(self, str entity, str alias): """ Return the prior probability of a given alias being linked to a given entity, or return 0.0 when this combination is not known in the knowledge base""" cdef hash_t alias_hash = self.vocab.strings[alias] @@ -587,7 +587,7 @@ cdef class Writer: def __init__(self, path): assert isinstance(path, Path) content = bytes(path) - cdef bytes bytes_loc = content.encode('utf8') if type(content) == unicode else content + cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content self._fp = fopen(bytes_loc, 'wb') if not self._fp: raise IOError(Errors.E146.format(path=path)) @@ -629,7 +629,7 @@ cdef class Writer: cdef class Reader: def __init__(self, path): content = bytes(path) - cdef bytes bytes_loc = content.encode('utf8') if type(content) == unicode else content + cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content self._fp = fopen(bytes_loc, 'rb') if not self._fp: PyErr_SetFromErrno(IOError) diff --git a/spacy/lang/am/punctuation.py b/spacy/lang/am/punctuation.py index 70af12039..555a179fa 100644 --- a/spacy/lang/am/punctuation.py +++ b/spacy/lang/am/punctuation.py @@ -1,7 +1,7 @@ from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY from ..char_classes import UNITS, ALPHA_UPPER -_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧".strip().split() +_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧ ፠ ፨".strip().split() _suffixes = ( _list_punct diff --git a/spacy/lang/bg/stop_words.py b/spacy/lang/bg/stop_words.py index aae7692a2..df708b65e 100644 --- a/spacy/lang/bg/stop_words.py +++ b/spacy/lang/bg/stop_words.py @@ -1,265 +1,79 @@ -# Source: https://github.com/Alir3z4/stop-words - +""" +References: + https://github.com/Alir3z4/stop-words - Original list, serves as a base. + https://postvai.com/books/stop-dumi.pdf - Additions to the original list in order to improve it. +""" STOP_WORDS = set( """ -а -автентичен -аз -ако -ала -бе -без -беше -би -бивш -бивша -бившо -бил -била -били -било -благодаря -близо -бъдат -бъде -бяха -в -вас -ваш -ваша -вероятно -вече -взема -ви -вие -винаги -внимава -време -все -всеки -всички -всичко -всяка -във -въпреки -върху -г -ги -главен -главна -главно -глас -го -година -години -годишен -д -да -дали -два -двама -двамата -две -двете -ден -днес -дни -до -добра -добре -добро -добър -докато -докога -дори -досега -доста -друг -друга -други -е -евтин -едва -един -една -еднаква -еднакви -еднакъв -едно -екип -ето -живот -за -забавям -зад -заедно -заради -засега -заспал -затова -защо -защото -и -из -или -им -има -имат -иска -й -каза -как -каква -какво -както -какъв -като -кога -когато -което -които -кой -който -колко -която -къде -където -към -лесен -лесно -ли -лош -м -май -малко -ме -между -мек -мен -месец -ми -много -мнозина -мога -могат -може -мокър -моля -момента -му -н -на -над -назад -най -направи -напред -например -нас -не -него -нещо -нея -ни -ние -никой -нито -нищо -но -нов -нова -нови -новина -някои -някой -няколко -няма -обаче -около -освен -особено -от -отгоре -отново -още -пак -по -повече -повечето -под -поне -поради -после -почти -прави -пред -преди -през -при -пък -първата -първи -първо -пъти -равен -равна -с -са -сам -само -се -сега -си -син -скоро -след -следващ -сме -смях -според -сред -срещу -сте -съм -със -също -т -тази -така -такива -такъв -там -твой -те -тези -ти -т.н. -то -това -тогава -този -той -толкова -точно -три -трябва -тук -тъй -тя -тях -у -утре -харесва -хиляди -ч -часа -че -често -чрез -ще -щом +а автентичен аз ако ала + +бе без беше би бивш бивша бившо бивши бил била били било благодаря близо бъдат +бъде бъда бяха + +в вас ваш ваша вашата вашият вероятно вече взема ви вие винаги внимава време все +всеки всички вместо всичко вследствие всъщност всяка втори във въпреки върху +вътре веднъж + +г ги главен главна главно глас го годно година години годишен + +д да дали далеч далече два двама двамата две двете ден днес дни до добра добре +добро добър достатъчно докато докога дори досега доста друг друга другаде други + +е евтин едва един една еднаква еднакви еднакъв едно екип ето + +живот жив + +за здравей здрасти знае зная забавям зад зададени заедно заради засега заспал +затова запазва започвам защо защото завинаги + +и из или им има имат иска искам използвайки изглежда изглеждаше изглеждайки +извън имайки + +й йо + +каза казва казвайки казвам как каква какво както какъв като кога кауза каузи +когато когото което които кой който колко която къде където към край кратък +кръгъл + +лесен лесно ли летя летиш летим лош + +м май малко макар малцина междувременно минус ме между мек мен месец ми мис +мисля много мнозина мога могат може мой можем мокър моля момента му + +н на над назад най наш навсякъде навътре нагоре направи напред надолу наистина +например наопаки наполовина напоследък нека независимо нас насам наскоро +настрана необходимо него негов нещо нея ни ние никой нито нищо но нов някак нова +нови новина някои някой някога някъде няколко няма + +о обаче около описан опитах опитва опитвайки опитвам определен определено освен +обикновено осигурява обратно означава особен особено от ох отвъд отгоре отдолу +отново отива отивам отидох отсега отделно отколкото откъдето очевидно оттам +относно още + +п пак по повече повечето под поне просто пряко поради после последен последно +посочен почти прави прав прави правя пред преди през при пък първата първи първо +път пъти плюс + +равен равна различен различни разумен разумно + +с са сам само себе сериозно сигурен сигурно се сега си син скоро скорошен след +следващ следващия следва следното следователно случва сме смях собствен +сравнително смея според сред става срещу съвсем съдържа съдържащ съжалявам +съответен съответно сте съм със също + +т така техен техни такива такъв твърде там трета твой те тези ти то това +тогава този той търси толкова точно три трябва тук тъй тя тях + +у утре ужасно употреба успоредно уточнен уточняване + +харесва харесали хиляди + +ч часа ценя цяло цялостен че често чрез чудя + +ще щеше щом щяха + юмрук -я -як + +я як """.split() ) diff --git a/spacy/lang/bg/tokenizer_exceptions.py b/spacy/lang/bg/tokenizer_exceptions.py index 0b7487c64..0f484b778 100644 --- a/spacy/lang/bg/tokenizer_exceptions.py +++ b/spacy/lang/bg/tokenizer_exceptions.py @@ -1,10 +1,16 @@ +""" +References: + https://slovored.com/bg/abbr/grammar/ - Additional refs for abbreviations + (countries, occupations, fields of studies and more). +""" + from ...symbols import ORTH, NORM _exc = {} - -_abbr_exc = [ +# measurements +for abbr in [ {ORTH: "м", NORM: "метър"}, {ORTH: "мм", NORM: "милиметър"}, {ORTH: "см", NORM: "сантиметър"}, @@ -17,51 +23,191 @@ _abbr_exc = [ {ORTH: "хл", NORM: "хектолиър"}, {ORTH: "дкл", NORM: "декалитър"}, {ORTH: "л", NORM: "литър"}, -] -for abbr in _abbr_exc: +]: _exc[abbr[ORTH]] = [abbr] -_abbr_line_exc = [ +# line abbreviations +for abbr in [ {ORTH: "г-жа", NORM: "госпожа"}, {ORTH: "г-н", NORM: "господин"}, {ORTH: "г-ца", NORM: "госпожица"}, {ORTH: "д-р", NORM: "доктор"}, {ORTH: "о-в", NORM: "остров"}, {ORTH: "п-в", NORM: "полуостров"}, -] - -for abbr in _abbr_line_exc: + {ORTH: "с-у", NORM: "срещу"}, + {ORTH: "в-у", NORM: "върху"}, + {ORTH: "м-у", NORM: "между"}, +]: _exc[abbr[ORTH]] = [abbr] -_abbr_dot_exc = [ +# foreign language related abbreviations +for abbr in [ + {ORTH: "англ.", NORM: "английски"}, + {ORTH: "ан.", NORM: "английски термин"}, + {ORTH: "араб.", NORM: "арабски"}, + {ORTH: "афр.", NORM: "африкански"}, + {ORTH: "гр.", NORM: "гръцки"}, + {ORTH: "лат.", NORM: "латински"}, + {ORTH: "рим.", NORM: "римски"}, + {ORTH: "старогр.", NORM: "старогръцки"}, + {ORTH: "староевр.", NORM: "староеврейски"}, + {ORTH: "фр.", NORM: "френски"}, + {ORTH: "хол.", NORM: "холандски"}, + {ORTH: "швед.", NORM: "шведски"}, + {ORTH: "шотл.", NORM: "шотландски"}, + {ORTH: "яп.", NORM: "японски"}, +]: + _exc[abbr[ORTH]] = [abbr] + +# profession and academic titles abbreviations +for abbr in [ {ORTH: "акад.", NORM: "академик"}, - {ORTH: "ал.", NORM: "алинея"}, {ORTH: "арх.", NORM: "архитект"}, + {ORTH: "инж.", NORM: "инженер"}, + {ORTH: "канц.", NORM: "канцлер"}, + {ORTH: "проф.", NORM: "професор"}, + {ORTH: "св.", NORM: "свети"}, +]: + _exc[abbr[ORTH]] = [abbr] + +# fields of studies +for abbr in [ + {ORTH: "агр.", NORM: "агрономия"}, + {ORTH: "ав.", NORM: "авиация"}, + {ORTH: "агр.", NORM: "агрономия"}, + {ORTH: "археол.", NORM: "археология"}, + {ORTH: "астр.", NORM: "астрономия"}, + {ORTH: "геод.", NORM: "геодезия"}, + {ORTH: "геол.", NORM: "геология"}, + {ORTH: "геом.", NORM: "геометрия"}, + {ORTH: "гимн.", NORM: "гимнастика"}, + {ORTH: "грам.", NORM: "граматика"}, + {ORTH: "жур.", NORM: "журналистика"}, + {ORTH: "журн.", NORM: "журналистика"}, + {ORTH: "зем.", NORM: "земеделие"}, + {ORTH: "икон.", NORM: "икономика"}, + {ORTH: "лит.", NORM: "литература"}, + {ORTH: "мат.", NORM: "математика"}, + {ORTH: "мед.", NORM: "медицина"}, + {ORTH: "муз.", NORM: "музика"}, + {ORTH: "печ.", NORM: "печатарство"}, + {ORTH: "пол.", NORM: "политика"}, + {ORTH: "псих.", NORM: "психология"}, + {ORTH: "соц.", NORM: "социология"}, + {ORTH: "стат.", NORM: "статистика"}, + {ORTH: "стил.", NORM: "стилистика"}, + {ORTH: "топогр.", NORM: "топография"}, + {ORTH: "търг.", NORM: "търговия"}, + {ORTH: "фарм.", NORM: "фармацевтика"}, + {ORTH: "фехт.", NORM: "фехтовка"}, + {ORTH: "физиол.", NORM: "физиология"}, + {ORTH: "физ.", NORM: "физика"}, + {ORTH: "фил.", NORM: "философия"}, + {ORTH: "фин.", NORM: "финанси"}, + {ORTH: "фолкл.", NORM: "фолклор"}, + {ORTH: "фон.", NORM: "фонетика"}, + {ORTH: "фот.", NORM: "фотография"}, + {ORTH: "футб.", NORM: "футбол"}, + {ORTH: "хим.", NORM: "химия"}, + {ORTH: "хир.", NORM: "хирургия"}, + {ORTH: "ел.", NORM: "електротехника"}, +]: + _exc[abbr[ORTH]] = [abbr] + +for abbr in [ + {ORTH: "ал.", NORM: "алинея"}, + {ORTH: "авт.", NORM: "автоматично"}, + {ORTH: "адм.", NORM: "администрация"}, + {ORTH: "арт.", NORM: "артилерия"}, {ORTH: "бл.", NORM: "блок"}, {ORTH: "бр.", NORM: "брой"}, {ORTH: "бул.", NORM: "булевард"}, + {ORTH: "букв.", NORM: "буквално"}, {ORTH: "в.", NORM: "век"}, + {ORTH: "вр.", NORM: "време"}, + {ORTH: "вм.", NORM: "вместо"}, + {ORTH: "воен.", NORM: "военен термин"}, {ORTH: "г.", NORM: "година"}, {ORTH: "гр.", NORM: "град"}, + {ORTH: "гл.", NORM: "глагол"}, + {ORTH: "др.", NORM: "други"}, + {ORTH: "ез.", NORM: "езеро"}, {ORTH: "ж.р.", NORM: "женски род"}, - {ORTH: "инж.", NORM: "инженер"}, + {ORTH: "жп.", NORM: "железопът"}, + {ORTH: "застр.", NORM: "застрахователно дело"}, + {ORTH: "знач.", NORM: "значение"}, + {ORTH: "и др.", NORM: "и други"}, + {ORTH: "и под.", NORM: "и подобни"}, + {ORTH: "и пр.", NORM: "и прочие"}, + {ORTH: "изр.", NORM: "изречение"}, + {ORTH: "изт.", NORM: "източен"}, + {ORTH: "конкр.", NORM: "конкретно"}, {ORTH: "лв.", NORM: "лев"}, + {ORTH: "л.", NORM: "лице"}, {ORTH: "м.р.", NORM: "мъжки род"}, - {ORTH: "мат.", NORM: "математика"}, - {ORTH: "мед.", NORM: "медицина"}, + {ORTH: "мин.вр.", NORM: "минало време"}, + {ORTH: "мн.ч.", NORM: "множествено число"}, + {ORTH: "напр.", NORM: "например"}, + {ORTH: "нар.", NORM: "наречие"}, + {ORTH: "науч.", NORM: "научен термин"}, + {ORTH: "непр.", NORM: "неправилно"}, + {ORTH: "обик.", NORM: "обикновено"}, + {ORTH: "опред.", NORM: "определение"}, + {ORTH: "особ.", NORM: "особено"}, + {ORTH: "ост.", NORM: "остаряло"}, + {ORTH: "относ.", NORM: "относително"}, + {ORTH: "отр.", NORM: "отрицателно"}, {ORTH: "пл.", NORM: "площад"}, - {ORTH: "проф.", NORM: "професор"}, + {ORTH: "пад.", NORM: "падеж"}, + {ORTH: "парл.", NORM: "парламентарен"}, + {ORTH: "погов.", NORM: "поговорка"}, + {ORTH: "пон.", NORM: "понякога"}, + {ORTH: "правосл.", NORM: "православен"}, + {ORTH: "прибл.", NORM: "приблизително"}, + {ORTH: "прил.", NORM: "прилагателно име"}, + {ORTH: "пр.", NORM: "прочие"}, {ORTH: "с.", NORM: "село"}, {ORTH: "с.р.", NORM: "среден род"}, - {ORTH: "св.", NORM: "свети"}, {ORTH: "сп.", NORM: "списание"}, {ORTH: "стр.", NORM: "страница"}, + {ORTH: "сз.", NORM: "съюз"}, + {ORTH: "сег.", NORM: "сегашно"}, + {ORTH: "сп.", NORM: "спорт"}, + {ORTH: "срв.", NORM: "сравни"}, + {ORTH: "с.ст.", NORM: "селскостопанска техника"}, + {ORTH: "счет.", NORM: "счетоводство"}, + {ORTH: "съкр.", NORM: "съкратено"}, + {ORTH: "съобщ.", NORM: "съобщение"}, + {ORTH: "същ.", NORM: "съществително"}, + {ORTH: "текст.", NORM: "текстилен"}, + {ORTH: "телев.", NORM: "телевизия"}, + {ORTH: "тел.", NORM: "телефон"}, + {ORTH: "т.е.", NORM: "тоест"}, + {ORTH: "т.н.", NORM: "така нататък"}, + {ORTH: "т.нар.", NORM: "така наречен"}, + {ORTH: "търж.", NORM: "тържествено"}, {ORTH: "ул.", NORM: "улица"}, + {ORTH: "уч.", NORM: "училище"}, + {ORTH: "унив.", NORM: "университет"}, + {ORTH: "харт.", NORM: "хартия"}, + {ORTH: "хидр.", NORM: "хидравлика"}, + {ORTH: "хран.", NORM: "хранителна"}, + {ORTH: "църк.", NORM: "църковен термин"}, + {ORTH: "числ.", NORM: "числително"}, {ORTH: "чл.", NORM: "член"}, -] - -for abbr in _abbr_dot_exc: + {ORTH: "ч.", NORM: "число"}, + {ORTH: "числ.", NORM: "числително"}, + {ORTH: "шахм.", NORM: "шахмат"}, + {ORTH: "шах.", NORM: "шахмат"}, + {ORTH: "юр.", NORM: "юридически"}, +]: _exc[abbr[ORTH]] = [abbr] +# slash abbreviations +for abbr in [ + {ORTH: "м/у", NORM: "между"}, + {ORTH: "с/у", NORM: "срещу"}, +]: + _exc[abbr[ORTH]] = [abbr] TOKENIZER_EXCEPTIONS = _exc diff --git a/spacy/lang/bn/__init__.py b/spacy/lang/bn/__init__.py index 4eb9735df..6d0331e00 100644 --- a/spacy/lang/bn/__init__.py +++ b/spacy/lang/bn/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES @@ -23,13 +23,25 @@ class Bengali(Language): @Bengali.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return Lemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Bengali"] diff --git a/spacy/lang/ca/__init__.py b/spacy/lang/ca/__init__.py old mode 100644 new mode 100755 index 250ae9463..a3def660d --- a/spacy/lang/ca/__init__.py +++ b/spacy/lang/ca/__init__.py @@ -1,9 +1,9 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS -from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES +from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS from .syntax_iterators import SYNTAX_ITERATORS @@ -15,6 +15,7 @@ class CatalanDefaults(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS infixes = TOKENIZER_INFIXES suffixes = TOKENIZER_SUFFIXES + prefixes = TOKENIZER_PREFIXES stop_words = STOP_WORDS lex_attr_getters = LEX_ATTRS syntax_iterators = SYNTAX_ITERATORS @@ -28,13 +29,25 @@ class Catalan(Language): @Catalan.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return CatalanLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return CatalanLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Catalan"] diff --git a/spacy/lang/ca/punctuation.py b/spacy/lang/ca/punctuation.py old mode 100644 new mode 100755 index 39db08f17..8e2f09828 --- a/spacy/lang/ca/punctuation.py +++ b/spacy/lang/ca/punctuation.py @@ -1,4 +1,5 @@ from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_ICONS +from ..char_classes import LIST_CURRENCY from ..char_classes import CURRENCY from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA, PUNCT from ..char_classes import merge_chars, _units @@ -6,6 +7,14 @@ from ..char_classes import merge_chars, _units ELISION = " ' ’ ".strip().replace(" ", "").replace("\n", "") +_prefixes = ( + ["§", "%", "=", "—", "–", "-", r"\+(?![0-9])"] + + LIST_PUNCT + + LIST_ELLIPSES + + LIST_QUOTES + + LIST_CURRENCY + + LIST_ICONS +) _infixes = ( LIST_ELLIPSES @@ -18,6 +27,7 @@ _infixes = ( r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA), r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA), r"(?<=[{a}][{el}])(?=[{a}0-9])".format(a=ALPHA, el=ELISION), + r"('ls|'l|'ns|'t|'m|'n|-les|-la|-lo|-li|-los|-me|-nos|-te|-vos|-se|-hi|-ne|-ho)(?![A-Za-z])|(-l'|-m'|-t'|-n')", ] ) @@ -44,3 +54,4 @@ _suffixes = ( TOKENIZER_INFIXES = _infixes TOKENIZER_SUFFIXES = _suffixes +TOKENIZER_PREFIXES = _prefixes diff --git a/spacy/lang/ca/tokenizer_exceptions.py b/spacy/lang/ca/tokenizer_exceptions.py old mode 100644 new mode 100755 index 5f9a50f5e..b261b3498 --- a/spacy/lang/ca/tokenizer_exceptions.py +++ b/spacy/lang/ca/tokenizer_exceptions.py @@ -18,12 +18,21 @@ for exc_data in [ {ORTH: "nov.", NORM: "novembre"}, {ORTH: "dec.", NORM: "desembre"}, {ORTH: "Dr.", NORM: "doctor"}, + {ORTH: "Dra.", NORM: "doctora"}, {ORTH: "Sr.", NORM: "senyor"}, {ORTH: "Sra.", NORM: "senyora"}, {ORTH: "Srta.", NORM: "senyoreta"}, {ORTH: "núm", NORM: "número"}, {ORTH: "St.", NORM: "sant"}, {ORTH: "Sta.", NORM: "santa"}, + {ORTH: "pl.", NORM: "plaça"}, + {ORTH: "à."}, + {ORTH: "è."}, + {ORTH: "é."}, + {ORTH: "í."}, + {ORTH: "ò."}, + {ORTH: "ó."}, + {ORTH: "ú."}, {ORTH: "'l"}, {ORTH: "'ls"}, {ORTH: "'m"}, @@ -34,6 +43,18 @@ for exc_data in [ ]: _exc[exc_data[ORTH]] = [exc_data] +_exc["del"] = [{ORTH: "d", NORM: "de"}, {ORTH: "el"}] +_exc["dels"] = [{ORTH: "d", NORM: "de"}, {ORTH: "els"}] + +_exc["al"] = [{ORTH: "a"}, {ORTH: "l", NORM: "el"}] +_exc["als"] = [{ORTH: "a"}, {ORTH: "ls", NORM: "els"}] + +_exc["pel"] = [{ORTH: "p", NORM: "per"}, {ORTH: "el"}] +_exc["pels"] = [{ORTH: "p", NORM: "per"}, {ORTH: "els"}] + +_exc["holahola"] = [{ORTH: "holahola", NORM: "cocacola"}] + + # Times _exc["12m."] = [{ORTH: "12"}, {ORTH: "m.", NORM: "p.m."}] diff --git a/spacy/lang/el/__init__.py b/spacy/lang/el/__init__.py index 258b37a8a..53dd9be8e 100644 --- a/spacy/lang/el/__init__.py +++ b/spacy/lang/el/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS @@ -28,13 +28,25 @@ class Greek(Language): @Greek.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return GreekLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return GreekLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Greek"] diff --git a/spacy/lang/en/__init__.py b/spacy/lang/en/__init__.py index 854f59224..876186979 100644 --- a/spacy/lang/en/__init__.py +++ b/spacy/lang/en/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS @@ -26,13 +26,25 @@ class English(Language): @English.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return EnglishLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return EnglishLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["English"] diff --git a/spacy/lang/en/lemmatizer.py b/spacy/lang/en/lemmatizer.py index 2cb0f9a53..c88b69bcc 100644 --- a/spacy/lang/en/lemmatizer.py +++ b/spacy/lang/en/lemmatizer.py @@ -10,7 +10,7 @@ class EnglishLemmatizer(Lemmatizer): Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely. - univ_pos (unicode / int): The token's universal part-of-speech tag. + univ_pos (str / int): The token's universal part-of-speech tag. morphology (dict): The token's morphological features following the Universal Dependencies scheme. """ diff --git a/spacy/lang/es/__init__.py b/spacy/lang/es/__init__.py index f5d1eb97a..e75955202 100644 --- a/spacy/lang/es/__init__.py +++ b/spacy/lang/es/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS @@ -26,13 +26,25 @@ class Spanish(Language): @Spanish.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return SpanishLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return SpanishLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Spanish"] diff --git a/spacy/lang/es/syntax_iterators.py b/spacy/lang/es/syntax_iterators.py index 8b385a1b9..f2ca2a678 100644 --- a/spacy/lang/es/syntax_iterators.py +++ b/spacy/lang/es/syntax_iterators.py @@ -1,58 +1,76 @@ from typing import Union, Iterator, Tuple -from ...symbols import NOUN, PROPN, PRON, VERB, AUX +from ...symbols import NOUN, PROPN, PRON from ...errors import Errors -from ...tokens import Doc, Span, Token +from ...tokens import Doc, Span def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: - """Detect base noun phrases from a dependency parse. Works on Doc and Span.""" - doc = doclike.doc + """ + Detect base noun phrases from a dependency parse. Works on both Doc and Span. + """ + labels = [ + "nsubj", + "nsubj:pass", + "obj", + "obl", + "nmod", + "pcomp", + "appos", + "ROOT", + ] + post_modifiers = ["flat", "fixed", "compound"] + doc = doclike.doc # Ensure works on both Doc and Span. if not doc.has_annotation("DEP"): raise ValueError(Errors.E029) - if not len(doc): - return + np_deps = {doc.vocab.strings.add(label) for label in labels} + np_modifs = {doc.vocab.strings.add(modifier) for modifier in post_modifiers} np_label = doc.vocab.strings.add("NP") - left_labels = ["det", "fixed", "neg"] # ['nunmod', 'det', 'appos', 'fixed'] - right_labels = ["flat", "fixed", "compound", "neg"] - stop_labels = ["punct"] - np_left_deps = [doc.vocab.strings.add(label) for label in left_labels] - np_right_deps = [doc.vocab.strings.add(label) for label in right_labels] - stop_deps = [doc.vocab.strings.add(label) for label in stop_labels] + adj_label = doc.vocab.strings.add("amod") + adp_label = doc.vocab.strings.add("ADP") + conj = doc.vocab.strings.add("conj") + conj_pos = doc.vocab.strings.add("CCONJ") + prev_end = -1 + for i, word in enumerate(doclike): + if word.pos not in (NOUN, PROPN, PRON): + continue + # Prevent nested chunks from being produced + if word.left_edge.i <= prev_end: + continue + if word.dep in np_deps: + right_childs = list(word.rights) + right_child = right_childs[0] if right_childs else None - prev_right = -1 - for token in doclike: - if token.pos in [PROPN, NOUN, PRON]: - left, right = noun_bounds( - doc, token, np_left_deps, np_right_deps, stop_deps - ) - if left.i <= prev_right: - continue - yield left.i, right.i + 1, np_label - prev_right = right.i - - -def is_verb_token(token: Token) -> bool: - return token.pos in [VERB, AUX] - - -def noun_bounds(doc, root, np_left_deps, np_right_deps, stop_deps): - left_bound = root - for token in reversed(list(root.lefts)): - if token.dep in np_left_deps: - left_bound = token - right_bound = root - for token in root.rights: - if token.dep in np_right_deps: - left, right = noun_bounds( - doc, token, np_left_deps, np_right_deps, stop_deps - ) - filter_func = lambda t: is_verb_token(t) or t.dep in stop_deps - if list(filter(filter_func, doc[left_bound.i : right.i])): - break + if right_child: + if right_child.dep == adj_label: + right_end = right_child.right_edge + elif right_child.dep in np_modifs: # Check if we can expand to right + right_end = word.right_edge + else: + right_end = word else: - right_bound = right - return left_bound, right_bound + right_end = word + prev_end = right_end.i + + left_index = word.left_edge.i + left_index = ( + left_index + 1 if word.left_edge.pos == adp_label else left_index + ) # Eliminate left attached de, del + + yield left_index, right_end.i + 1, np_label + elif word.dep == conj: + head = word.head + while head.dep == conj and head.head.i < head.i: + head = head.head + # If the head is an NP, and we're coordinated to it, we're an NP + if head.dep in np_deps: + prev_end = word.i + + left_index = word.left_edge.i # eliminate left attached conjunction + left_index = ( + left_index + 1 if word.left_edge.pos == conj_pos else left_index + ) + yield left_index, word.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks} diff --git a/spacy/lang/fa/__init__.py b/spacy/lang/fa/__init__.py index 6db64ff62..914e4c27d 100644 --- a/spacy/lang/fa/__init__.py +++ b/spacy/lang/fa/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS @@ -26,13 +26,25 @@ class Persian(Language): @Persian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return Lemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Persian"] diff --git a/spacy/lang/fr/__init__.py b/spacy/lang/fr/__init__.py index e7267dc61..27d2a915e 100644 --- a/spacy/lang/fr/__init__.py +++ b/spacy/lang/fr/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model @@ -31,13 +31,25 @@ class French(Language): @French.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return FrenchLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return FrenchLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["French"] diff --git a/spacy/lang/ga/__init__.py b/spacy/lang/ga/__init__.py index 90735d749..3be53bc7a 100644 --- a/spacy/lang/ga/__init__.py +++ b/spacy/lang/ga/__init__.py @@ -1,6 +1,11 @@ +from typing import Optional + +from thinc.api import Model + from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS from ...language import Language, BaseDefaults +from .lemmatizer import IrishLemmatizer class IrishDefaults(BaseDefaults): @@ -13,4 +18,16 @@ class Irish(Language): Defaults = IrishDefaults +@Irish.factory( + "lemmatizer", + assigns=["token.lemma"], + default_config={"model": None, "mode": "pos_lookup", "overwrite": False}, + default_score_weights={"lemma_acc": 1.0}, +) +def make_lemmatizer( + nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool +): + return IrishLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + + __all__ = ["Irish"] diff --git a/spacy/lang/ga/irish_morphology_helpers.py b/spacy/lang/ga/irish_morphology_helpers.py deleted file mode 100644 index d606da975..000000000 --- a/spacy/lang/ga/irish_morphology_helpers.py +++ /dev/null @@ -1,35 +0,0 @@ -# fmt: off -consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "z"] -broad_vowels = ["a", "á", "o", "ó", "u", "ú"] -slender_vowels = ["e", "é", "i", "í"] -vowels = broad_vowels + slender_vowels -# fmt: on - - -def ends_dentals(word): - if word != "" and word[-1] in ["d", "n", "t", "s"]: - return True - else: - return False - - -def devoice(word): - if len(word) > 2 and word[-2] == "s" and word[-1] == "d": - return word[:-1] + "t" - else: - return word - - -def ends_with_vowel(word): - return word != "" and word[-1] in vowels - - -def starts_with_vowel(word): - return word != "" and word[0] in vowels - - -def deduplicate(word): - if len(word) > 2 and word[-2] == word[-1] and word[-1] in consonants: - return word[:-1] - else: - return word diff --git a/spacy/lang/ga/lemmatizer.py b/spacy/lang/ga/lemmatizer.py new file mode 100644 index 000000000..47aec8fd4 --- /dev/null +++ b/spacy/lang/ga/lemmatizer.py @@ -0,0 +1,162 @@ +from typing import List, Dict, Tuple + +from ...pipeline import Lemmatizer +from ...tokens import Token + + +class IrishLemmatizer(Lemmatizer): + # This is a lookup-based lemmatiser using data extracted from + # BuNaMo (https://github.com/michmech/BuNaMo) + + @classmethod + def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]: + if mode == "pos_lookup": + # fmt: off + required = [ + "lemma_lookup_adj", "lemma_lookup_adp", + "lemma_lookup_noun", "lemma_lookup_verb" + ] + # fmt: on + return (required, []) + else: + return super().get_lookups_config(mode) + + def pos_lookup_lemmatize(self, token: Token) -> List[str]: + univ_pos = token.pos_ + string = unponc(token.text) + if univ_pos not in ["PROPN", "ADP", "ADJ", "NOUN", "VERB"]: + return [string.lower()] + demutated = demutate(string) + secondary = "" + if string[0:1].lower() == "h" and string[1:2].lower() in "aáeéiíoóuú": + secondary = string[1:] + lookup_pos = univ_pos.lower() + if univ_pos == "PROPN": + lookup_pos = "noun" + if token.has_morph(): + # TODO: lookup is actually required for the genitive forms, but + # this is not in BuNaMo, and would not be of use with IDT. + if univ_pos == "NOUN" and ( + "VerbForm=Vnoun" in token.morph or "VerbForm=Inf" in token.morph + ): + hpref = "Form=HPref" in token.morph + return [demutate(string, hpref).lower()] + elif univ_pos == "ADJ" and "VerbForm=Part" in token.morph: + return [demutate(string).lower()] + lookup_table = self.lookups.get_table("lemma_lookup_" + lookup_pos, {}) + + def to_list(value): + if value is None: + value = [] + elif not isinstance(value, list): + value = [value] + return value + + if univ_pos == "ADP": + return to_list(lookup_table.get(string, string.lower())) + ret = [] + if univ_pos == "PROPN": + ret.extend(to_list(lookup_table.get(demutated))) + ret.extend(to_list(lookup_table.get(secondary))) + else: + ret.extend(to_list(lookup_table.get(demutated.lower()))) + ret.extend(to_list(lookup_table.get(secondary.lower()))) + if len(ret) == 0: + ret = [string.lower()] + return ret + + +def demutate(word: str, is_hpref: bool = False) -> str: + UVOWELS = "AÁEÉIÍOÓUÚ" + LVOWELS = "aáeéiíoóuú" + lc = word.lower() + # remove eclipsis + if lc.startswith("bhf"): + word = word[2:] + elif lc.startswith("mb"): + word = word[1:] + elif lc.startswith("gc"): + word = word[1:] + elif lc.startswith("nd"): + word = word[1:] + elif lc.startswith("ng"): + word = word[1:] + elif lc.startswith("bp"): + word = word[1:] + elif lc.startswith("dt"): + word = word[1:] + elif word[0:1] == "n" and word[1:2] in UVOWELS: + word = word[1:] + elif lc.startswith("n-") and word[2:3] in LVOWELS: + word = word[2:] + # non-standard eclipsis + elif lc.startswith("bh-f"): + word = word[3:] + elif lc.startswith("m-b"): + word = word[2:] + elif lc.startswith("g-c"): + word = word[2:] + elif lc.startswith("n-d"): + word = word[2:] + elif lc.startswith("n-g"): + word = word[2:] + elif lc.startswith("b-p"): + word = word[2:] + elif lc.startswith("d-t"): + word = word[2:] + + # t-prothesis + elif lc.startswith("ts"): + word = word[1:] + elif lc.startswith("t-s"): + word = word[2:] + + # h-prothesis, if known to be present + elif is_hpref and word[0:1] == "h": + word = word[1:] + # h-prothesis, simple case + # words can also begin with 'h', but unlike eclipsis, + # a hyphen is not used, so that needs to be handled + # elsewhere + elif word[0:1] == "h" and word[1:2] in UVOWELS: + word = word[1:] + + # lenition + # this breaks the previous if, to handle super-non-standard + # text where both eclipsis and lenition were used. + if lc[0:1] in "bcdfgmpst" and lc[1:2] == "h": + word = word[0:1] + word[2:] + + return word + + +def unponc(word: str) -> str: + # fmt: off + PONC = { + "ḃ": "bh", + "ċ": "ch", + "ḋ": "dh", + "ḟ": "fh", + "ġ": "gh", + "ṁ": "mh", + "ṗ": "ph", + "ṡ": "sh", + "ṫ": "th", + "Ḃ": "BH", + "Ċ": "CH", + "Ḋ": "DH", + "Ḟ": "FH", + "Ġ": "GH", + "Ṁ": "MH", + "Ṗ": "PH", + "Ṡ": "SH", + "Ṫ": "TH" + } + # fmt: on + buf = [] + for ch in word: + if ch in PONC: + buf.append(PONC[ch]) + else: + buf.append(ch) + return "".join(buf) diff --git a/spacy/lang/ga/tokenizer_exceptions.py b/spacy/lang/ga/tokenizer_exceptions.py index abf49c511..63af65fe9 100644 --- a/spacy/lang/ga/tokenizer_exceptions.py +++ b/spacy/lang/ga/tokenizer_exceptions.py @@ -9,6 +9,8 @@ _exc = { "ded'": [{ORTH: "de", NORM: "de"}, {ORTH: "d'", NORM: "do"}], "lem'": [{ORTH: "le", NORM: "le"}, {ORTH: "m'", NORM: "mo"}], "led'": [{ORTH: "le", NORM: "le"}, {ORTH: "d'", NORM: "do"}], + "théis": [{ORTH: "th", NORM: "tar"}, {ORTH: "éis", NORM: "éis"}], + "tréis": [{ORTH: "tr", NORM: "tar"}, {ORTH: "éis", NORM: "éis"}], } for exc_data in [ diff --git a/spacy/lang/hu/tokenizer_exceptions.py b/spacy/lang/hu/tokenizer_exceptions.py index 4a64a1d2c..ffaa74f50 100644 --- a/spacy/lang/hu/tokenizer_exceptions.py +++ b/spacy/lang/hu/tokenizer_exceptions.py @@ -646,5 +646,10 @@ _nums = r"(({ne})|({t})|({on})|({c}))({s})?".format( ) +for u in "cfkCFK": + _exc[f"°{u}"] = [{ORTH: f"°{u}"}] + _exc[f"°{u}."] = [{ORTH: f"°{u}"}, {ORTH: "."}] + + TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc) TOKEN_MATCH = re.compile(r"^{n}$".format(n=_nums)).match diff --git a/spacy/lang/it/__init__.py b/spacy/lang/it/__init__.py index 863ed8e2f..1edebc837 100644 --- a/spacy/lang/it/__init__.py +++ b/spacy/lang/it/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .stop_words import STOP_WORDS @@ -23,13 +23,25 @@ class Italian(Language): @Italian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "pos_lookup", "overwrite": False}, + default_config={ + "model": None, + "mode": "pos_lookup", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return ItalianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return ItalianLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Italian"] diff --git a/spacy/lang/ja/__init__.py b/spacy/lang/ja/__init__.py index 8499fc73e..bf86305fb 100644 --- a/spacy/lang/ja/__init__.py +++ b/spacy/lang/ja/__init__.py @@ -1,21 +1,25 @@ -from typing import Optional, Union, Dict, Any +from typing import Optional, Union, Dict, Any, Callable from pathlib import Path import srsly from collections import namedtuple +from thinc.api import Model +import re from .stop_words import STOP_WORDS from .syntax_iterators import SYNTAX_ITERATORS from .tag_map import TAG_MAP from .tag_orth_map import TAG_ORTH_MAP from .tag_bigram_map import TAG_BIGRAM_MAP -from ...compat import copy_reg from ...errors import Errors from ...language import Language, BaseDefaults +from ...pipeline import Morphologizer +from ...pipeline.morphologizer import DEFAULT_MORPH_MODEL from ...scorer import Scorer from ...symbols import POS -from ...tokens import Doc +from ...tokens import Doc, MorphAnalysis from ...training import validate_examples from ...util import DummyTokenizer, registry, load_config_from_str +from ...vocab import Vocab from ... import util @@ -31,16 +35,21 @@ split_mode = null @registry.tokenizers("spacy.ja.JapaneseTokenizer") def create_tokenizer(split_mode: Optional[str] = None): def japanese_tokenizer_factory(nlp): - return JapaneseTokenizer(nlp, split_mode=split_mode) + return JapaneseTokenizer(nlp.vocab, split_mode=split_mode) return japanese_tokenizer_factory class JapaneseTokenizer(DummyTokenizer): - def __init__(self, nlp: Language, split_mode: Optional[str] = None) -> None: - self.vocab = nlp.vocab + def __init__(self, vocab: Vocab, split_mode: Optional[str] = None) -> None: + self.vocab = vocab self.split_mode = split_mode self.tokenizer = try_sudachi_import(self.split_mode) + # if we're using split mode A we don't need subtokens + self.need_subtokens = not (split_mode is None or split_mode == "A") + + def __reduce__(self): + return JapaneseTokenizer, (self.vocab, self.split_mode) def __call__(self, text: str) -> Doc: # convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces @@ -49,8 +58,8 @@ class JapaneseTokenizer(DummyTokenizer): dtokens, spaces = get_dtokens_and_spaces(dtokens, text) # create Doc with tag bi-gram based part-of-speech identification rules - words, tags, inflections, lemmas, readings, sub_tokens_list = ( - zip(*dtokens) if dtokens else [[]] * 6 + words, tags, inflections, lemmas, norms, readings, sub_tokens_list = ( + zip(*dtokens) if dtokens else [[]] * 7 ) sub_tokens_list = list(sub_tokens_list) doc = Doc(self.vocab, words=words, spaces=spaces) @@ -68,9 +77,18 @@ class JapaneseTokenizer(DummyTokenizer): ) # if there's no lemma info (it's an unk) just use the surface token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface - doc.user_data["inflections"] = inflections - doc.user_data["reading_forms"] = readings - doc.user_data["sub_tokens"] = sub_tokens_list + morph = {} + if dtoken.inf: + # it's normal for this to be empty for non-inflecting types + morph["Inflection"] = dtoken.inf + token.norm_ = dtoken.norm + if dtoken.reading: + # punctuation is its own reading, but we don't want values like + # "=" here + morph["Reading"] = re.sub("[=|]", "_", dtoken.reading) + token.morph = MorphAnalysis(self.vocab, morph) + if self.need_subtokens: + doc.user_data["sub_tokens"] = sub_tokens_list return doc def _get_dtokens(self, sudachipy_tokens, need_sub_tokens: bool = True): @@ -81,9 +99,10 @@ class JapaneseTokenizer(DummyTokenizer): DetailedToken( token.surface(), # orth "-".join([xx for xx in token.part_of_speech()[:4] if xx != "*"]), # tag - ",".join([xx for xx in token.part_of_speech()[4:] if xx != "*"]), # inf + ";".join([xx for xx in token.part_of_speech()[4:] if xx != "*"]), # inf token.dictionary_form(), # lemma - token.reading_form(), # user_data['reading_forms'] + token.normalized_form(), + token.reading_form(), sub_tokens_list[idx] if sub_tokens_list else None, # user_data['sub_tokens'] @@ -105,9 +124,8 @@ class JapaneseTokenizer(DummyTokenizer): ] def _get_sub_tokens(self, sudachipy_tokens): - if ( - self.split_mode is None or self.split_mode == "A" - ): # do nothing for default split mode + # do nothing for default split mode + if not self.need_subtokens: return None sub_tokens_list = [] # list of (list of list of DetailedToken | None) @@ -176,9 +194,37 @@ class Japanese(Language): Defaults = JapaneseDefaults +@Japanese.factory( + "morphologizer", + assigns=["token.morph", "token.pos"], + default_config={ + "model": DEFAULT_MORPH_MODEL, + "overwrite": True, + "extend": True, + "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, + }, + default_score_weights={ + "pos_acc": 0.5, + "morph_micro_f": 0.5, + "morph_per_feat": None, + }, +) +def make_morphologizer( + nlp: Language, + model: Model, + name: str, + overwrite: bool, + extend: bool, + scorer: Optional[Callable], +): + return Morphologizer( + nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer + ) + + # Hold the attributes we need with convenient names DetailedToken = namedtuple( - "DetailedToken", ["surface", "tag", "inf", "lemma", "reading", "sub_tokens"] + "DetailedToken", ["surface", "tag", "inf", "lemma", "norm", "reading", "sub_tokens"] ) @@ -254,7 +300,7 @@ def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"): return text_dtokens, text_spaces elif len([word for word in words if not word.isspace()]) == 0: assert text.isspace() - text_dtokens = [DetailedToken(text, gap_tag, "", text, None, None)] + text_dtokens = [DetailedToken(text, gap_tag, "", text, text, None, None)] text_spaces = [False] return text_dtokens, text_spaces @@ -271,7 +317,7 @@ def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"): # space token if word_start > 0: w = text[text_pos : text_pos + word_start] - text_dtokens.append(DetailedToken(w, gap_tag, "", w, None, None)) + text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None)) text_spaces.append(False) text_pos += word_start @@ -287,16 +333,10 @@ def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"): # trailing space token if text_pos < len(text): w = text[text_pos:] - text_dtokens.append(DetailedToken(w, gap_tag, "", w, None, None)) + text_dtokens.append(DetailedToken(w, gap_tag, "", w, w, None, None)) text_spaces.append(False) return text_dtokens, text_spaces -def pickle_japanese(instance): - return Japanese, tuple() - - -copy_reg.pickle(Japanese, pickle_japanese) - __all__ = ["Japanese"] diff --git a/spacy/lang/ko/__init__.py b/spacy/lang/ko/__init__.py index dfb311136..05fc67e79 100644 --- a/spacy/lang/ko/__init__.py +++ b/spacy/lang/ko/__init__.py @@ -5,11 +5,11 @@ from .tag_map import TAG_MAP from .lex_attrs import LEX_ATTRS from ...language import Language, BaseDefaults from ...tokens import Doc -from ...compat import copy_reg from ...scorer import Scorer from ...symbols import POS from ...training import validate_examples from ...util import DummyTokenizer, registry, load_config_from_str +from ...vocab import Vocab DEFAULT_CONFIG = """ @@ -23,17 +23,20 @@ DEFAULT_CONFIG = """ @registry.tokenizers("spacy.ko.KoreanTokenizer") def create_tokenizer(): def korean_tokenizer_factory(nlp): - return KoreanTokenizer(nlp) + return KoreanTokenizer(nlp.vocab) return korean_tokenizer_factory class KoreanTokenizer(DummyTokenizer): - def __init__(self, nlp: Language): - self.vocab = nlp.vocab + def __init__(self, vocab: Vocab): + self.vocab = vocab MeCab = try_mecab_import() # type: ignore[func-returns-value] self.mecab_tokenizer = MeCab("-F%f[0],%f[7]") + def __reduce__(self): + return KoreanTokenizer, (self.vocab,) + def __del__(self): self.mecab_tokenizer.__del__() @@ -106,10 +109,4 @@ def check_spaces(text, tokens): yield False -def pickle_korean(instance): - return Korean, tuple() - - -copy_reg.pickle(Korean, pickle_korean) - __all__ = ["Korean"] diff --git a/spacy/lang/lex_attrs.py b/spacy/lang/lex_attrs.py index 12016c273..6ed981a06 100644 --- a/spacy/lang/lex_attrs.py +++ b/spacy/lang/lex_attrs.py @@ -3,6 +3,7 @@ import unicodedata import re from .. import attrs +from .tokenizer_exceptions import URL_MATCH _like_email = re.compile(r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)").match @@ -109,6 +110,8 @@ def like_url(text: str) -> bool: return True if tld.isalpha() and tld in _tlds: return True + if URL_MATCH(text): + return True return False diff --git a/spacy/lang/mk/__init__.py b/spacy/lang/mk/__init__.py index 376afb552..fa07cfef9 100644 --- a/spacy/lang/mk/__init__.py +++ b/spacy/lang/mk/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .lemmatizer import MacedonianLemmatizer from .stop_words import STOP_WORDS @@ -38,13 +38,25 @@ class Macedonian(Language): @Macedonian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return MacedonianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return MacedonianLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Macedonian"] diff --git a/spacy/lang/nb/__init__.py b/spacy/lang/nb/__init__.py index e27754e55..e079236fd 100644 --- a/spacy/lang/nb/__init__.py +++ b/spacy/lang/nb/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES @@ -26,13 +26,25 @@ class Norwegian(Language): @Norwegian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return Lemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Norwegian"] diff --git a/spacy/lang/nl/__init__.py b/spacy/lang/nl/__init__.py index 8f370eaaf..ad2205a0b 100644 --- a/spacy/lang/nl/__init__.py +++ b/spacy/lang/nl/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model @@ -30,13 +30,25 @@ class Dutch(Language): @Dutch.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return DutchLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return DutchLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Dutch"] diff --git a/spacy/lang/pl/__init__.py b/spacy/lang/pl/__init__.py index 4b8c88bd7..02c96799b 100644 --- a/spacy/lang/pl/__init__.py +++ b/spacy/lang/pl/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model @@ -33,13 +33,25 @@ class Polish(Language): @Polish.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "pos_lookup", "overwrite": False}, + default_config={ + "model": None, + "mode": "pos_lookup", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return PolishLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return PolishLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Polish"] diff --git a/spacy/lang/pt/__init__.py b/spacy/lang/pt/__init__.py index 9ae6501fb..454002491 100644 --- a/spacy/lang/pt/__init__.py +++ b/spacy/lang/pt/__init__.py @@ -1,6 +1,7 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS +from .syntax_iterators import SYNTAX_ITERATORS from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES from ...language import Language, BaseDefaults @@ -10,6 +11,7 @@ class PortugueseDefaults(BaseDefaults): infixes = TOKENIZER_INFIXES prefixes = TOKENIZER_PREFIXES lex_attr_getters = LEX_ATTRS + syntax_iterators = SYNTAX_ITERATORS stop_words = STOP_WORDS diff --git a/spacy/lang/pt/syntax_iterators.py b/spacy/lang/pt/syntax_iterators.py new file mode 100644 index 000000000..62661f5e4 --- /dev/null +++ b/spacy/lang/pt/syntax_iterators.py @@ -0,0 +1,85 @@ +from typing import Union, Iterator, Tuple + +from ...symbols import NOUN, PROPN, PRON +from ...errors import Errors +from ...tokens import Doc, Span + + +def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]: + """ + Detect base noun phrases from a dependency parse. Works on both Doc and Span. + """ + labels = [ + "nsubj", + "nsubj:pass", + "obj", + "obl", + "obl:agent", + "nmod", + "pcomp", + "appos", + "ROOT", + ] + post_modifiers = ["flat", "flat:name", "fixed", "compound"] + doc = doclike.doc # Ensure works on both Doc and Span. + if not doc.has_annotation("DEP"): + raise ValueError(Errors.E029) + np_deps = {doc.vocab.strings.add(label) for label in labels} + np_modifs = {doc.vocab.strings.add(modifier) for modifier in post_modifiers} + np_label = doc.vocab.strings.add("NP") + adj_label = doc.vocab.strings.add("amod") + det_label = doc.vocab.strings.add("det") + det_pos = doc.vocab.strings.add("DET") + adp_label = doc.vocab.strings.add("ADP") + conj = doc.vocab.strings.add("conj") + conj_pos = doc.vocab.strings.add("CCONJ") + prev_end = -1 + for i, word in enumerate(doclike): + if word.pos not in (NOUN, PROPN, PRON): + continue + # Prevent nested chunks from being produced + if word.left_edge.i <= prev_end: + continue + if word.dep in np_deps: + right_childs = list(word.rights) + right_child = right_childs[0] if right_childs else None + + if right_child: + if ( + right_child.dep == adj_label + ): # allow chain of adjectives by expanding to right + right_end = right_child.right_edge + elif ( + right_child.dep == det_label and right_child.pos == det_pos + ): # cut relative pronouns here + right_end = right_child + elif right_child.dep in np_modifs: # Check if we can expand to right + right_end = word.right_edge + else: + right_end = word + else: + right_end = word + prev_end = right_end.i + + left_index = word.left_edge.i + left_index = ( + left_index + 1 if word.left_edge.pos == adp_label else left_index + ) + + yield left_index, right_end.i + 1, np_label + elif word.dep == conj: + head = word.head + while head.dep == conj and head.head.i < head.i: + head = head.head + # If the head is an NP, and we're coordinated to it, we're an NP + if head.dep in np_deps: + prev_end = word.i + + left_index = word.left_edge.i # eliminate left attached conjunction + left_index = ( + left_index + 1 if word.left_edge.pos == conj_pos else left_index + ) + yield left_index, word.i + 1, np_label + + +SYNTAX_ITERATORS = {"noun_chunks": noun_chunks} diff --git a/spacy/lang/ru/__init__.py b/spacy/lang/ru/__init__.py index 16ae5eef5..5d31d8ea2 100644 --- a/spacy/lang/ru/__init__.py +++ b/spacy/lang/ru/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .stop_words import STOP_WORDS @@ -22,7 +22,12 @@ class Russian(Language): @Russian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "pymorphy2", "overwrite": False}, + default_config={ + "model": None, + "mode": "pymorphy2", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( @@ -31,8 +36,11 @@ def make_lemmatizer( name: str, mode: str, overwrite: bool, + scorer: Optional[Callable], ): - return RussianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return RussianLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Russian"] diff --git a/spacy/lang/ru/lemmatizer.py b/spacy/lang/ru/lemmatizer.py index ce5ccf36f..85180b1e4 100644 --- a/spacy/lang/ru/lemmatizer.py +++ b/spacy/lang/ru/lemmatizer.py @@ -1,8 +1,9 @@ -from typing import Optional, List, Dict, Tuple +from typing import Optional, List, Dict, Tuple, Callable from thinc.api import Model from ...pipeline import Lemmatizer +from ...pipeline.lemmatizer import lemmatizer_score from ...symbols import POS from ...tokens import Token from ...vocab import Vocab @@ -20,6 +21,7 @@ class RussianLemmatizer(Lemmatizer): *, mode: str = "pymorphy2", overwrite: bool = False, + scorer: Optional[Callable] = lemmatizer_score, ) -> None: if mode == "pymorphy2": try: @@ -31,7 +33,9 @@ class RussianLemmatizer(Lemmatizer): ) from None if getattr(self, "_morph", None) is None: self._morph = MorphAnalyzer() - super().__init__(vocab, model, name, mode=mode, overwrite=overwrite) + super().__init__( + vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) def pymorphy2_lemmatize(self, token: Token) -> List[str]: string = token.text diff --git a/spacy/lang/si/stop_words.py b/spacy/lang/si/stop_words.py index bde662bf7..7d29bc1b4 100644 --- a/spacy/lang/si/stop_words.py +++ b/spacy/lang/si/stop_words.py @@ -1,47 +1,195 @@ STOP_WORDS = set( """ -අතර -එච්චර -එපමණ -එලෙස -එවිට -ඒ -කට -කදී -කින් -ක් -ට -තුර -ත් -ද -නමුත් -නොහොත් -පමණ -පමණි -ම -මෙච්චර -මෙපමණ -මෙලෙස -මෙවිට -මේ -ය -යි -ලදී +සහ +සමග +සමඟ +අහා +ආහ් +ආ +ඕහෝ +අනේ +අඳෝ +අපොයි +අපෝ +අයියෝ +ආයි +ඌයි +චී +චිහ් +චික් +හෝ‍ +දෝ +දෝහෝ +මෙන් +සේ +වැනි +බඳු +වන් +අයුරු +අයුරින් ලෙස -වගේ +වැඩි +ශ්‍රී +හා +ය +නිසා +නිසාවෙන් +බවට +බව +බවෙන් +නම් +වැඩි +සිට +දී +මහා +මහ +පමණ +පමණින් +පමන වන විට -විටෙක -විතර -විය -වුව -වුවත් -වුවද -වූ -සමඟ +විටින් +මේ +මෙලෙස +මෙයින් +ඇති +ලෙස +සිදු +වශයෙන් +යන +සඳහා +මගින් +හෝ‍ +ඉතා +ඒ +එම +ද +අතර +විසින් +සමග +පිළිබඳව +පිළිබඳ +තුළ +බව +වැනි +මහ +මෙම +මෙහි +මේ +වෙත +වෙතින් +වෙතට +වෙනුවෙන් +වෙනුවට +වෙන +ගැන +නෑ +අනුව +නව +පිළිබඳ +විශේෂ +දැනට +එහෙන් +මෙහෙන් +එහේ +මෙහේ +ම +තවත් +තව සහ -හා +දක්වා +ට +ගේ +එ +ක +ක් +බවත් +බවද +මත +ඇතුලු +ඇතුළු +මෙසේ +වඩා +වඩාත්ම +නිති +නිතිත් +නිතොර +නිතර +ඉක්බිති +දැන් +යලි +පුන +ඉතින් +සිට +සිටන් +පටන් +තෙක් +දක්වා +සා +තාක් +තුවක් +පවා +ද +හෝ‍ +වත් +විනා +හැර +මිස +මුත් +කිම +කිම් +ඇයි +මන්ද හෙවත් -හෝ +නොහොත් +පතා +පාසා +ගානෙ +තව +ඉතා +බොහෝ +වහා +සෙද +සැනින් +හනික +එම්බා +එම්බල +බොල +නම් +වනාහි +කලී +ඉඳුරා +අන්න +ඔන්න +මෙන්න +උදෙසා +පිණිස +සඳහා +අරබයා +නිසා +එනිසා +එබැවින් +බැවින් +හෙයින් +සේක් +සේක +ගැන +අනුව +පරිදි +විට +තෙක් +මෙතෙක් +මේතාක් +තුරු +තුරා +තුරාවට +තුලින් +නමුත් +එනමුත් +වස් +මෙන් +ලෙස +පරිදි +එහෙත් """.split() ) diff --git a/spacy/lang/sv/__init__.py b/spacy/lang/sv/__init__.py index 518ee0db7..6963e8b79 100644 --- a/spacy/lang/sv/__init__.py +++ b/spacy/lang/sv/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .stop_words import STOP_WORDS @@ -29,13 +29,25 @@ class Swedish(Language): @Swedish.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "rule", "overwrite": False}, + default_config={ + "model": None, + "mode": "rule", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return Lemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Swedish"] diff --git a/spacy/lang/th/__init__.py b/spacy/lang/th/__init__.py index 10d466bd3..12b1527e0 100644 --- a/spacy/lang/th/__init__.py +++ b/spacy/lang/th/__init__.py @@ -3,6 +3,7 @@ from .lex_attrs import LEX_ATTRS from ...language import Language, BaseDefaults from ...tokens import Doc from ...util import DummyTokenizer, registry, load_config_from_str +from ...vocab import Vocab DEFAULT_CONFIG = """ @@ -16,13 +17,13 @@ DEFAULT_CONFIG = """ @registry.tokenizers("spacy.th.ThaiTokenizer") def create_thai_tokenizer(): def thai_tokenizer_factory(nlp): - return ThaiTokenizer(nlp) + return ThaiTokenizer(nlp.vocab) return thai_tokenizer_factory class ThaiTokenizer(DummyTokenizer): - def __init__(self, nlp: Language) -> None: + def __init__(self, vocab: Vocab) -> None: try: from pythainlp.tokenize import word_tokenize except ImportError: @@ -31,7 +32,7 @@ class ThaiTokenizer(DummyTokenizer): "https://github.com/PyThaiNLP/pythainlp" ) from None self.word_tokenize = word_tokenize - self.vocab = nlp.vocab + self.vocab = vocab def __call__(self, text: str) -> Doc: words = list(self.word_tokenize(text)) diff --git a/spacy/lang/ti/lex_attrs.py b/spacy/lang/ti/lex_attrs.py index ed094de3b..da56af6c0 100644 --- a/spacy/lang/ti/lex_attrs.py +++ b/spacy/lang/ti/lex_attrs.py @@ -2,7 +2,7 @@ from ...attrs import LIKE_NUM _num_words = [ "ዜሮ", - "ሐደ", + "ሓደ", "ክልተ", "ሰለስተ", "ኣርባዕተ", @@ -11,66 +11,37 @@ _num_words = [ "ሸውዓተ", "ሽሞንተ", "ትሽዓተ", - "ኣሰርተ", - "ኣሰርተ ሐደ", - "ኣሰርተ ክልተ", - "ኣሰርተ ሰለስተ", - "ኣሰርተ ኣርባዕተ", - "ኣሰርተ ሓሙሽተ", - "ኣሰርተ ሽድሽተ", - "ኣሰርተ ሸውዓተ", - "ኣሰርተ ሽሞንተ", - "ኣሰርተ ትሽዓተ", + "ዓሰርተ", "ዕስራ", "ሰላሳ", "ኣርብዓ", - "ሃምሳ", - "ስልሳ", + "ሓምሳ", + "ሱሳ", "ሰብዓ", "ሰማንያ", - "ተስዓ", + "ቴስዓ", "ሚእቲ", "ሺሕ", "ሚልዮን", "ቢልዮን", "ትሪልዮን", "ኳድሪልዮን", - "ገጅልዮን", - "ባዝልዮን", + "ጋዚልዮን", + "ባዚልዮን", ] +# Tigrinya ordinals above 10 are the same as _num_words but start with "መበል " _ordinal_words = [ "ቀዳማይ", "ካልኣይ", "ሳልሳይ", - "ራብኣይ", + "ራብዓይ", "ሓምሻይ", "ሻድሻይ", "ሻውዓይ", "ሻምናይ", - "ዘጠነኛ", - "አስረኛ", - "ኣሰርተ አንደኛ", - "ኣሰርተ ሁለተኛ", - "ኣሰርተ ሶስተኛ", - "ኣሰርተ አራተኛ", - "ኣሰርተ አምስተኛ", - "ኣሰርተ ስድስተኛ", - "ኣሰርተ ሰባተኛ", - "ኣሰርተ ስምንተኛ", - "ኣሰርተ ዘጠነኛ", - "ሃያኛ", - "ሰላሳኛ" "አርባኛ", - "አምሳኛ", - "ስድሳኛ", - "ሰባኛ", - "ሰማንያኛ", - "ዘጠናኛ", - "መቶኛ", - "ሺኛ", - "ሚሊዮንኛ", - "ቢሊዮንኛ", - "ትሪሊዮንኛ", + "ታሽዓይ", + "ዓስራይ", ] @@ -92,7 +63,7 @@ def like_num(text): # Check ordinal number if text_lower in _ordinal_words: return True - if text_lower.endswith("ኛ"): + if text_lower.endswith("ይ"): if text_lower[:-2].isdigit(): return True diff --git a/spacy/lang/ti/punctuation.py b/spacy/lang/ti/punctuation.py index 772b009bf..aa884c2ba 100644 --- a/spacy/lang/ti/punctuation.py +++ b/spacy/lang/ti/punctuation.py @@ -1,7 +1,7 @@ from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY from ..char_classes import UNITS, ALPHA_UPPER -_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧".strip().split() +_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧ ፠ ፨".strip().split() _suffixes = ( _list_punct diff --git a/spacy/lang/ti/stop_words.py b/spacy/lang/ti/stop_words.py index c4f8f20fa..9bd712200 100644 --- a/spacy/lang/ti/stop_words.py +++ b/spacy/lang/ti/stop_words.py @@ -1,6 +1,27 @@ +# Stop words from Tigrinya Wordcount: https://github.com/fgaim/Tigrinya-WordCount/blob/main/ti_stop_words.txt + # Stop words STOP_WORDS = set( """ -ግን ግና ንስኻ ንስኺ ንስኻትክን ንስኻትኩም ናትካ ናትኪ ናትክን ናትኩም +'ምበር 'ሞ 'ቲ 'ታ 'ኳ 'ውን 'ዚ 'የ 'ዩ 'ያ 'ዮም 'ዮን +ልዕሊ ሒዙ ሒዛ ሕጂ መበል መን መንጎ መጠን ማለት ምስ ምባል +ምእንቲ ምኽንያቱ ምኽንያት ምዃኑ ምዃንና ምዃኖም +ስለ ስለዚ ስለዝበላ ሽዑ ቅድሚ በለ በቲ በዚ ብምባል ብተወሳኺ ብኸመይ +ብዘይ ብዘይካ ብዙሕ ብዛዕባ ብፍላይ ተባሂሉ ነበረ ነቲ ነታ ነቶም +ነዚ ነይሩ ነገራት ነገር ናብ ናብቲ ናትኩም ናትኪ ናትካ ናትክን +ናይ ናይቲ ንሕና ንሱ ንሳ ንሳቶም ንስኺ ንስኻ ንስኻትኩም ንስኻትክን ንዓይ +ኢለ ኢሉ ኢላ ኢልካ ኢሎም ኢና ኢኻ ኢዩ ኣለኹ +ኣለዉ ኣለዎ ኣሎ ኣብ ኣብቲ ኣብታ ኣብኡ ኣብዚ ኣነ ኣዝዩ ኣይኮነን ኣይኰነን +እምበር እሞ እተን እቲ እታ እቶም እንተ እንተሎ +ኣላ እንተኾነ እንታይ እንከሎ እኳ እዋን እውን እዚ እዛ እዞም +እየ እየን እዩ እያ እዮም +ከሎ ከመይ ከም ከምቲ ከምኡ ከምዘሎ +ከምዚ ከኣ ኩሉ ካልእ ካልኦት ካብ ካብቲ ካብቶም ክሳብ ክሳዕ ክብል +ክንደይ ክንዲ ክኸውን ኮይኑ ኰይኑ ኵሉ ኸም ኸኣ ወይ +ዋላ ዘለና ዘለዉ ዘለዋ ዘለዎ ዘለዎም ዘላ ዘሎ ዘይብሉ +ዝርከብ ዝበሃል ዝበለ ዝብል ዝተባህለ ዝተኻየደ ዝተፈላለየ ዝተፈላለዩ +ዝነበረ ዝነበረት ዝነበሩ ዝካየድ ዝኸውን ዝኽእል ዝኾነ ዝዀነ +የለን ይቕረብ ይብል ይኸውን ይኹን ይኽእል ደኣ ድሕሪ ድማ +ገለ ገሊጹ ገና ገይሩ ግና ግን ጥራይ """.split() ) diff --git a/spacy/lang/tokenizer_exceptions.py b/spacy/lang/tokenizer_exceptions.py index e41db911f..d76fe4262 100644 --- a/spacy/lang/tokenizer_exceptions.py +++ b/spacy/lang/tokenizer_exceptions.py @@ -250,3 +250,9 @@ o.0 for orth in emoticons: BASE_EXCEPTIONS[orth] = [{ORTH: orth}] + + +# Moved from a suffix setting due to #9155 removing prefixes from consideration +# for lookbehinds +for u in "cfkCFK": + BASE_EXCEPTIONS[f"°{u}."] = [{ORTH: "°"}, {ORTH: f"{u}"}, {ORTH: "."}] diff --git a/spacy/lang/uk/__init__.py b/spacy/lang/uk/__init__.py index 1fa568292..21f9649f2 100644 --- a/spacy/lang/uk/__init__.py +++ b/spacy/lang/uk/__init__.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model @@ -23,13 +23,25 @@ class Ukrainian(Language): @Ukrainian.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "pymorphy2", "overwrite": False}, + default_config={ + "model": None, + "mode": "pymorphy2", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return UkrainianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return UkrainianLemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) __all__ = ["Ukrainian"] diff --git a/spacy/lang/uk/lemmatizer.py b/spacy/lang/uk/lemmatizer.py index 1fb030e06..a8bc56057 100644 --- a/spacy/lang/uk/lemmatizer.py +++ b/spacy/lang/uk/lemmatizer.py @@ -1,8 +1,9 @@ -from typing import Optional +from typing import Optional, Callable from thinc.api import Model from ..ru.lemmatizer import RussianLemmatizer +from ...pipeline.lemmatizer import lemmatizer_score from ...vocab import Vocab @@ -15,6 +16,7 @@ class UkrainianLemmatizer(RussianLemmatizer): *, mode: str = "pymorphy2", overwrite: bool = False, + scorer: Optional[Callable] = lemmatizer_score, ) -> None: if mode == "pymorphy2": try: @@ -27,4 +29,6 @@ class UkrainianLemmatizer(RussianLemmatizer): ) from None if getattr(self, "_morph", None) is None: self._morph = MorphAnalyzer(lang="uk") - super().__init__(vocab, model, name, mode=mode, overwrite=overwrite) + super().__init__( + vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) diff --git a/spacy/lang/vi/__init__.py b/spacy/lang/vi/__init__.py index 9d5fd8d9d..822dc348c 100644 --- a/spacy/lang/vi/__init__.py +++ b/spacy/lang/vi/__init__.py @@ -9,6 +9,7 @@ from .lex_attrs import LEX_ATTRS from ...language import Language, BaseDefaults from ...tokens import Doc from ...util import DummyTokenizer, registry, load_config_from_str +from ...vocab import Vocab from ... import util @@ -24,14 +25,14 @@ use_pyvi = true @registry.tokenizers("spacy.vi.VietnameseTokenizer") def create_vietnamese_tokenizer(use_pyvi: bool = True): def vietnamese_tokenizer_factory(nlp): - return VietnameseTokenizer(nlp, use_pyvi=use_pyvi) + return VietnameseTokenizer(nlp.vocab, use_pyvi=use_pyvi) return vietnamese_tokenizer_factory class VietnameseTokenizer(DummyTokenizer): - def __init__(self, nlp: Language, use_pyvi: bool = False): - self.vocab = nlp.vocab + def __init__(self, vocab: Vocab, use_pyvi: bool = False): + self.vocab = vocab self.use_pyvi = use_pyvi if self.use_pyvi: try: @@ -45,6 +46,9 @@ class VietnameseTokenizer(DummyTokenizer): ) raise ImportError(msg) from None + def __reduce__(self): + return VietnameseTokenizer, (self.vocab, self.use_pyvi) + def __call__(self, text: str) -> Doc: if self.use_pyvi: words = self.pyvi_tokenize(text) diff --git a/spacy/lang/vi/examples.py b/spacy/lang/vi/examples.py new file mode 100644 index 000000000..36575f67c --- /dev/null +++ b/spacy/lang/vi/examples.py @@ -0,0 +1,17 @@ +""" +Example sentences to test spaCy and its language models. +>>> from spacy.lang.vi.examples import sentences +>>> docs = nlp.pipe(sentences) +""" + + +sentences = [ + "Đây là đâu, tôi là ai?", + "Căn phòng có nhiều cửa sổ nên nó khá sáng", + "Đại dịch COVID vừa qua đã gây ảnh hưởng rất lớn tới nhiều doanh nghiệp lớn nhỏ.", + "Thành phố Hồ Chí Minh đã bị ảnh hưởng nặng nề trong thời gian vừa qua.", + "Ông bạn đang ở đâu thế?", + "Ai là người giải phóng đất nước Việt Nam khỏi ách đô hộ?", + "Vị tướng nào là người đã làm nên chiến thắng lịch sử Điện Biên Phủ?", + "Làm việc nhiều chán quá, đi chơi đâu đi?", +] diff --git a/spacy/lang/vi/lex_attrs.py b/spacy/lang/vi/lex_attrs.py index b3dbf2192..33a3745cc 100644 --- a/spacy/lang/vi/lex_attrs.py +++ b/spacy/lang/vi/lex_attrs.py @@ -9,11 +9,14 @@ _num_words = [ "bốn", "năm", "sáu", + "bảy", "bẩy", "tám", "chín", "mười", + "chục", "trăm", + "nghìn", "tỷ", ] diff --git a/spacy/lang/zh/__init__.py b/spacy/lang/zh/__init__.py index 755a294e2..fdf6776e2 100644 --- a/spacy/lang/zh/__init__.py +++ b/spacy/lang/zh/__init__.py @@ -11,6 +11,7 @@ from ...scorer import Scorer from ...tokens import Doc from ...training import validate_examples, Example from ...util import DummyTokenizer, registry, load_config_from_str +from ...vocab import Vocab from .lex_attrs import LEX_ATTRS from .stop_words import STOP_WORDS from ... import util @@ -48,14 +49,14 @@ class Segmenter(str, Enum): @registry.tokenizers("spacy.zh.ChineseTokenizer") def create_chinese_tokenizer(segmenter: Segmenter = Segmenter.char): def chinese_tokenizer_factory(nlp): - return ChineseTokenizer(nlp, segmenter=segmenter) + return ChineseTokenizer(nlp.vocab, segmenter=segmenter) return chinese_tokenizer_factory class ChineseTokenizer(DummyTokenizer): - def __init__(self, nlp: Language, segmenter: Segmenter = Segmenter.char): - self.vocab = nlp.vocab + def __init__(self, vocab: Vocab, segmenter: Segmenter = Segmenter.char): + self.vocab = vocab self.segmenter = ( segmenter.value if isinstance(segmenter, Segmenter) else segmenter ) diff --git a/spacy/language.py b/spacy/language.py index 80703259d..798254b80 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -115,7 +115,7 @@ class Language: Defaults (class): Settings, data and factory methods for creating the `nlp` object and processing pipeline. - lang (str): Two-letter language ID, i.e. ISO code. + lang (str): IETF language code, such as 'en'. DOCS: https://spacy.io/api/language """ @@ -228,6 +228,7 @@ class Language: "vectors": len(self.vocab.vectors), "keys": self.vocab.vectors.n_keys, "name": self.vocab.vectors.name, + "mode": self.vocab.vectors.mode, } self._meta["labels"] = dict(self.pipe_labels) # TODO: Adding this back to prevent breaking people's code etc., but @@ -700,7 +701,8 @@ class Language: if ( self.vocab.vectors.shape != source.vocab.vectors.shape or self.vocab.vectors.key2row != source.vocab.vectors.key2row - or self.vocab.vectors.to_bytes() != source.vocab.vectors.to_bytes() + or self.vocab.vectors.to_bytes(exclude=["strings"]) + != source.vocab.vectors.to_bytes(exclude=["strings"]) ): warnings.warn(Warnings.W113.format(name=source_name)) if source_name not in source.component_names: @@ -978,7 +980,7 @@ class Language: def __call__( self, - text: str, + text: Union[str, Doc], *, disable: Iterable[str] = SimpleFrozenList(), component_cfg: Optional[Dict[str, Dict[str, Any]]] = None, @@ -987,7 +989,9 @@ class Language: and can contain arbitrary whitespace. Alignment into the original string is preserved. - text (str): The text to be processed. + text (Union[str, Doc]): If `str`, the text to be processed. If `Doc`, + the doc will be passed directly to the pipeline, skipping + `Language.make_doc`. disable (List[str]): Names of the pipeline components to disable. component_cfg (Dict[str, dict]): An optional dictionary with extra keyword arguments for specific components. @@ -995,7 +999,7 @@ class Language: DOCS: https://spacy.io/api/language#call """ - doc = self.make_doc(text) + doc = self._ensure_doc(text) if component_cfg is None: component_cfg = {} for name, proc in self.pipeline: @@ -1080,6 +1084,20 @@ class Language: ) return self.tokenizer(text) + def _ensure_doc(self, doc_like: Union[str, Doc]) -> Doc: + """Create a Doc if need be, or raise an error if the input is not a Doc or a string.""" + if isinstance(doc_like, Doc): + return doc_like + if isinstance(doc_like, str): + return self.make_doc(doc_like) + raise ValueError(Errors.E866.format(type=type(doc_like))) + + def _ensure_doc_with_context(self, doc_like: Union[str, Doc], context: Any) -> Doc: + """Create a Doc if need be and add as_tuples context, or raise an error if the input is not a Doc or a string.""" + doc = self._ensure_doc(doc_like) + doc._context = context + return doc + def update( self, examples: Iterable[Example], @@ -1267,9 +1285,9 @@ class Language: ) except IOError: raise IOError(Errors.E884.format(vectors=I["vectors"])) - if self.vocab.vectors.data.shape[1] >= 1: + if self.vocab.vectors.shape[1] >= 1: ops = get_current_ops() - self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data) + self.vocab.vectors.to_ops(ops) if hasattr(self.tokenizer, "initialize"): tok_settings = validate_init_settings( self.tokenizer.initialize, # type: ignore[union-attr] @@ -1314,8 +1332,8 @@ class Language: DOCS: https://spacy.io/api/language#resume_training """ ops = get_current_ops() - if self.vocab.vectors.data.shape[1] >= 1: - self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data) + if self.vocab.vectors.shape[1] >= 1: + self.vocab.vectors.to_ops(ops) for name, proc in self.pipeline: if hasattr(proc, "_rehearsal_model"): proc._rehearsal_model = deepcopy(proc.model) # type: ignore[attr-defined] @@ -1386,20 +1404,13 @@ class Language: for eg in examples: self.make_doc(eg.reference.text) # apply all pipeline components - for name, pipe in self.pipeline: - kwargs = component_cfg.get(name, {}) - kwargs.setdefault("batch_size", batch_size) - for doc, eg in zip( - _pipe( - (eg.predicted for eg in examples), - proc=pipe, - name=name, - default_error_handler=self.default_error_handler, - kwargs=kwargs, - ), - examples, - ): - eg.predicted = doc + docs = self.pipe( + (eg.predicted for eg in examples), + batch_size=batch_size, + component_cfg=component_cfg, + ) + for eg, doc in zip(examples, docs): + eg.predicted = doc end_time = timer() results = scorer.score(examples) n_words = sum(len(eg.predicted) for eg in examples) @@ -1450,7 +1461,7 @@ class Language: @overload def pipe( self, - texts: Iterable[str], + texts: Iterable[Union[str, Doc]], *, as_tuples: Literal[False] = ..., batch_size: Optional[int] = ..., @@ -1463,7 +1474,7 @@ class Language: @overload def pipe( # noqa: F811 self, - texts: Iterable[Tuple[str, _AnyContext]], + texts: Iterable[Tuple[Union[str, Doc], _AnyContext]], *, as_tuples: Literal[True] = ..., batch_size: Optional[int] = ..., @@ -1475,7 +1486,9 @@ class Language: def pipe( # noqa: F811 self, - texts: Union[Iterable[str], Iterable[Tuple[str, _AnyContext]]], + texts: Union[ + Iterable[Union[str, Doc]], Iterable[Tuple[Union[str, Doc], _AnyContext]] + ], *, as_tuples: bool = False, batch_size: Optional[int] = None, @@ -1485,7 +1498,8 @@ class Language: ) -> Union[Iterator[Doc], Iterator[Tuple[Doc, _AnyContext]]]: """Process texts as a stream, and yield `Doc` objects in order. - texts (Iterable[str]): A sequence of texts to process. + texts (Iterable[Union[str, Doc]]): A sequence of texts or docs to + process. as_tuples (bool): If set to True, inputs should be a sequence of (text, context) tuples. Output will then be a sequence of (doc, context) tuples. Defaults to False. @@ -1500,23 +1514,24 @@ class Language: """ # Handle texts with context as tuples if as_tuples: - texts = cast(Iterable[Tuple[str, _AnyContext]], texts) - text_context1, text_context2 = itertools.tee(texts) - texts = (tc[0] for tc in text_context1) - contexts = (tc[1] for tc in text_context2) + texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts) + docs_with_contexts = ( + self._ensure_doc_with_context(text, context) for text, context in texts + ) docs = self.pipe( - texts, + docs_with_contexts, batch_size=batch_size, disable=disable, n_process=n_process, component_cfg=component_cfg, ) - for doc, context in zip(docs, contexts): + for doc in docs: + context = doc._context + doc._context = None yield (doc, context) return - # At this point, we know that we're dealing with an iterable of plain texts - texts = cast(Iterable[str], texts) + texts = cast(Iterable[Union[str, Doc]], texts) # Set argument defaults if n_process == -1: @@ -1551,7 +1566,7 @@ class Language: docs = self._multiprocessing_pipe(texts, pipes, n_process, batch_size) else: # if n_process == 1, no processes are forked. - docs = (self.make_doc(text) for text in texts) + docs = (self._ensure_doc(text) for text in texts) for pipe in pipes: docs = pipe(docs) for doc in docs: @@ -1570,7 +1585,7 @@ class Language: def _multiprocessing_pipe( self, - texts: Iterable[str], + texts: Iterable[Union[str, Doc]], pipes: Iterable[Callable[..., Iterator[Doc]]], n_process: int, batch_size: int, @@ -1596,7 +1611,7 @@ class Language: procs = [ mp.Process( target=_apply_pipes, - args=(self.make_doc, pipes, rch, sch, Underscore.get_state()), + args=(self._ensure_doc, pipes, rch, sch, Underscore.get_state()), ) for rch, sch in zip(texts_q, bytedocs_send_ch) ] @@ -1609,11 +1624,12 @@ class Language: recv.recv() for recv in cycle(bytedocs_recv_ch) ) try: - for i, (_, (byte_doc, byte_error)) in enumerate( + for i, (_, (byte_doc, byte_context, byte_error)) in enumerate( zip(raw_texts, byte_tuples), 1 ): if byte_doc is not None: doc = Doc(self.vocab).from_bytes(byte_doc) + doc._context = byte_context yield doc elif byte_error is not None: error = srsly.msgpack_loads(byte_error) @@ -1800,7 +1816,9 @@ class Language: ) if model not in source_nlp_vectors_hashes: source_nlp_vectors_hashes[model] = hash( - source_nlps[model].vocab.vectors.to_bytes() + source_nlps[model].vocab.vectors.to_bytes( + exclude=["strings"] + ) ) if "_sourced_vectors_hashes" not in nlp.meta: nlp.meta["_sourced_vectors_hashes"] = {} @@ -2138,7 +2156,7 @@ def _copy_examples(examples: Iterable[Example]) -> List[Example]: def _apply_pipes( - make_doc: Callable[[str], Doc], + ensure_doc: Callable[[Union[str, Doc]], Doc], pipes: Iterable[Callable[..., Iterator[Doc]]], receiver, sender, @@ -2146,7 +2164,8 @@ def _apply_pipes( ) -> None: """Worker for Language.pipe - make_doc (Callable[[str,] Doc]): Function to create Doc from text. + ensure_doc (Callable[[Union[str, Doc]], Doc]): Function to create Doc from text + or raise an error if the input is neither a Doc nor a string. pipes (Iterable[Pipe]): The components to apply. receiver (multiprocessing.Connection): Pipe to receive text. Usually created by `multiprocessing.Pipe()` @@ -2159,16 +2178,16 @@ def _apply_pipes( while True: try: texts = receiver.get() - docs = (make_doc(text) for text in texts) + docs = (ensure_doc(text) for text in texts) for pipe in pipes: docs = pipe(docs) # type: ignore[arg-type, assignment] # Connection does not accept unpickable objects, so send list. - byte_docs = [(doc.to_bytes(), None) for doc in docs] - padding = [(None, None)] * (len(texts) - len(byte_docs)) + byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs] + padding = [(None, None, None)] * (len(texts) - len(byte_docs)) sender.send(byte_docs + padding) # type: ignore[operator] except Exception: - error_msg = [(None, srsly.msgpack_dumps(traceback.format_exc()))] - padding = [(None, None)] * (len(texts) - 1) + error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))] + padding = [(None, None, None)] * (len(texts) - 1) sender.send(error_msg + padding) diff --git a/spacy/lexeme.pyi b/spacy/lexeme.pyi index 4eae6be43..4fcaa82cf 100644 --- a/spacy/lexeme.pyi +++ b/spacy/lexeme.pyi @@ -19,7 +19,7 @@ class Lexeme: @property def vector_norm(self) -> float: ... vector: Floats1d - rank: str + rank: int sentiment: float @property def orth_(self) -> str: ... diff --git a/spacy/lexeme.pyx b/spacy/lexeme.pyx index 3564b6e42..6c66effde 100644 --- a/spacy/lexeme.pyx +++ b/spacy/lexeme.pyx @@ -130,8 +130,10 @@ cdef class Lexeme: return 0.0 vector = self.vector xp = get_array_module(vector) - return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) - + result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) + # ensure we get a scalar back (numpy does this automatically but cupy doesn't) + return result.item() + @property def has_vector(self): """RETURNS (bool): Whether a word vector is associated with the object. @@ -284,7 +286,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.lower] - def __set__(self, unicode x): + def __set__(self, str x): self.c.lower = self.vocab.strings.add(x) property norm_: @@ -294,7 +296,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.norm] - def __set__(self, unicode x): + def __set__(self, str x): self.norm = self.vocab.strings.add(x) property shape_: @@ -304,7 +306,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.shape] - def __set__(self, unicode x): + def __set__(self, str x): self.c.shape = self.vocab.strings.add(x) property prefix_: @@ -314,7 +316,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.prefix] - def __set__(self, unicode x): + def __set__(self, str x): self.c.prefix = self.vocab.strings.add(x) property suffix_: @@ -324,7 +326,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.suffix] - def __set__(self, unicode x): + def __set__(self, str x): self.c.suffix = self.vocab.strings.add(x) property lang_: @@ -332,7 +334,7 @@ cdef class Lexeme: def __get__(self): return self.vocab.strings[self.c.lang] - def __set__(self, unicode x): + def __set__(self, str x): self.c.lang = self.vocab.strings.add(x) property flags: diff --git a/spacy/matcher/dependencymatcher.pyx b/spacy/matcher/dependencymatcher.pyx index b667e6b2f..a602ba737 100644 --- a/spacy/matcher/dependencymatcher.pyx +++ b/spacy/matcher/dependencymatcher.pyx @@ -148,9 +148,9 @@ cdef class DependencyMatcher: Creates a token key to be used by the matcher """ return self._normalize_key( - unicode(key) + DELIMITER + - unicode(pattern_idx) + DELIMITER + - unicode(token_idx) + str(key) + DELIMITER + + str(pattern_idx) + DELIMITER + + str(token_idx) ) def add(self, key, patterns, *, on_match=None): @@ -424,7 +424,7 @@ cdef class DependencyMatcher: return [doc[child.i] for child in doc[node].head.children if child.i < node] def _normalize_key(self, key): - if isinstance(key, basestring): + if isinstance(key, str): return self.vocab.strings.add(key) else: return key diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx index f8482a1eb..6aa58f0e3 100644 --- a/spacy/matcher/matcher.pyx +++ b/spacy/matcher/matcher.pyx @@ -18,7 +18,7 @@ from ..tokens.doc cimport Doc, get_token_attr_for_matcher from ..tokens.span cimport Span from ..tokens.token cimport Token from ..tokens.morphanalysis cimport MorphAnalysis -from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH +from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH, ENT_IOB from ..schemas import validate_token_pattern from ..errors import Errors, MatchPatternError, Warnings @@ -312,7 +312,7 @@ cdef class Matcher: return final_results def _normalize_key(self, key): - if isinstance(key, basestring): + if isinstance(key, str): return self.vocab.strings.add(key) else: return key @@ -360,7 +360,7 @@ cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, e for i, token in enumerate(doclike): for name, index in extensions.items(): value = token._.get(name) - if isinstance(value, basestring): + if isinstance(value, str): value = token.vocab.strings[value] extra_attr_values[i * nr_extra_attr + index] = value # Main loop @@ -786,7 +786,7 @@ def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates): def _get_attr_values(spec, string_store): attr_values = [] for attr, value in spec.items(): - if isinstance(attr, basestring): + if isinstance(attr, str): attr = attr.upper() if attr == '_': continue @@ -797,8 +797,11 @@ def _get_attr_values(spec, string_store): if attr == "IS_SENT_START": attr = "SENT_START" attr = IDS.get(attr) - if isinstance(value, basestring): - value = string_store.add(value) + if isinstance(value, str): + if attr == ENT_IOB and value in Token.iob_strings(): + value = Token.iob_strings().index(value) + else: + value = string_store.add(value) elif isinstance(value, bool): value = int(value) elif isinstance(value, int): @@ -938,7 +941,7 @@ def _get_extra_predicates(spec, extra_predicates, vocab): seen_predicates = {pred.key: pred.i for pred in extra_predicates} output = [] for attr, value in spec.items(): - if isinstance(attr, basestring): + if isinstance(attr, str): if attr == "_": output.extend( _get_extension_extra_predicates( @@ -995,7 +998,7 @@ def _get_operators(spec): "?": (ZERO_ONE,), "1": (ONE,), "!": (ZERO,)} # Fix casing spec = {key.upper(): values for key, values in spec.items() - if isinstance(key, basestring)} + if isinstance(key, str)} if "OP" not in spec: return (ONE,) elif spec["OP"] in lookup: @@ -1013,7 +1016,7 @@ def _get_extensions(spec, string_store, name2index): if isinstance(value, dict): # Handle predicates (e.g. "IN", in the extra_predicates, not here. continue - if isinstance(value, basestring): + if isinstance(value, str): value = string_store.add(value) if name not in name2index: name2index[name] = len(name2index) diff --git a/spacy/matcher/phrasematcher.pyi b/spacy/matcher/phrasematcher.pyi index d73633ec0..741bf7bb6 100644 --- a/spacy/matcher/phrasematcher.pyi +++ b/spacy/matcher/phrasematcher.pyi @@ -8,12 +8,9 @@ class PhraseMatcher: def __init__( self, vocab: Vocab, attr: Optional[Union[int, str]], validate: bool = ... ) -> None: ... - def __call__( - self, - doclike: Union[Doc, Span], - *, - as_spans: bool = ..., - ) -> Union[List[Tuple[int, int, int]], List[Span]]: ... + def __reduce__(self) -> Any: ... + def __len__(self) -> int: ... + def __contains__(self, key: str) -> bool: ... def add( self, key: str, @@ -23,3 +20,10 @@ class PhraseMatcher: Callable[[Matcher, Doc, int, List[Tuple[Any, ...]]], Any] ] = ..., ) -> None: ... + def remove(self, key: str) -> None: ... + def __call__( + self, + doclike: Union[Doc, Span], + *, + as_spans: bool = ..., + ) -> Union[List[Tuple[int, int, int]], List[Span]]: ... diff --git a/spacy/ml/extract_spans.py b/spacy/ml/extract_spans.py index 9bc972032..edc86ff9c 100644 --- a/spacy/ml/extract_spans.py +++ b/spacy/ml/extract_spans.py @@ -28,7 +28,13 @@ def forward( X, spans = source_spans assert spans.dataXd.ndim == 2 indices = _get_span_indices(ops, spans, X.lengths) - Y = Ragged(X.dataXd[indices], spans.dataXd[:, 1] - spans.dataXd[:, 0]) # type: ignore[arg-type, index] + if len(indices) > 0: + Y = Ragged(X.dataXd[indices], spans.dataXd[:, 1] - spans.dataXd[:, 0]) # type: ignore[arg-type, index] + else: + Y = Ragged( + ops.xp.zeros(X.dataXd.shape, dtype=X.dataXd.dtype), + ops.xp.zeros((len(X.lengths),), dtype="i"), + ) x_shape = X.dataXd.shape x_lengths = X.lengths @@ -53,7 +59,7 @@ def _get_span_indices(ops, spans: Ragged, lengths: Ints1d) -> Ints1d: for j in range(spans_i.shape[0]): indices.append(ops.xp.arange(spans_i[j, 0], spans_i[j, 1])) # type: ignore[call-overload, index] offset += length - return ops.flatten(indices) + return ops.flatten(indices, dtype="i", ndim_if_empty=1) def _ensure_cpu(spans: Ragged, lengths: Ints1d) -> Tuple[Ragged, Ints1d]: diff --git a/spacy/ml/models/multi_task.py b/spacy/ml/models/multi_task.py index 37473b7f4..9e1face63 100644 --- a/spacy/ml/models/multi_task.py +++ b/spacy/ml/models/multi_task.py @@ -23,7 +23,7 @@ def create_pretrain_vectors( maxout_pieces: int, hidden_size: int, loss: str ) -> Callable[["Vocab", Model], Model]: def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model: - if vocab.vectors.data.shape[1] == 0: + if vocab.vectors.shape[1] == 0: raise ValueError(Errors.E875) model = build_cloze_multi_task_model( vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces @@ -116,7 +116,7 @@ def build_multi_task_model( def build_cloze_multi_task_model( vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int ) -> Model: - nO = vocab.vectors.data.shape[1] + nO = vocab.vectors.shape[1] output_layer = chain( cast(Model[List["Floats2d"], Floats2d], list2array()), Maxout( diff --git a/spacy/ml/models/tok2vec.py b/spacy/ml/models/tok2vec.py index 8d78e418f..ecdf6be27 100644 --- a/spacy/ml/models/tok2vec.py +++ b/spacy/ml/models/tok2vec.py @@ -53,7 +53,7 @@ def build_hash_embed_cnn_tok2vec( window_size (int): The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be depth * (window_size * 2 + 1), so a 4-layer network with window_size of - 2 will be sensitive to 17 words at a time. Recommended value is 1. + 2 will be sensitive to 20 words at a time. Recommended value is 1. embed_size (int): The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between 2000 and 10000. @@ -123,7 +123,7 @@ def MultiHashEmbed( attributes are NORM, PREFIX, SUFFIX and SHAPE. This lets the model take into account some subword information, without constructing a fully character-based representation. If pretrained vectors are available, they can be included in - the representation as well, with the vectors table will be kept static + the representation as well, with the vectors table kept static (i.e. it's not updated). The `width` parameter specifies the output width of the layer and the widths diff --git a/spacy/ml/staticvectors.py b/spacy/ml/staticvectors.py index 53ef01906..8d9b1af9b 100644 --- a/spacy/ml/staticvectors.py +++ b/spacy/ml/staticvectors.py @@ -1,11 +1,13 @@ -from typing import List, Tuple, Callable, Optional, cast +from typing import List, Tuple, Callable, Optional, Sequence, cast from thinc.initializers import glorot_uniform_init from thinc.util import partial -from thinc.types import Ragged, Floats2d, Floats1d +from thinc.types import Ragged, Floats2d, Floats1d, Ints1d from thinc.api import Model, Ops, registry from ..tokens import Doc from ..errors import Errors +from ..vectors import Mode +from ..vocab import Vocab @registry.layers("spacy.StaticVectors.v2") @@ -34,20 +36,32 @@ def StaticVectors( def forward( model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool ) -> Tuple[Ragged, Callable]: - if not sum(len(doc) for doc in docs): + token_count = sum(len(doc) for doc in docs) + if not token_count: return _handle_empty(model.ops, model.get_dim("nO")) - key_attr = model.attrs["key_attr"] - W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) - V = cast(Floats2d, model.ops.asarray(docs[0].vocab.vectors.data)) - rows = model.ops.flatten( - [doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs] + key_attr: int = model.attrs["key_attr"] + keys: Ints1d = model.ops.flatten( + cast(Sequence, [doc.to_array(key_attr) for doc in docs]) ) + vocab: Vocab = docs[0].vocab + W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) + if vocab.vectors.mode == Mode.default: + V = cast(Floats2d, model.ops.asarray(vocab.vectors.data)) + rows = vocab.vectors.find(keys=keys) + V = model.ops.as_contig(V[rows]) + elif vocab.vectors.mode == Mode.floret: + V = cast(Floats2d, vocab.vectors.get_batch(keys)) + V = model.ops.as_contig(V) + else: + raise RuntimeError(Errors.E896) try: - vectors_data = model.ops.gemm(model.ops.as_contig(V[rows]), W, trans2=True) + vectors_data = model.ops.gemm(V, W, trans2=True) except ValueError: raise RuntimeError(Errors.E896) - # Convert negative indices to 0-vectors (TODO: more options for UNK tokens) - vectors_data[rows < 0] = 0 + if vocab.vectors.mode == Mode.default: + # Convert negative indices to 0-vectors + # TODO: more options for UNK tokens + vectors_data[rows < 0] = 0 output = Ragged( vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore ) @@ -63,7 +77,7 @@ def forward( model.inc_grad( "W", model.ops.gemm( - cast(Floats2d, d_output.data), model.ops.as_contig(V[rows]), trans1=True + cast(Floats2d, d_output.data), model.ops.as_contig(V), trans1=True ), ) return [] @@ -80,7 +94,7 @@ def init( nM = model.get_dim("nM") if model.has_dim("nM") else None nO = model.get_dim("nO") if model.has_dim("nO") else None if X is not None and len(X): - nM = X[0].vocab.vectors.data.shape[1] + nM = X[0].vocab.vectors.shape[1] if Y is not None: nO = Y.data.shape[1] diff --git a/spacy/pipeline/_parser_internals/_state.pxd b/spacy/pipeline/_parser_internals/_state.pxd index 45202cb67..9d93814cf 100644 --- a/spacy/pipeline/_parser_internals/_state.pxd +++ b/spacy/pipeline/_parser_internals/_state.pxd @@ -1,3 +1,4 @@ +from cython.operator cimport dereference as deref, preincrement as incr from libc.string cimport memcpy, memset from libc.stdlib cimport calloc, free from libc.stdint cimport uint32_t, uint64_t @@ -185,16 +186,20 @@ cdef cppclass StateC: int L(int head, int idx) nogil const: if idx < 1 or this._left_arcs.size() == 0: return -1 - cdef vector[int] lefts - for i in range(this._left_arcs.size()): - arc = this._left_arcs.at(i) + + # Work backwards through left-arcs to find the arc at the + # requested index more quickly. + cdef size_t child_index = 0 + it = this._left_arcs.const_rbegin() + while it != this._left_arcs.rend(): + arc = deref(it) if arc.head == head and arc.child != -1 and arc.child < head: - lefts.push_back(arc.child) - idx = (lefts.size()) - idx - if idx < 0: - return -1 - else: - return lefts.at(idx) + child_index += 1 + if child_index == idx: + return arc.child + incr(it) + + return -1 int R(int head, int idx) nogil const: if idx < 1 or this._right_arcs.size() == 0: diff --git a/spacy/pipeline/_parser_internals/arc_eager.pyx b/spacy/pipeline/_parser_internals/arc_eager.pyx index cba77dfde..33c7c23b2 100644 --- a/spacy/pipeline/_parser_internals/arc_eager.pyx +++ b/spacy/pipeline/_parser_internals/arc_eager.pyx @@ -17,7 +17,7 @@ from ...errors import Errors from thinc.extra.search cimport Beam cdef weight_t MIN_SCORE = -90000 -cdef attr_t SUBTOK_LABEL = hash_string(u'subtok') +cdef attr_t SUBTOK_LABEL = hash_string('subtok') DEF NON_MONOTONIC = True @@ -585,7 +585,10 @@ cdef class ArcEager(TransitionSystem): actions[RIGHT][label] = 1 actions[REDUCE][label] = 1 for example in kwargs.get('examples', []): - heads, labels = example.get_aligned_parse(projectivize=True) + # use heads and labels from the reference parse (without regard to + # misalignments between the predicted and reference) + example_gold_preproc = Example(example.reference, example.reference) + heads, labels = example_gold_preproc.get_aligned_parse(projectivize=True) for child, (head, label) in enumerate(zip(heads, labels)): if head is None or label is None: continue @@ -601,7 +604,7 @@ cdef class ArcEager(TransitionSystem): actions[SHIFT][''] += 1 if min_freq is not None: for action, label_freqs in actions.items(): - for label, freq in list(label_freqs.items()): + for label, freq in label_freqs.copy().items(): if freq < min_freq: label_freqs.pop(label) # Ensure these actions are present diff --git a/spacy/pipeline/attributeruler.py b/spacy/pipeline/attributeruler.py index 331eaa4d8..0d9494865 100644 --- a/spacy/pipeline/attributeruler.py +++ b/spacy/pipeline/attributeruler.py @@ -5,15 +5,15 @@ from pathlib import Path from .pipe import Pipe from ..errors import Errors -from ..training import validate_examples, Example +from ..training import Example from ..language import Language from ..matcher import Matcher from ..scorer import Scorer -from ..symbols import IDS, TAG, POS, MORPH, LEMMA +from ..symbols import IDS from ..tokens import Doc, Span from ..tokens._retokenize import normalize_token_attrs, set_token_attrs from ..vocab import Vocab -from ..util import SimpleFrozenList +from ..util import SimpleFrozenList, registry from .. import util @@ -23,9 +23,41 @@ TagMapType = Dict[str, Dict[Union[int, str], Union[int, str]]] MorphRulesType = Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]] -@Language.factory("attribute_ruler", default_config={"validate": False}) -def make_attribute_ruler(nlp: Language, name: str, validate: bool): - return AttributeRuler(nlp.vocab, name, validate=validate) +@Language.factory( + "attribute_ruler", + default_config={ + "validate": False, + "scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"}, + }, +) +def make_attribute_ruler( + nlp: Language, name: str, validate: bool, scorer: Optional[Callable] +): + return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer) + + +def attribute_ruler_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: + def morph_key_getter(token, attr): + return getattr(token, attr).key + + results = {} + results.update(Scorer.score_token_attr(examples, "tag", **kwargs)) + results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) + results.update( + Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs) + ) + results.update( + Scorer.score_token_attr_per_feat( + examples, "morph", getter=morph_key_getter, **kwargs + ) + ) + results.update(Scorer.score_token_attr(examples, "lemma", **kwargs)) + return results + + +@registry.scorers("spacy.attribute_ruler_scorer.v1") +def make_attribute_ruler_scorer(): + return attribute_ruler_score class AttributeRuler(Pipe): @@ -36,7 +68,12 @@ class AttributeRuler(Pipe): """ def __init__( - self, vocab: Vocab, name: str = "attribute_ruler", *, validate: bool = False + self, + vocab: Vocab, + name: str = "attribute_ruler", + *, + validate: bool = False, + scorer: Optional[Callable] = attribute_ruler_score, ) -> None: """Create the AttributeRuler. After creation, you can add patterns with the `.initialize()` or `.add_patterns()` methods, or load patterns @@ -45,6 +82,10 @@ class AttributeRuler(Pipe): vocab (Vocab): The vocab. name (str): The pipe name. Defaults to "attribute_ruler". + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_token_attr for the attributes "tag", "pos", "morph" and + "lemma" and Scorer.score_token_attr_per_feat for the attribute + "morph". RETURNS (AttributeRuler): The AttributeRuler component. @@ -57,6 +98,7 @@ class AttributeRuler(Pipe): self.attrs: List[Dict] = [] self._attrs_unnormed: List[Dict] = [] # store for reference self.indices: List[int] = [] + self.scorer = scorer def clear(self) -> None: """Reset all patterns.""" @@ -228,45 +270,6 @@ class AttributeRuler(Pipe): all_patterns.append(p) return all_patterns # type: ignore[return-value] - def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by - Scorer.score_token_attr for the attributes "tag", "pos", "morph" - and "lemma" for the target token attributes. - - DOCS: https://spacy.io/api/tagger#score - """ - - def morph_key_getter(token, attr): - return getattr(token, attr).key - - validate_examples(examples, "AttributeRuler.score") - results = {} - attrs = set() # type: ignore - for token_attrs in self.attrs: - attrs.update(token_attrs) - for attr in attrs: - if attr == TAG: - results.update(Scorer.score_token_attr(examples, "tag", **kwargs)) - elif attr == POS: - results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) - elif attr == MORPH: - results.update( - Scorer.score_token_attr( - examples, "morph", getter=morph_key_getter, **kwargs - ) - ) - results.update( - Scorer.score_token_attr_per_feat( - examples, "morph", getter=morph_key_getter, **kwargs - ) - ) - elif attr == LEMMA: - results.update(Scorer.score_token_attr(examples, "lemma", **kwargs)) - return results - def to_bytes(self, exclude: Iterable[str] = SimpleFrozenList()) -> bytes: """Serialize the AttributeRuler to a bytestring. diff --git a/spacy/pipeline/dep_parser.py b/spacy/pipeline/dep_parser.py index 0be6e6ccd..446c043f0 100644 --- a/spacy/pipeline/dep_parser.py +++ b/spacy/pipeline/dep_parser.py @@ -1,6 +1,6 @@ # cython: infer_types=True, profile=True, binding=True from collections import defaultdict -from typing import Optional, Iterable +from typing import Optional, Iterable, Callable from thinc.api import Model, Config from ._parser_internals.transition_system import TransitionSystem @@ -12,7 +12,7 @@ from ..language import Language from ._parser_internals import nonproj from ._parser_internals.nonproj import DELIMITER from ..scorer import Scorer -from ..training import validate_examples +from ..util import registry default_model_config = """ @@ -45,6 +45,7 @@ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"] "learn_tokens": False, "min_action_freq": 30, "model": DEFAULT_PARSER_MODEL, + "scorer": {"@scorers": "spacy.parser_scorer.v1"}, }, default_score_weights={ "dep_uas": 0.5, @@ -63,6 +64,7 @@ def make_parser( update_with_oracle_cut_size: int, learn_tokens: bool, min_action_freq: int, + scorer: Optional[Callable], ): """Create a transition-based DependencyParser component. The dependency parser jointly learns sentence segmentation and labelled dependency parsing, and can @@ -99,6 +101,7 @@ def make_parser( primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. + scorer (Optional[Callable]): The scoring method. """ return DependencyParser( nlp.vocab, @@ -115,6 +118,7 @@ def make_parser( # At some point in the future we can try to implement support for # partial annotations, perhaps only in the beam objective. incorrect_spans_key=None, + scorer=scorer, ) @@ -130,6 +134,7 @@ def make_parser( "learn_tokens": False, "min_action_freq": 30, "model": DEFAULT_PARSER_MODEL, + "scorer": {"@scorers": "spacy.parser_scorer.v1"}, }, default_score_weights={ "dep_uas": 0.5, @@ -151,6 +156,7 @@ def make_beam_parser( beam_width: int, beam_density: float, beam_update_prob: float, + scorer: Optional[Callable], ): """Create a transition-based DependencyParser component that uses beam-search. The dependency parser jointly learns sentence segmentation and labelled @@ -208,9 +214,40 @@ def make_beam_parser( # At some point in the future we can try to implement support for # partial annotations, perhaps only in the beam objective. incorrect_spans_key=None, + scorer=scorer, ) +def parser_score(examples, **kwargs): + """Score a batch of examples. + + examples (Iterable[Example]): The examples to score. + RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans + and Scorer.score_deps. + + DOCS: https://spacy.io/api/dependencyparser#score + """ + def has_sents(doc): + return doc.has_annotation("SENT_START") + + def dep_getter(token, attr): + dep = getattr(token, attr) + dep = token.vocab.strings.as_string(dep).lower() + return dep + results = {} + results.update(Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)) + kwargs.setdefault("getter", dep_getter) + kwargs.setdefault("ignore_labels", ("p", "punct")) + results.update(Scorer.score_deps(examples, "dep", **kwargs)) + del results["sents_per_type"] + return results + + +@registry.scorers("spacy.parser_scorer.v1") +def make_parser_scorer(): + return parser_score + + class DependencyParser(Parser): """Pipeline component for dependency parsing. @@ -234,6 +271,7 @@ class DependencyParser(Parser): beam_update_prob=0.0, multitasks=tuple(), incorrect_spans_key=None, + scorer=parser_score, ): """Create a DependencyParser.""" super().__init__( @@ -249,6 +287,7 @@ class DependencyParser(Parser): beam_update_prob=beam_update_prob, multitasks=multitasks, incorrect_spans_key=incorrect_spans_key, + scorer=scorer, ) @property @@ -281,36 +320,6 @@ class DependencyParser(Parser): labels.add(label) return tuple(sorted(labels)) - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans - and Scorer.score_deps. - - DOCS: https://spacy.io/api/dependencyparser#score - """ - - def has_sents(doc): - return doc.has_annotation("SENT_START") - - validate_examples(examples, "DependencyParser.score") - - def dep_getter(token, attr): - dep = getattr(token, attr) - dep = token.vocab.strings.as_string(dep).lower() - return dep - - results = {} - results.update( - Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs) - ) - kwargs.setdefault("getter", dep_getter) - kwargs.setdefault("ignore_labels", ("p", "punct")) - results.update(Scorer.score_deps(examples, "dep", **kwargs)) - del results["sents_per_type"] - return results - def scored_parses(self, beams): """Return two dictionaries with scores for each beam/doc that was processed: one containing (i, head) keys, and another containing (i, label) keys. diff --git a/spacy/pipeline/entity_linker.py b/spacy/pipeline/entity_linker.py index 4a0902444..1169e898d 100644 --- a/spacy/pipeline/entity_linker.py +++ b/spacy/pipeline/entity_linker.py @@ -17,10 +17,12 @@ from ..language import Language from ..vocab import Vocab from ..training import Example, validate_examples, validate_get_examples from ..errors import Errors, Warnings -from ..util import SimpleFrozenList +from ..util import SimpleFrozenList, registry from .. import util from ..scorer import Scorer +# See #9050 +BACKWARD_OVERWRITE = True default_model_config = """ [model] @@ -51,6 +53,8 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] "incl_context": True, "entity_vector_length": 64, "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"}, + "overwrite": True, + "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"}, }, default_score_weights={ "nel_micro_f": 1.0, @@ -69,6 +73,8 @@ def make_entity_linker( incl_context: bool, entity_vector_length: int, get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]], + overwrite: bool, + scorer: Optional[Callable], ): """Construct an EntityLinker component. @@ -82,6 +88,7 @@ def make_entity_linker( entity_vector_length (int): Size of encoding vectors in the KB. get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that produces a list of candidates, given a certain knowledge base and a textual mention. + scorer (Optional[Callable]): The scoring method. """ return EntityLinker( nlp.vocab, @@ -93,9 +100,20 @@ def make_entity_linker( incl_context=incl_context, entity_vector_length=entity_vector_length, get_candidates=get_candidates, + overwrite=overwrite, + scorer=scorer, ) +def entity_linker_score(examples, **kwargs): + return Scorer.score_links(examples, negative_labels=[EntityLinker.NIL], **kwargs) + + +@registry.scorers("spacy.entity_linker_scorer.v1") +def make_entity_linker_scorer(): + return entity_linker_score + + class EntityLinker(TrainablePipe): """Pipeline component for named entity linking. @@ -116,6 +134,8 @@ class EntityLinker(TrainablePipe): incl_context: bool, entity_vector_length: int, get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]], + overwrite: bool = BACKWARD_OVERWRITE, + scorer: Optional[Callable] = entity_linker_score, ) -> None: """Initialize an entity linker. @@ -130,6 +150,8 @@ class EntityLinker(TrainablePipe): entity_vector_length (int): Size of encoding vectors in the KB. get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that produces a list of candidates, given a certain knowledge base and a textual mention. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_links. DOCS: https://spacy.io/api/entitylinker#init """ @@ -141,11 +163,12 @@ class EntityLinker(TrainablePipe): self.incl_prior = incl_prior self.incl_context = incl_context self.get_candidates = get_candidates - self.cfg: Dict[str, Any] = {} + self.cfg: Dict[str, Any] = {"overwrite": overwrite} self.distance = CosineDistance(normalize=False) # how many neighbour sentences to take into account # create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'. self.kb = empty_kb(entity_vector_length)(self.vocab) + self.scorer = scorer def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): """Define the KB of this pipe by providing a function that will @@ -384,23 +407,14 @@ class EntityLinker(TrainablePipe): if count_ents != len(kb_ids): raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids))) i = 0 + overwrite = self.cfg["overwrite"] for doc in docs: for ent in doc.ents: kb_id = kb_ids[i] i += 1 for token in ent: - token.ent_kb_id_ = kb_id - - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores. - - DOCS TODO: https://spacy.io/api/entity_linker#score - """ - validate_examples(examples, "EntityLinker.score") - return Scorer.score_links(examples, negative_labels=[self.NIL]) + if token.ent_kb_id == 0 or overwrite: + token.ent_kb_id_ = kb_id def to_bytes(self, *, exclude=tuple()): """Serialize the pipe to a bytestring. diff --git a/spacy/pipeline/entityruler.py b/spacy/pipeline/entityruler.py index b8f32b4d3..614d71f41 100644 --- a/spacy/pipeline/entityruler.py +++ b/spacy/pipeline/entityruler.py @@ -9,11 +9,10 @@ from .pipe import Pipe from ..training import Example from ..language import Language from ..errors import Errors, Warnings -from ..util import ensure_path, to_disk, from_disk, SimpleFrozenList +from ..util import ensure_path, to_disk, from_disk, SimpleFrozenList, registry from ..tokens import Doc, Span from ..matcher import Matcher, PhraseMatcher from ..scorer import get_ner_prf -from ..training import validate_examples DEFAULT_ENT_ID_SEP = "||" @@ -28,6 +27,7 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]] "validate": False, "overwrite_ents": False, "ent_id_sep": DEFAULT_ENT_ID_SEP, + "scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"}, }, default_score_weights={ "ents_f": 1.0, @@ -43,6 +43,7 @@ def make_entity_ruler( validate: bool, overwrite_ents: bool, ent_id_sep: str, + scorer: Optional[Callable], ): return EntityRuler( nlp, @@ -51,9 +52,19 @@ def make_entity_ruler( validate=validate, overwrite_ents=overwrite_ents, ent_id_sep=ent_id_sep, + scorer=scorer, ) +def entity_ruler_score(examples, **kwargs): + return get_ner_prf(examples) + + +@registry.scorers("spacy.entity_ruler_scorer.v1") +def make_entity_ruler_scorer(): + return entity_ruler_score + + class EntityRuler(Pipe): """The EntityRuler lets you add spans to the `Doc.ents` using token-based rules or exact phrase matches. It can be combined with the statistical @@ -75,6 +86,7 @@ class EntityRuler(Pipe): overwrite_ents: bool = False, ent_id_sep: str = DEFAULT_ENT_ID_SEP, patterns: Optional[List[PatternType]] = None, + scorer: Optional[Callable] = entity_ruler_score, ) -> None: """Initialize the entity ruler. If patterns are supplied here, they need to be a list of dictionaries with a `"label"` and `"pattern"` @@ -95,6 +107,8 @@ class EntityRuler(Pipe): overwrite_ents (bool): If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. ent_id_sep (str): Separator used internally for entity IDs. + scorer (Optional[Callable]): The scoring method. Defaults to + spacy.scorer.get_ner_prf. DOCS: https://spacy.io/api/entityruler#init """ @@ -113,6 +127,7 @@ class EntityRuler(Pipe): self._ent_ids = defaultdict(tuple) # type: ignore if patterns is not None: self.add_patterns(patterns) + self.scorer = scorer def __len__(self) -> int: """The number of all patterns added to the entity ruler.""" @@ -333,6 +348,46 @@ class EntityRuler(Pipe): self.nlp.vocab, attr=self.phrase_matcher_attr, validate=self._validate ) + def remove(self, ent_id: str) -> None: + """Remove a pattern by its ent_id if a pattern with this ent_id was added before + + ent_id (str): id of the pattern to be removed + RETURNS: None + DOCS: https://spacy.io/api/entityruler#remove + """ + label_id_pairs = [ + (label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id + ] + if not label_id_pairs: + raise ValueError(Errors.E1024.format(ent_id=ent_id)) + created_labels = [ + self._create_label(label, eid) for (label, eid) in label_id_pairs + ] + # remove the patterns from self.phrase_patterns + self.phrase_patterns = defaultdict( + list, + { + label: val + for (label, val) in self.phrase_patterns.items() + if label not in created_labels + }, + ) + # remove the patterns from self.token_pattern + self.token_patterns = defaultdict( + list, + { + label: val + for (label, val) in self.token_patterns.items() + if label not in created_labels + }, + ) + # remove the patterns from self.token_pattern + for label in created_labels: + if label in self.phrase_matcher: + self.phrase_matcher.remove(label) + else: + self.matcher.remove(label) + def _require_patterns(self) -> None: """Raise a warning if this component has no patterns defined.""" if len(self) == 0: @@ -363,10 +418,6 @@ class EntityRuler(Pipe): label = f"{label}{self.ent_id_sep}{ent_id}" return label - def score(self, examples, **kwargs): - validate_examples(examples, "EntityRuler.score") - return get_ner_prf(examples) - def from_bytes( self, patterns_bytes: bytes, *, exclude: Iterable[str] = SimpleFrozenList() ) -> "EntityRuler": @@ -420,10 +471,16 @@ class EntityRuler(Pipe): path = ensure_path(path) self.clear() depr_patterns_path = path.with_suffix(".jsonl") - if depr_patterns_path.is_file(): + if path.suffix == ".jsonl": # user provides a jsonl + if path.is_file: + patterns = srsly.read_jsonl(path) + self.add_patterns(patterns) + else: + raise ValueError(Errors.E1023.format(path=path)) + elif depr_patterns_path.is_file(): patterns = srsly.read_jsonl(depr_patterns_path) self.add_patterns(patterns) - else: + elif path.is_dir(): # path is a valid directory cfg = {} deserializers_patterns = { "patterns": lambda p: self.add_patterns( @@ -440,6 +497,8 @@ class EntityRuler(Pipe): self.nlp.vocab, attr=self.phrase_matcher_attr ) from_disk(path, deserializers_patterns, {}) + else: # path is not a valid directory or file + raise ValueError(Errors.E146.format(path=path)) return self def to_disk( diff --git a/spacy/pipeline/functions.py b/spacy/pipeline/functions.py index f0a75dc2c..c005395bf 100644 --- a/spacy/pipeline/functions.py +++ b/spacy/pipeline/functions.py @@ -1,6 +1,8 @@ from typing import Dict, Any import srsly +import warnings +from ..errors import Warnings from ..language import Language from ..matcher import Matcher from ..tokens import Doc @@ -136,3 +138,65 @@ class TokenSplitter: "cfg": lambda p: self._set_config(srsly.read_json(p)), } util.from_disk(path, serializers, []) + + +@Language.factory( + "doc_cleaner", + default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True}, +) +def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool): + return DocCleaner(attrs, silent=silent) + + +class DocCleaner: + def __init__(self, attrs: Dict[str, Any], *, silent: bool = True): + self.cfg: Dict[str, Any] = {"attrs": dict(attrs), "silent": silent} + + def __call__(self, doc: Doc) -> Doc: + attrs: dict = self.cfg["attrs"] + silent: bool = self.cfg["silent"] + for attr, value in attrs.items(): + obj = doc + parts = attr.split(".") + skip = False + for part in parts[:-1]: + if hasattr(obj, part): + obj = getattr(obj, part) + else: + skip = True + if not silent: + warnings.warn(Warnings.W116.format(attr=attr)) + if not skip: + if hasattr(obj, parts[-1]): + setattr(obj, parts[-1], value) + else: + if not silent: + warnings.warn(Warnings.W116.format(attr=attr)) + return doc + + def to_bytes(self, **kwargs): + serializers = { + "cfg": lambda: srsly.json_dumps(self.cfg), + } + return util.to_bytes(serializers, []) + + def from_bytes(self, data, **kwargs): + deserializers = { + "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), + } + util.from_bytes(data, deserializers, []) + return self + + def to_disk(self, path, **kwargs): + path = util.ensure_path(path) + serializers = { + "cfg": lambda p: srsly.write_json(p, self.cfg), + } + return util.to_disk(path, serializers, []) + + def from_disk(self, path, **kwargs): + path = util.ensure_path(path) + serializers = { + "cfg": lambda p: self.cfg.update(srsly.read_json(p)), + } + util.from_disk(path, serializers, []) diff --git a/spacy/pipeline/lemmatizer.py b/spacy/pipeline/lemmatizer.py index ad227d240..9c2fc2f09 100644 --- a/spacy/pipeline/lemmatizer.py +++ b/spacy/pipeline/lemmatizer.py @@ -12,21 +12,41 @@ from ..lookups import Lookups, load_lookups from ..scorer import Scorer from ..tokens import Doc, Token from ..vocab import Vocab -from ..training import validate_examples -from ..util import logger, SimpleFrozenList +from ..util import logger, SimpleFrozenList, registry from .. import util @Language.factory( "lemmatizer", assigns=["token.lemma"], - default_config={"model": None, "mode": "lookup", "overwrite": False}, + default_config={ + "model": None, + "mode": "lookup", + "overwrite": False, + "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, + }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( - nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool = False + nlp: Language, + model: Optional[Model], + name: str, + mode: str, + overwrite: bool, + scorer: Optional[Callable], ): - return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite) + return Lemmatizer( + nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer + ) + + +def lemmatizer_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: + return Scorer.score_token_attr(examples, "lemma", **kwargs) + + +@registry.scorers("spacy.lemmatizer_scorer.v1") +def make_lemmatizer_scorer(): + return lemmatizer_score class Lemmatizer(Pipe): @@ -60,6 +80,7 @@ class Lemmatizer(Pipe): *, mode: str = "lookup", overwrite: bool = False, + scorer: Optional[Callable] = lemmatizer_score, ) -> None: """Initialize a Lemmatizer. @@ -69,6 +90,8 @@ class Lemmatizer(Pipe): mode (str): The lemmatizer mode: "lookup", "rule". Defaults to "lookup". overwrite (bool): Whether to overwrite existing lemmas. Defaults to `False`. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_token_attr for the attribute "lemma". DOCS: https://spacy.io/api/lemmatizer#init """ @@ -89,6 +112,7 @@ class Lemmatizer(Pipe): raise ValueError(Errors.E1003.format(mode=mode)) self.lemmatize = getattr(self, mode_attr) self.cache = {} # type: ignore[var-annotated] + self.scorer = scorer @property def mode(self): @@ -247,17 +271,6 @@ class Lemmatizer(Pipe): """ return False - def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores. - - DOCS: https://spacy.io/api/lemmatizer#score - """ - validate_examples(examples, "Lemmatizer.score") - return Scorer.score_token_attr(examples, "lemma", **kwargs) - def to_disk( self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList() ): diff --git a/spacy/pipeline/morphologizer.pyx b/spacy/pipeline/morphologizer.pyx index 3ba05e616..73d3799b1 100644 --- a/spacy/pipeline/morphologizer.pyx +++ b/spacy/pipeline/morphologizer.pyx @@ -1,5 +1,5 @@ # cython: infer_types=True, profile=True, binding=True -from typing import Optional, Union, Dict +from typing import Optional, Union, Dict, Callable import srsly from thinc.api import SequenceCategoricalCrossentropy, Model, Config from itertools import islice @@ -17,7 +17,11 @@ from .tagger import Tagger from .. import util from ..scorer import Scorer from ..training import validate_examples, validate_get_examples +from ..util import registry +# See #9050 +BACKWARD_OVERWRITE = True +BACKWARD_EXTEND = False default_model_config = """ [model] @@ -48,15 +52,35 @@ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "morphologizer", assigns=["token.morph", "token.pos"], - default_config={"model": DEFAULT_MORPH_MODEL}, + default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False, "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}}, default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None}, ) def make_morphologizer( nlp: Language, model: Model, name: str, + overwrite: bool, + extend: bool, + scorer: Optional[Callable], ): - return Morphologizer(nlp.vocab, model, name) + return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer) + + +def morphologizer_score(examples, **kwargs): + def morph_key_getter(token, attr): + return getattr(token, attr).key + + results = {} + results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) + results.update(Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs)) + results.update(Scorer.score_token_attr_per_feat(examples, + "morph", getter=morph_key_getter, **kwargs)) + return results + + +@registry.scorers("spacy.morphologizer_scorer.v1") +def make_morphologizer_scorer(): + return morphologizer_score class Morphologizer(Tagger): @@ -67,6 +91,10 @@ class Morphologizer(Tagger): vocab: Vocab, model: Model, name: str = "morphologizer", + *, + overwrite: bool = BACKWARD_OVERWRITE, + extend: bool = BACKWARD_EXTEND, + scorer: Optional[Callable] = morphologizer_score, ): """Initialize a morphologizer. @@ -74,6 +102,9 @@ class Morphologizer(Tagger): model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_token_attr for the attributes "pos" and "morph" and + Scorer.score_token_attr_per_feat for the attribute "morph". DOCS: https://spacy.io/api/morphologizer#init """ @@ -85,8 +116,14 @@ class Morphologizer(Tagger): # store mappings from morph+POS labels to token-level annotations: # 1) labels_morph stores a mapping from morph+POS->morph # 2) labels_pos stores a mapping from morph+POS->POS - cfg = {"labels_morph": {}, "labels_pos": {}} + cfg = { + "labels_morph": {}, + "labels_pos": {}, + "overwrite": overwrite, + "extend": extend, + } self.cfg = dict(sorted(cfg.items())) + self.scorer = scorer @property def labels(self): @@ -192,14 +229,35 @@ class Morphologizer(Tagger): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab + cdef bint overwrite = self.cfg["overwrite"] + cdef bint extend = self.cfg["extend"] + labels = self.labels for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): - morph = self.labels[tag_id] - doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"].get(morph, 0)) - doc.c[j].pos = self.cfg["labels_pos"].get(morph, 0) + morph = labels[tag_id] + # set morph + if doc.c[j].morph == 0 or overwrite or extend: + if overwrite and extend: + # morphologizer morph overwrites any existing features + # while extending + extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph]) + extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0))) + doc.c[j].morph = self.vocab.morphology.add(extended_morph) + elif extend: + # existing features are preserved and any new features + # are added + extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0)) + extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph])) + doc.c[j].morph = self.vocab.morphology.add(extended_morph) + else: + # clobber + doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"].get(morph, 0)) + # set POS + if doc.c[j].pos == 0 or overwrite: + doc.c[j].pos = self.cfg["labels_pos"].get(morph, 0) def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and @@ -246,24 +304,3 @@ class Morphologizer(Tagger): if self.model.ops.xp.isnan(loss): raise ValueError(Errors.E910.format(name=self.name)) return float(loss), d_scores - - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by - Scorer.score_token_attr for the attributes "pos" and "morph" and - Scorer.score_token_attr_per_feat for the attribute "morph". - - DOCS: https://spacy.io/api/morphologizer#score - """ - def morph_key_getter(token, attr): - return getattr(token, attr).key - - validate_examples(examples, "Morphologizer.score") - results = {} - results.update(Scorer.score_token_attr(examples, "pos", **kwargs)) - results.update(Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs)) - results.update(Scorer.score_token_attr_per_feat(examples, - "morph", getter=morph_key_getter, **kwargs)) - return results diff --git a/spacy/pipeline/ner.py b/spacy/pipeline/ner.py index b18889203..c446748ac 100644 --- a/spacy/pipeline/ner.py +++ b/spacy/pipeline/ner.py @@ -1,6 +1,6 @@ # cython: infer_types=True, profile=True, binding=True from collections import defaultdict -from typing import Optional, Iterable +from typing import Optional, Iterable, Callable from thinc.api import Model, Config from ._parser_internals.transition_system import TransitionSystem @@ -10,6 +10,7 @@ from ._parser_internals.ner import BiluoPushDown from ..language import Language from ..scorer import get_ner_prf, PRFScore from ..training import validate_examples +from ..util import registry default_model_config = """ @@ -41,6 +42,7 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"] "update_with_oracle_cut_size": 100, "model": DEFAULT_NER_MODEL, "incorrect_spans_key": None, + "scorer": {"@scorers": "spacy.ner_scorer.v1"}, }, default_score_weights={ "ents_f": 1.0, @@ -55,7 +57,8 @@ def make_ner( model: Model, moves: Optional[TransitionSystem], update_with_oracle_cut_size: int, - incorrect_spans_key: Optional[str] = None, + incorrect_spans_key: Optional[str], + scorer: Optional[Callable], ): """Create a transition-based EntityRecognizer component. The entity recognizer identifies non-overlapping labelled spans of tokens. @@ -83,6 +86,7 @@ def make_ner( incorrect_spans_key (Optional[str]): Identifies spans that are known to be incorrect entity annotations. The incorrect entity annotations can be stored in the span group, under this key. + scorer (Optional[Callable]): The scoring method. """ return EntityRecognizer( nlp.vocab, @@ -95,6 +99,7 @@ def make_ner( beam_width=1, beam_density=0.0, beam_update_prob=0.0, + scorer=scorer, ) @@ -109,6 +114,7 @@ def make_ner( "beam_update_prob": 0.5, "beam_width": 32, "incorrect_spans_key": None, + "scorer": None, }, default_score_weights={ "ents_f": 1.0, @@ -126,7 +132,8 @@ def make_beam_ner( beam_width: int, beam_density: float, beam_update_prob: float, - incorrect_spans_key: Optional[str] = None, + incorrect_spans_key: Optional[str], + scorer: Optional[Callable], ): """Create a transition-based EntityRecognizer component that uses beam-search. The entity recognizer identifies non-overlapping labelled spans of tokens. @@ -162,6 +169,7 @@ def make_beam_ner( and are faster to compute. incorrect_spans_key (Optional[str]): Optional key into span groups of entities known to be non-entities. + scorer (Optional[Callable]): The scoring method. """ return EntityRecognizer( nlp.vocab, @@ -174,9 +182,19 @@ def make_beam_ner( beam_density=beam_density, beam_update_prob=beam_update_prob, incorrect_spans_key=incorrect_spans_key, + scorer=scorer, ) +def ner_score(examples, **kwargs): + return get_ner_prf(examples, **kwargs) + + +@registry.scorers("spacy.ner_scorer.v1") +def make_ner_scorer(): + return ner_score + + class EntityRecognizer(Parser): """Pipeline component for named entity recognition. @@ -198,6 +216,7 @@ class EntityRecognizer(Parser): beam_update_prob=0.0, multitasks=tuple(), incorrect_spans_key=None, + scorer=ner_score, ): """Create an EntityRecognizer.""" super().__init__( @@ -213,6 +232,7 @@ class EntityRecognizer(Parser): beam_update_prob=beam_update_prob, multitasks=multitasks, incorrect_spans_key=incorrect_spans_key, + scorer=scorer, ) def add_multitask_objective(self, mt_component): @@ -239,17 +259,6 @@ class EntityRecognizer(Parser): ) return tuple(sorted(labels)) - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The NER precision, recall and f-scores. - - DOCS: https://spacy.io/api/entityrecognizer#score - """ - validate_examples(examples, "EntityRecognizer.score") - return get_ner_prf(examples) - def scored_ents(self, beams): """Return a dictionary of (start, end, label) tuples with corresponding scores for each beam/doc that was processed. diff --git a/spacy/pipeline/pipe.pyx b/spacy/pipeline/pipe.pyx index 4372645af..9eddc1e3f 100644 --- a/spacy/pipeline/pipe.pyx +++ b/spacy/pipeline/pipe.pyx @@ -81,6 +81,17 @@ cdef class Pipe: DOCS: https://spacy.io/api/pipe#score """ + if hasattr(self, "scorer") and self.scorer is not None: + scorer_kwargs = {} + # use default settings from cfg (e.g., threshold) + if hasattr(self, "cfg") and isinstance(self.cfg, dict): + scorer_kwargs.update(self.cfg) + # override self.cfg["labels"] with self.labels + if hasattr(self, "labels"): + scorer_kwargs["labels"] = self.labels + # override with kwargs settings + scorer_kwargs.update(kwargs) + return self.scorer(examples, **scorer_kwargs) return {} @property diff --git a/spacy/pipeline/sentencizer.pyx b/spacy/pipeline/sentencizer.pyx index 60102efcb..77f4e8adb 100644 --- a/spacy/pipeline/sentencizer.pyx +++ b/spacy/pipeline/sentencizer.pyx @@ -1,26 +1,32 @@ # cython: infer_types=True, profile=True, binding=True -from typing import Optional, List +from typing import Optional, List, Callable import srsly from ..tokens.doc cimport Doc + from .pipe import Pipe +from .senter import senter_score from ..language import Language from ..scorer import Scorer -from ..training import validate_examples from .. import util +# see #9050 +BACKWARD_OVERWRITE = False + @Language.factory( "sentencizer", assigns=["token.is_sent_start", "doc.sents"], - default_config={"punct_chars": None}, + default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}}, default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0}, ) def make_sentencizer( nlp: Language, name: str, - punct_chars: Optional[List[str]] + punct_chars: Optional[List[str]], + overwrite: bool, + scorer: Optional[Callable], ): - return Sentencizer(name, punct_chars=punct_chars) + return Sentencizer(name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer) class Sentencizer(Pipe): @@ -41,12 +47,20 @@ class Sentencizer(Pipe): '𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。'] - def __init__(self, name="sentencizer", *, punct_chars=None): + def __init__( + self, + name="sentencizer", + *, + punct_chars=None, + overwrite=BACKWARD_OVERWRITE, + scorer=senter_score, + ): """Initialize the sentencizer. punct_chars (list): Punctuation characters to split on. Will be serialized with the nlp object. - RETURNS (Sentencizer): The sentencizer component. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_spans for the attribute "sents". DOCS: https://spacy.io/api/sentencizer#init """ @@ -55,6 +69,8 @@ class Sentencizer(Pipe): self.punct_chars = set(punct_chars) else: self.punct_chars = set(self.default_punct_chars) + self.overwrite = overwrite + self.scorer = scorer def __call__(self, doc): """Apply the sentencizer to a Doc and set Token.is_sent_start. @@ -115,29 +131,12 @@ class Sentencizer(Pipe): for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] for j, tag_id in enumerate(doc_tag_ids): - # Don't clobber existing sentence boundaries - if doc.c[j].sent_start == 0: + if doc.c[j].sent_start == 0 or self.overwrite: if tag_id: doc.c[j].sent_start = 1 else: doc.c[j].sent_start = -1 - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans. - - DOCS: https://spacy.io/api/sentencizer#score - """ - def has_sents(doc): - return doc.has_annotation("SENT_START") - - validate_examples(examples, "Sentencizer.score") - results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs) - del results["sents_per_type"] - return results - def to_bytes(self, *, exclude=tuple()): """Serialize the sentencizer to a bytestring. @@ -145,7 +144,7 @@ class Sentencizer(Pipe): DOCS: https://spacy.io/api/sentencizer#to_bytes """ - return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars)}) + return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars), "overwrite": self.overwrite}) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load the sentencizer from a bytestring. @@ -157,6 +156,7 @@ class Sentencizer(Pipe): """ cfg = srsly.msgpack_loads(bytes_data) self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars)) + self.overwrite = cfg.get("overwrite", self.overwrite) return self def to_disk(self, path, *, exclude=tuple()): @@ -166,7 +166,7 @@ class Sentencizer(Pipe): """ path = util.ensure_path(path) path = path.with_suffix(".json") - srsly.write_json(path, {"punct_chars": list(self.punct_chars)}) + srsly.write_json(path, {"punct_chars": list(self.punct_chars), "overwrite": self.overwrite}) def from_disk(self, path, *, exclude=tuple()): @@ -178,4 +178,5 @@ class Sentencizer(Pipe): path = path.with_suffix(".json") cfg = srsly.read_json(path) self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars)) + self.overwrite = cfg.get("overwrite", self.overwrite) return self diff --git a/spacy/pipeline/senter.pyx b/spacy/pipeline/senter.pyx index f9472abf5..54ce021af 100644 --- a/spacy/pipeline/senter.pyx +++ b/spacy/pipeline/senter.pyx @@ -1,5 +1,6 @@ # cython: infer_types=True, profile=True, binding=True from itertools import islice +from typing import Optional, Callable import srsly from thinc.api import Model, SequenceCategoricalCrossentropy, Config @@ -11,8 +12,11 @@ from ..language import Language from ..errors import Errors from ..scorer import Scorer from ..training import validate_examples, validate_get_examples +from ..util import registry from .. import util +# See #9050 +BACKWARD_OVERWRITE = False default_model_config = """ [model] @@ -34,11 +38,25 @@ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "senter", assigns=["token.is_sent_start"], - default_config={"model": DEFAULT_SENTER_MODEL}, + default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}}, default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0}, ) -def make_senter(nlp: Language, name: str, model: Model): - return SentenceRecognizer(nlp.vocab, model, name) +def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]): + return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer) + + +def senter_score(examples, **kwargs): + def has_sents(doc): + return doc.has_annotation("SENT_START") + + results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs) + del results["sents_per_type"] + return results + + +@registry.scorers("spacy.senter_scorer.v1") +def make_senter_scorer(): + return senter_score class SentenceRecognizer(Tagger): @@ -46,13 +64,23 @@ class SentenceRecognizer(Tagger): DOCS: https://spacy.io/api/sentencerecognizer """ - def __init__(self, vocab, model, name="senter"): + def __init__( + self, + vocab, + model, + name="senter", + *, + overwrite=BACKWARD_OVERWRITE, + scorer=senter_score, + ): """Initialize a sentence recognizer. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_spans for the attribute "sents". DOCS: https://spacy.io/api/sentencerecognizer#init """ @@ -60,7 +88,8 @@ class SentenceRecognizer(Tagger): self.model = model self.name = name self._rehearsal_model = None - self.cfg = {} + self.cfg = {"overwrite": overwrite} + self.scorer = scorer @property def labels(self): @@ -85,13 +114,13 @@ class SentenceRecognizer(Tagger): if isinstance(docs, Doc): docs = [docs] cdef Doc doc + cdef bint overwrite = self.cfg["overwrite"] for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): - # Don't clobber existing sentence boundaries - if doc.c[j].sent_start == 0: + if doc.c[j].sent_start == 0 or overwrite: if tag_id == 1: doc.c[j].sent_start = 1 else: @@ -153,18 +182,3 @@ class SentenceRecognizer(Tagger): def add_label(self, label, values=None): raise NotImplementedError - - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans. - DOCS: https://spacy.io/api/sentencerecognizer#score - """ - def has_sents(doc): - return doc.has_annotation("SENT_START") - - validate_examples(examples, "SentenceRecognizer.score") - results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs) - del results["sents_per_type"] - return results diff --git a/spacy/pipeline/spancat.py b/spacy/pipeline/spancat.py index 84a9b69cc..829def1eb 100644 --- a/spacy/pipeline/spancat.py +++ b/spacy/pipeline/spancat.py @@ -78,7 +78,7 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester: if len(spans) > 0: output = Ragged(ops.xp.vstack(spans), lengths_array) else: - output = Ragged(ops.xp.zeros((0, 0)), lengths_array) + output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array) assert output.dataXd.ndim == 2 return output @@ -104,6 +104,7 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester: "max_positive": None, "model": DEFAULT_SPANCAT_MODEL, "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]}, + "scorer": {"@scorers": "spacy.spancat_scorer.v1"}, }, default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0}, ) @@ -113,8 +114,9 @@ def make_spancat( suggester: Suggester, model: Model[Tuple[List[Doc], Ragged], Floats2d], spans_key: str, - threshold: float = 0.5, - max_positive: Optional[int] = None, + scorer: Optional[Callable], + threshold: float, + max_positive: Optional[int], ) -> "SpanCategorizer": """Create a SpanCategorizer component. The span categorizer consists of two parts: a suggester function that proposes candidate spans, and a labeller @@ -144,9 +146,28 @@ def make_spancat( threshold=threshold, max_positive=max_positive, name=name, + scorer=scorer, ) +def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: + kwargs = dict(kwargs) + attr_prefix = "spans_" + key = kwargs["spans_key"] + kwargs.setdefault("attr", f"{attr_prefix}{key}") + kwargs.setdefault("allow_overlap", True) + kwargs.setdefault( + "getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], []) + ) + kwargs.setdefault("has_annotation", lambda doc: key in doc.spans) + return Scorer.score_spans(examples, **kwargs) + + +@registry.scorers("spacy.spancat_scorer.v1") +def make_spancat_scorer(): + return spancat_score + + class SpanCategorizer(TrainablePipe): """Pipeline component to label spans of text. @@ -163,8 +184,25 @@ class SpanCategorizer(TrainablePipe): spans_key: str = "spans", threshold: float = 0.5, max_positive: Optional[int] = None, + scorer: Optional[Callable] = spancat_score, ) -> None: """Initialize the span categorizer. + vocab (Vocab): The shared vocabulary. + model (thinc.api.Model): The Thinc Model powering the pipeline component. + name (str): The component instance name, used to add entries to the + losses during training. + spans_key (str): Key of the Doc.spans dict to save the spans under. + During initialization and training, the component will look for + spans on the reference document under the same key. Defaults to + `"spans"`. + threshold (float): Minimum probability to consider a prediction + positive. Spans with a positive prediction will be saved on the Doc. + Defaults to 0.5. + max_positive (Optional[int]): Maximum number of labels to consider + positive per span. Defaults to None, indicating no limit. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_spans for the Doc.spans[spans_key] with overlapping + spans allowed. DOCS: https://spacy.io/api/spancategorizer#init """ @@ -178,6 +216,7 @@ class SpanCategorizer(TrainablePipe): self.suggester = suggester self.model = model self.name = name + self.scorer = scorer @property def key(self) -> str: @@ -379,26 +418,6 @@ class SpanCategorizer(TrainablePipe): else: self.model.initialize() - def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats. - - DOCS: https://spacy.io/api/spancategorizer#score - """ - validate_examples(examples, "SpanCategorizer.score") - self._validate_categories(examples) - kwargs = dict(kwargs) - attr_prefix = "spans_" - kwargs.setdefault("attr", f"{attr_prefix}{self.key}") - kwargs.setdefault("allow_overlap", True) - kwargs.setdefault( - "getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], []) - ) - kwargs.setdefault("has_annotation", lambda doc: self.key in doc.spans) - return Scorer.score_spans(examples, **kwargs) - def _validate_categories(self, examples: Iterable[Example]): # TODO pass diff --git a/spacy/pipeline/tagger.pyx b/spacy/pipeline/tagger.pyx index fa260bdd6..a2bec888e 100644 --- a/spacy/pipeline/tagger.pyx +++ b/spacy/pipeline/tagger.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True, profile=True, binding=True +from typing import Callable, Optional import numpy import srsly from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config @@ -18,8 +19,11 @@ from ..parts_of_speech import X from ..errors import Errors, Warnings from ..scorer import Scorer from ..training import validate_examples, validate_get_examples +from ..util import registry from .. import util +# See #9050 +BACKWARD_OVERWRITE = False default_model_config = """ [model] @@ -41,10 +45,17 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "tagger", assigns=["token.tag"], - default_config={"model": DEFAULT_TAGGER_MODEL}, + default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!"}, default_score_weights={"tag_acc": 1.0}, ) -def make_tagger(nlp: Language, name: str, model: Model): +def make_tagger( + nlp: Language, + name: str, + model: Model, + overwrite: bool, + scorer: Optional[Callable], + neg_prefix: str, +): """Construct a part-of-speech tagger component. model (Model[List[Doc], List[Floats2d]]): A model instance that predicts @@ -52,7 +63,16 @@ def make_tagger(nlp: Language, name: str, model: Model): in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to 1). """ - return Tagger(nlp.vocab, model, name) + return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix) + + +def tagger_score(examples, **kwargs): + return Scorer.score_token_attr(examples, "tag", **kwargs) + + +@registry.scorers("spacy.tagger_scorer.v1") +def make_tagger_scorer(): + return tagger_score class Tagger(TrainablePipe): @@ -60,13 +80,24 @@ class Tagger(TrainablePipe): DOCS: https://spacy.io/api/tagger """ - def __init__(self, vocab, model, name="tagger"): + def __init__( + self, + vocab, + model, + name="tagger", + *, + overwrite=BACKWARD_OVERWRITE, + scorer=tagger_score, + neg_prefix="!", + ): """Initialize a part-of-speech tagger. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_token_attr for the attribute "tag". DOCS: https://spacy.io/api/tagger#init """ @@ -74,8 +105,9 @@ class Tagger(TrainablePipe): self.model = model self.name = name self._rehearsal_model = None - cfg = {"labels": []} + cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix} self.cfg = dict(sorted(cfg.items())) + self.scorer = scorer @property def labels(self): @@ -135,14 +167,15 @@ class Tagger(TrainablePipe): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab + cdef bint overwrite = self.cfg["overwrite"] + labels = self.labels for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): - # Don't clobber preset POS tags - if doc.c[j].tag == 0: - doc.c[j].tag = self.vocab.strings[self.labels[tag_id]] + if doc.c[j].tag == 0 or overwrite: + doc.c[j].tag = self.vocab.strings[labels[tag_id]] def update(self, examples, *, drop=0., sgd=None, losses=None): """Learn from a batch of documents and gold-standard information, @@ -222,7 +255,7 @@ class Tagger(TrainablePipe): DOCS: https://spacy.io/api/tagger#get_loss """ validate_examples(examples, "Tagger.get_loss") - loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix="!") + loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix=self.cfg["neg_prefix"]) # Convert empty tag "" to missing value None so that both misaligned # tokens and tokens with missing annotation have the default missing # value None. @@ -289,15 +322,3 @@ class Tagger(TrainablePipe): self.cfg["labels"].append(label) self.vocab.strings.add(label) return 1 - - def score(self, examples, **kwargs): - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by - Scorer.score_token_attr for the attributes "tag". - - DOCS: https://spacy.io/api/tagger#score - """ - validate_examples(examples, "Tagger.score") - return Scorer.score_token_attr(examples, "tag", **kwargs) diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index 085b949cc..30a65ec52 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -10,6 +10,7 @@ from ..training import Example, validate_examples, validate_get_examples from ..errors import Errors from ..scorer import Scorer from ..tokens import Doc +from ..util import registry from ..vocab import Vocab @@ -70,7 +71,11 @@ subword_features = true @Language.factory( "textcat", assigns=["doc.cats"], - default_config={"threshold": 0.5, "model": DEFAULT_SINGLE_TEXTCAT_MODEL}, + default_config={ + "threshold": 0.5, + "model": DEFAULT_SINGLE_TEXTCAT_MODEL, + "scorer": {"@scorers": "spacy.textcat_scorer.v1"}, + }, default_score_weights={ "cats_score": 1.0, "cats_score_desc": None, @@ -86,7 +91,11 @@ subword_features = true }, ) def make_textcat( - nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], threshold: float + nlp: Language, + name: str, + model: Model[List[Doc], List[Floats2d]], + threshold: float, + scorer: Optional[Callable], ) -> "TextCategorizer": """Create a TextCategorizer component. The text categorizer predicts categories over a whole document. It can learn one or more labels, and the labels are considered @@ -95,8 +104,23 @@ def make_textcat( model (Model[List[Doc], List[Floats2d]]): A model instance that predicts scores for each category. threshold (float): Cutoff to consider a prediction "positive". + scorer (Optional[Callable]): The scoring method. """ - return TextCategorizer(nlp.vocab, model, name, threshold=threshold) + return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer) + + +def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: + return Scorer.score_cats( + examples, + "cats", + multi_label=False, + **kwargs, + ) + + +@registry.scorers("spacy.textcat_scorer.v1") +def make_textcat_scorer(): + return textcat_score class TextCategorizer(TrainablePipe): @@ -106,7 +130,13 @@ class TextCategorizer(TrainablePipe): """ def __init__( - self, vocab: Vocab, model: Model, name: str = "textcat", *, threshold: float + self, + vocab: Vocab, + model: Model, + name: str = "textcat", + *, + threshold: float, + scorer: Optional[Callable] = textcat_score, ) -> None: """Initialize a text categorizer for single-label classification. @@ -115,6 +145,8 @@ class TextCategorizer(TrainablePipe): name (str): The component instance name, used to add entries to the losses during training. threshold (float): Cutoff to consider a prediction "positive". + scorer (Optional[Callable]): The scoring method. Defaults to + Scorer.score_cats for the attribute "cats". DOCS: https://spacy.io/api/textcategorizer#init """ @@ -124,6 +156,7 @@ class TextCategorizer(TrainablePipe): self._rehearsal_model = None cfg = {"labels": [], "threshold": threshold, "positive_label": None} self.cfg = dict(cfg) + self.scorer = scorer @property def labels(self) -> Tuple[str]: @@ -353,26 +386,6 @@ class TextCategorizer(TrainablePipe): assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) - def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats. - - DOCS: https://spacy.io/api/textcategorizer#score - """ - validate_examples(examples, "TextCategorizer.score") - self._validate_categories(examples) - kwargs.setdefault("threshold", self.cfg["threshold"]) - kwargs.setdefault("positive_label", self.cfg["positive_label"]) - return Scorer.score_cats( - examples, - "cats", - labels=self.labels, - multi_label=False, - **kwargs, - ) - def _validate_categories(self, examples: Iterable[Example]): """Check whether the provided examples all have single-label cats annotations.""" for ex in examples: diff --git a/spacy/pipeline/textcat_multilabel.py b/spacy/pipeline/textcat_multilabel.py index 65961a38c..a7bfacca7 100644 --- a/spacy/pipeline/textcat_multilabel.py +++ b/spacy/pipeline/textcat_multilabel.py @@ -5,10 +5,11 @@ from thinc.api import Model, Config from thinc.types import Floats2d from ..language import Language -from ..training import Example, validate_examples, validate_get_examples +from ..training import Example, validate_get_examples from ..errors import Errors from ..scorer import Scorer from ..tokens import Doc +from ..util import registry from ..vocab import Vocab from .textcat import TextCategorizer @@ -70,7 +71,11 @@ subword_features = true @Language.factory( "textcat_multilabel", assigns=["doc.cats"], - default_config={"threshold": 0.5, "model": DEFAULT_MULTI_TEXTCAT_MODEL}, + default_config={ + "threshold": 0.5, + "model": DEFAULT_MULTI_TEXTCAT_MODEL, + "scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"}, + }, default_score_weights={ "cats_score": 1.0, "cats_score_desc": None, @@ -86,7 +91,11 @@ subword_features = true }, ) def make_multilabel_textcat( - nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], threshold: float + nlp: Language, + name: str, + model: Model[List[Doc], List[Floats2d]], + threshold: float, + scorer: Optional[Callable], ) -> "TextCategorizer": """Create a TextCategorizer component. The text categorizer predicts categories over a whole document. It can learn one or more labels, and the labels are considered @@ -97,7 +106,23 @@ def make_multilabel_textcat( scores for each category. threshold (float): Cutoff to consider a prediction "positive". """ - return MultiLabel_TextCategorizer(nlp.vocab, model, name, threshold=threshold) + return MultiLabel_TextCategorizer( + nlp.vocab, model, name, threshold=threshold, scorer=scorer + ) + + +def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: + return Scorer.score_cats( + examples, + "cats", + multi_label=True, + **kwargs, + ) + + +@registry.scorers("spacy.textcat_multilabel_scorer.v1") +def make_textcat_multilabel_scorer(): + return textcat_multilabel_score class MultiLabel_TextCategorizer(TextCategorizer): @@ -113,6 +138,7 @@ class MultiLabel_TextCategorizer(TextCategorizer): name: str = "textcat_multilabel", *, threshold: float, + scorer: Optional[Callable] = textcat_multilabel_score, ) -> None: """Initialize a text categorizer for multi-label classification. @@ -130,6 +156,7 @@ class MultiLabel_TextCategorizer(TextCategorizer): self._rehearsal_model = None cfg = {"labels": [], "threshold": threshold} self.cfg = dict(cfg) + self.scorer = scorer def initialize( # type: ignore[override] self, @@ -166,24 +193,6 @@ class MultiLabel_TextCategorizer(TextCategorizer): assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) - def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: - """Score a batch of examples. - - examples (Iterable[Example]): The examples to score. - RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats. - - DOCS: https://spacy.io/api/textcategorizer#score - """ - validate_examples(examples, "MultiLabel_TextCategorizer.score") - kwargs.setdefault("threshold", self.cfg["threshold"]) - return Scorer.score_cats( - examples, - "cats", - labels=self.labels, - multi_label=True, - **kwargs, - ) - def _validate_categories(self, examples: Iterable[Example]): """This component allows any type of single- or multi-label annotations. This method overwrites the more strict one from 'textcat'.""" diff --git a/spacy/pipeline/trainable_pipe.pxd b/spacy/pipeline/trainable_pipe.pxd index d5cdbb511..65daa8b22 100644 --- a/spacy/pipeline/trainable_pipe.pxd +++ b/spacy/pipeline/trainable_pipe.pxd @@ -5,3 +5,4 @@ cdef class TrainablePipe(Pipe): cdef public Vocab vocab cdef public object model cdef public object cfg + cdef public object scorer diff --git a/spacy/pipeline/transition_parser.pyx b/spacy/pipeline/transition_parser.pyx index b32aa29e5..79e089065 100644 --- a/spacy/pipeline/transition_parser.pyx +++ b/spacy/pipeline/transition_parser.pyx @@ -49,6 +49,7 @@ class Parser(TrainablePipe): beam_update_prob=0.0, multitasks=tuple(), incorrect_spans_key=None, + scorer=None, ): """Create a Parser. @@ -85,6 +86,7 @@ class Parser(TrainablePipe): incorrect_spans_key (Optional[str]): Identifies spans that are known to be incorrect entity annotations. The incorrect entity annotations can be stored in the span group, under this key. + scorer (Optional[Callable]): The scoring method. Defaults to None. """ self.vocab = vocab self.name = name @@ -116,6 +118,7 @@ class Parser(TrainablePipe): self.add_multitask_objective(multitask) self._rehearsal_model = None + self.scorer = scorer def __getnewargs_ex__(self): """This allows pickling the Parser and its keyword-only init arguments""" @@ -211,16 +214,6 @@ class Parser(TrainablePipe): with self.model.use_params(params): yield - def __call__(self, Doc doc): - """Apply the parser or entity recognizer, setting the annotations onto - the `Doc` object. - - doc (Doc): The document to be processed. - """ - states = self.predict([doc]) - self.set_annotations([doc], states) - return doc - def pipe(self, docs, *, int batch_size=256): """Process a stream of documents. diff --git a/spacy/schemas.py b/spacy/schemas.py index 73ddc45b1..1dfd8ee85 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -1,5 +1,6 @@ from typing import Dict, List, Union, Optional, Any, Callable, Type, Tuple from typing import Iterable, TypeVar, TYPE_CHECKING +from .compat import Literal from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator, create_model from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool @@ -209,6 +210,7 @@ NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat] UnderscoreValue = Union[ TokenPatternString, TokenPatternNumber, str, int, float, list, bool ] +IobValue = Literal["", "I", "O", "B", 0, 1, 2, 3] class TokenPattern(BaseModel): @@ -222,6 +224,9 @@ class TokenPattern(BaseModel): lemma: Optional[StringValue] = None shape: Optional[StringValue] = None ent_type: Optional[StringValue] = None + ent_iob: Optional[IobValue] = None + ent_id: Optional[StringValue] = None + ent_kb_id: Optional[StringValue] = None norm: Optional[StringValue] = None length: Optional[NumberValue] = None spacy: Optional[StrictBool] = None @@ -351,7 +356,8 @@ class ConfigSchemaPretrain(BaseModel): # fmt: off max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for") dropout: StrictFloat = Field(..., title="Dropout rate") - n_save_every: Optional[StrictInt] = Field(..., title="Saving frequency") + n_save_every: Optional[StrictInt] = Field(..., title="Saving additional temporary model after n batches within an epoch") + n_save_epoch: Optional[StrictInt] = Field(..., title="Saving model after every n epoch") optimizer: Optimizer = Field(..., title="The optimizer to use") corpus: StrictStr = Field(..., title="Path in the config to the training data") batcher: Batcher = Field(..., title="Batcher for the training data") diff --git a/spacy/scorer.py b/spacy/scorer.py index ebab2382d..4d596b5e1 100644 --- a/spacy/scorer.py +++ b/spacy/scorer.py @@ -247,18 +247,21 @@ class Scorer: missing_values: Set[Any] = MISSING_VALUES, # type: ignore[assignment] **cfg, ) -> Dict[str, Any]: - """Return PRF scores per feat for a token attribute in UFEATS format. + """Return micro PRF and PRF scores per feat for a token attribute in + UFEATS format. examples (Iterable[Example]): Examples to score attr (str): The attribute to score. getter (Callable[[Token, str], Any]): Defaults to getattr. If provided, getter(token, attr) should return the value of the attribute for an individual token. - missing_values (Set[Any]): Attribute values to treat as missing annotation - in the reference annotation. - RETURNS (dict): A dictionary containing the per-feat PRF scores under - the key attr_per_feat. + missing_values (Set[Any]): Attribute values to treat as missing + annotation in the reference annotation. + RETURNS (dict): A dictionary containing the micro PRF scores under the + key attr_micro_p/r/f and the per-feat PRF scores under + attr_per_feat. """ + micro_score = PRFScore() per_feat = {} for example in examples: pred_doc = example.predicted @@ -300,15 +303,24 @@ class Scorer: pred_per_feat[field] = set() pred_per_feat[field].add((gold_i, feat)) for field in per_feat: + micro_score.score_set( + pred_per_feat.get(field, set()), gold_per_feat.get(field, set()) + ) per_feat[field].score_set( pred_per_feat.get(field, set()), gold_per_feat.get(field, set()) ) - score_key = f"{attr}_per_feat" - if any([len(v) for v in per_feat.values()]): - result = {k: v.to_dict() for k, v in per_feat.items()} - return {score_key: result} + result: Dict[str, Any] = {} + if len(micro_score) > 0: + result[f"{attr}_micro_p"] = micro_score.precision + result[f"{attr}_micro_r"] = micro_score.recall + result[f"{attr}_micro_f"] = micro_score.fscore + result[f"{attr}_per_feat"] = {k: v.to_dict() for k, v in per_feat.items()} else: - return {score_key: None} + result[f"{attr}_micro_p"] = None + result[f"{attr}_micro_r"] = None + result[f"{attr}_micro_f"] = None + result[f"{attr}_per_feat"] = None + return result @staticmethod def score_spans( @@ -347,14 +359,15 @@ class Scorer: pred_doc = example.predicted gold_doc = example.reference # Option to handle docs without annotation for this attribute - if has_annotation is not None: - if not has_annotation(gold_doc): - continue - # Find all labels in gold and doc - labels = set( - [k.label_ for k in getter(gold_doc, attr)] - + [k.label_ for k in getter(pred_doc, attr)] - ) + if has_annotation is not None and not has_annotation(gold_doc): + continue + # Find all labels in gold + labels = set([k.label_ for k in getter(gold_doc, attr)]) + # If labeled, find all labels in pred + if has_annotation is None or ( + has_annotation is not None and has_annotation(pred_doc) + ): + labels |= set([k.label_ for k in getter(pred_doc, attr)]) # Set up all labels for per type scoring and prepare gold per type gold_per_type: Dict[str, Set] = {label: set() for label in labels} for label in labels: @@ -372,16 +385,19 @@ class Scorer: gold_spans.add(gold_span) gold_per_type[span.label_].add(gold_span) pred_per_type: Dict[str, Set] = {label: set() for label in labels} - for span in example.get_aligned_spans_x2y( - getter(pred_doc, attr), allow_overlap + if has_annotation is None or ( + has_annotation is not None and has_annotation(pred_doc) ): - pred_span: Tuple - if labeled: - pred_span = (span.label_, span.start, span.end - 1) - else: - pred_span = (span.start, span.end - 1) - pred_spans.add(pred_span) - pred_per_type[span.label_].add(pred_span) + for span in example.get_aligned_spans_x2y( + getter(pred_doc, attr), allow_overlap + ): + pred_span: Tuple + if labeled: + pred_span = (span.label_, span.start, span.end - 1) + else: + pred_span = (span.start, span.end - 1) + pred_spans.add(pred_span) + pred_per_type[span.label_].add(pred_span) # Scores per label if labeled: for k, v in score_per_type.items(): @@ -545,7 +561,7 @@ class Scorer: @staticmethod def score_links( - examples: Iterable[Example], *, negative_labels: Iterable[str] + examples: Iterable[Example], *, negative_labels: Iterable[str], **cfg ) -> Dict[str, Any]: """Returns PRF for predicted links on the entity level. To disentangle the performance of the NEL from the NER, @@ -721,7 +737,7 @@ class Scorer: } -def get_ner_prf(examples: Iterable[Example]) -> Dict[str, Any]: +def get_ner_prf(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: """Compute micro-PRF and per-entity PRF scores for a sequence of examples.""" score_per_type = defaultdict(PRFScore) for eg in examples: diff --git a/spacy/strings.pxd b/spacy/strings.pxd index 07768d347..370180135 100644 --- a/spacy/strings.pxd +++ b/spacy/strings.pxd @@ -8,10 +8,10 @@ from murmurhash.mrmr cimport hash64 from .typedefs cimport attr_t, hash_t -cpdef hash_t hash_string(unicode string) except 0 +cpdef hash_t hash_string(str string) except 0 cdef hash_t hash_utf8(char* utf8_string, int length) nogil -cdef unicode decode_Utf8Str(const Utf8Str* string) +cdef str decode_Utf8Str(const Utf8Str* string) ctypedef union Utf8Str: @@ -25,5 +25,5 @@ cdef class StringStore: cdef vector[hash_t] keys cdef public PreshMap _map - cdef const Utf8Str* intern_unicode(self, unicode py_string) + cdef const Utf8Str* intern_unicode(self, str py_string) cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length) diff --git a/spacy/strings.pyx b/spacy/strings.pyx index 4a20cb8af..39fc441e9 100644 --- a/spacy/strings.pyx +++ b/spacy/strings.pyx @@ -33,7 +33,7 @@ def get_string_id(key): return hash_utf8(chars, len(chars)) -cpdef hash_t hash_string(unicode string) except 0: +cpdef hash_t hash_string(str string) except 0: chars = string.encode("utf8") return hash_utf8(chars, len(chars)) @@ -46,7 +46,7 @@ cdef uint32_t hash32_utf8(char* utf8_string, int length) nogil: return hash32(utf8_string, length, 1) -cdef unicode decode_Utf8Str(const Utf8Str* string): +cdef str decode_Utf8Str(const Utf8Str* string): cdef int i, length if string.s[0] < sizeof(string.s) and string.s[0] != 0: return string.s[1:string.s[0]+1].decode("utf8") @@ -107,17 +107,17 @@ cdef class StringStore: def __getitem__(self, object string_or_id): """Retrieve a string from a given hash, or vice versa. - string_or_id (bytes, unicode or uint64): The value to encode. + string_or_id (bytes, str or uint64): The value to encode. Returns (str / uint64): The value to be retrieved. """ - if isinstance(string_or_id, basestring) and len(string_or_id) == 0: + if isinstance(string_or_id, str) and len(string_or_id) == 0: return 0 elif string_or_id == 0: return "" elif string_or_id in SYMBOLS_BY_STR: return SYMBOLS_BY_STR[string_or_id] cdef hash_t key - if isinstance(string_or_id, unicode): + if isinstance(string_or_id, str): key = hash_string(string_or_id) return key elif isinstance(string_or_id, bytes): @@ -135,14 +135,14 @@ cdef class StringStore: def as_int(self, key): """If key is an int, return it; otherwise, get the int value.""" - if not isinstance(key, basestring): + if not isinstance(key, str): return key else: return self[key] def as_string(self, key): """If key is a string, return it; otherwise, get the string value.""" - if isinstance(key, basestring): + if isinstance(key, str): return key else: return self[key] @@ -153,7 +153,7 @@ cdef class StringStore: string (str): The string to add. RETURNS (uint64): The string's hash value. """ - if isinstance(string, unicode): + if isinstance(string, str): if string in SYMBOLS_BY_STR: return SYMBOLS_BY_STR[string] key = hash_string(string) @@ -189,7 +189,7 @@ cdef class StringStore: return True elif string in SYMBOLS_BY_STR: return True - elif isinstance(string, unicode): + elif isinstance(string, str): key = hash_string(string) else: string = string.encode("utf8") @@ -269,7 +269,7 @@ cdef class StringStore: for string in strings: self.add(string) - cdef const Utf8Str* intern_unicode(self, unicode py_string): + cdef const Utf8Str* intern_unicode(self, str py_string): # 0 means missing, but we don't bother offsetting the index. cdef bytes byte_string = py_string.encode("utf8") return self._intern_utf8(byte_string, len(byte_string)) diff --git a/spacy/tests/conftest.py b/spacy/tests/conftest.py index b88d11f0e..ffca79bb9 100644 --- a/spacy/tests/conftest.py +++ b/spacy/tests/conftest.py @@ -49,6 +49,11 @@ def tokenizer(): return get_lang_class("xx")().tokenizer +@pytest.fixture(scope="session") +def af_tokenizer(): + return get_lang_class("af")().tokenizer + + @pytest.fixture(scope="session") def am_tokenizer(): return get_lang_class("am")().tokenizer @@ -120,6 +125,16 @@ def es_tokenizer(): return get_lang_class("es")().tokenizer +@pytest.fixture(scope="session") +def es_vocab(): + return get_lang_class("es")().vocab + + +@pytest.fixture(scope="session") +def et_tokenizer(): + return get_lang_class("et")().tokenizer + + @pytest.fixture(scope="session") def eu_tokenizer(): return get_lang_class("eu")().tokenizer @@ -180,6 +195,11 @@ def id_tokenizer(): return get_lang_class("id")().tokenizer +@pytest.fixture(scope="session") +def is_tokenizer(): + return get_lang_class("is")().tokenizer + + @pytest.fixture(scope="session") def it_tokenizer(): return get_lang_class("it")().tokenizer @@ -207,6 +227,11 @@ def lt_tokenizer(): return get_lang_class("lt")().tokenizer +@pytest.fixture(scope="session") +def lv_tokenizer(): + return get_lang_class("lv")().tokenizer + + @pytest.fixture(scope="session") def mk_tokenizer(): return get_lang_class("mk")().tokenizer @@ -247,6 +272,11 @@ def pt_tokenizer(): return get_lang_class("pt")().tokenizer +@pytest.fixture(scope="session") +def pt_vocab(): + return get_lang_class("pt")().vocab + + @pytest.fixture(scope="session") def ro_tokenizer(): return get_lang_class("ro")().tokenizer @@ -269,11 +299,26 @@ def sa_tokenizer(): return get_lang_class("sa")().tokenizer +@pytest.fixture(scope="session") +def sk_tokenizer(): + return get_lang_class("sk")().tokenizer + + +@pytest.fixture(scope="session") +def sl_tokenizer(): + return get_lang_class("sl")().tokenizer + + @pytest.fixture(scope="session") def sr_tokenizer(): return get_lang_class("sr")().tokenizer +@pytest.fixture(scope="session") +def sq_tokenizer(): + return get_lang_class("sq")().tokenizer + + @pytest.fixture(scope="session") def sv_tokenizer(): return get_lang_class("sv")().tokenizer @@ -290,6 +335,11 @@ def ti_tokenizer(): return get_lang_class("ti")().tokenizer +@pytest.fixture(scope="session") +def tl_tokenizer(): + return get_lang_class("tl")().tokenizer + + @pytest.fixture(scope="session") def tr_tokenizer(): return get_lang_class("tr")().tokenizer @@ -329,6 +379,11 @@ def vi_tokenizer(): return get_lang_class("vi")().tokenizer +@pytest.fixture(scope="session") +def xx_tokenizer(): + return get_lang_class("xx")().tokenizer + + @pytest.fixture(scope="session") def yo_tokenizer(): return get_lang_class("yo")().tokenizer diff --git a/spacy/tests/doc/test_array.py b/spacy/tests/doc/test_array.py index ef54c581c..c334cc6eb 100644 --- a/spacy/tests/doc/test_array.py +++ b/spacy/tests/doc/test_array.py @@ -1,8 +1,31 @@ +import numpy import pytest + from spacy.tokens import Doc from spacy.attrs import ORTH, SHAPE, POS, DEP, MORPH +@pytest.mark.issue(2203) +def test_issue2203(en_vocab): + """Test that lemmas are set correctly in doc.from_array.""" + words = ["I", "'ll", "survive"] + tags = ["PRP", "MD", "VB"] + lemmas = ["-PRON-", "will", "survive"] + tag_ids = [en_vocab.strings.add(tag) for tag in tags] + lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas] + doc = Doc(en_vocab, words=words) + # Work around lemma corruption problem and set lemmas after tags + doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64")) + doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64")) + assert [t.tag_ for t in doc] == tags + assert [t.lemma_ for t in doc] == lemmas + # We need to serialize both tag and lemma, since this is what causes the bug + doc_array = doc.to_array(["TAG", "LEMMA"]) + new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array) + assert [t.tag_ for t in new_doc] == tags + assert [t.lemma_ for t in new_doc] == lemmas + + def test_doc_array_attr_of_token(en_vocab): doc = Doc(en_vocab, words=["An", "example", "sentence"]) example = doc.vocab["example"] diff --git a/spacy/tests/doc/test_doc_api.py b/spacy/tests/doc/test_doc_api.py index 57df87642..10700b787 100644 --- a/spacy/tests/doc/test_doc_api.py +++ b/spacy/tests/doc/test_doc_api.py @@ -1,14 +1,17 @@ import weakref -import pytest import numpy +import pytest +from thinc.api import NumpyOps, get_current_ops +from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS +from spacy.attrs import SENT_START, TAG +from spacy.lang.en import English from spacy.lang.xx import MultiLanguage +from spacy.language import Language +from spacy.lexeme import Lexeme from spacy.tokens import Doc, Span, Token from spacy.vocab import Vocab -from spacy.lexeme import Lexeme -from spacy.lang.en import English -from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH from .test_underscore import clean_underscore # noqa: F401 @@ -30,6 +33,220 @@ def test_doc_api_init(en_vocab): assert [t.is_sent_start for t in doc] == [True, False, True, False] +@pytest.mark.issue(1547) +def test_issue1547(): + """Test that entity labels still match after merging tokens.""" + words = ["\n", "worda", ".", "\n", "wordb", "-", "Biosphere", "2", "-", " \n"] + doc = Doc(Vocab(), words=words) + doc.ents = [Span(doc, 6, 8, label=doc.vocab.strings["PRODUCT"])] + with doc.retokenize() as retokenizer: + retokenizer.merge(doc[5:7]) + assert [ent.text for ent in doc.ents] + + +@pytest.mark.issue(1757) +def test_issue1757(): + """Test comparison against None doesn't cause segfault.""" + doc = Doc(Vocab(), words=["a", "b", "c"]) + assert not doc[0] < None + assert not doc[0] is None + assert doc[0] >= None + assert not doc[:2] < None + assert not doc[:2] is None + assert doc[:2] >= None + assert not doc.vocab["a"] is None + assert not doc.vocab["a"] < None + + +@pytest.mark.issue(2396) +def test_issue2396(en_vocab): + words = ["She", "created", "a", "test", "for", "spacy"] + heads = [1, 1, 3, 1, 3, 4] + deps = ["dep"] * len(heads) + matrix = numpy.array( + [ + [0, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1], + [1, 1, 2, 3, 3, 3], + [1, 1, 3, 3, 3, 3], + [1, 1, 3, 3, 4, 4], + [1, 1, 3, 3, 4, 5], + ], + dtype=numpy.int32, + ) + doc = Doc(en_vocab, words=words, heads=heads, deps=deps) + span = doc[:] + assert (doc.get_lca_matrix() == matrix).all() + assert (span.get_lca_matrix() == matrix).all() + + +@pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"]) +@pytest.mark.parametrize("lang_cls", [English, MultiLanguage]) +@pytest.mark.issue(2782) +def test_issue2782(text, lang_cls): + """Check that like_num handles + and - before number.""" + nlp = lang_cls() + doc = nlp(text) + assert len(doc) == 1 + assert doc[0].like_num + + +@pytest.mark.parametrize( + "sentence", + [ + "The story was to the effect that a young American student recently called on Professor Christlieb with a letter of introduction.", + "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's #1.", + "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's number one", + "Indeed, making the one who remains do all the work has installed him into a position of such insolent tyranny, it will take a month at least to reduce him to his proper proportions.", + "It was a missed assignment, but it shouldn't have resulted in a turnover ...", + ], +) +@pytest.mark.issue(3869) +def test_issue3869(sentence): + """Test that the Doc's count_by function works consistently""" + nlp = English() + doc = nlp(sentence) + count = 0 + for token in doc: + count += token.is_alpha + assert count == doc.count_by(IS_ALPHA).get(1, 0) + + +@pytest.mark.issue(3962) +def test_issue3962(en_vocab): + """Ensure that as_doc does not result in out-of-bound access of tokens. + This is achieved by setting the head to itself if it would lie out of the span otherwise.""" + # fmt: off + words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."] + heads = [1, 7, 1, 2, 7, 7, 7, 7, 9, 7, 7] + deps = ["nsubj", "ccomp", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] + # fmt: on + doc = Doc(en_vocab, words=words, heads=heads, deps=deps) + span2 = doc[1:5] # "jests at scars ," + doc2 = span2.as_doc() + doc2_json = doc2.to_json() + assert doc2_json + # head set to itself, being the new artificial root + assert doc2[0].head.text == "jests" + assert doc2[0].dep_ == "dep" + assert doc2[1].head.text == "jests" + assert doc2[1].dep_ == "prep" + assert doc2[2].head.text == "at" + assert doc2[2].dep_ == "pobj" + assert doc2[3].head.text == "jests" # head set to the new artificial root + assert doc2[3].dep_ == "dep" + # We should still have 1 sentence + assert len(list(doc2.sents)) == 1 + span3 = doc[6:9] # "never felt a" + doc3 = span3.as_doc() + doc3_json = doc3.to_json() + assert doc3_json + assert doc3[0].head.text == "felt" + assert doc3[0].dep_ == "neg" + assert doc3[1].head.text == "felt" + assert doc3[1].dep_ == "ROOT" + assert doc3[2].head.text == "felt" # head set to ancestor + assert doc3[2].dep_ == "dep" + # We should still have 1 sentence as "a" can be attached to "felt" instead of "wound" + assert len(list(doc3.sents)) == 1 + + +@pytest.mark.issue(3962) +def test_issue3962_long(en_vocab): + """Ensure that as_doc does not result in out-of-bound access of tokens. + This is achieved by setting the head to itself if it would lie out of the span otherwise.""" + # fmt: off + words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."] + heads = [1, 1, 1, 2, 1, 7, 7, 7, 9, 7, 7] + deps = ["nsubj", "ROOT", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] + # fmt: on + two_sent_doc = Doc(en_vocab, words=words, heads=heads, deps=deps) + span2 = two_sent_doc[1:7] # "jests at scars. They never" + doc2 = span2.as_doc() + doc2_json = doc2.to_json() + assert doc2_json + # head set to itself, being the new artificial root (in sentence 1) + assert doc2[0].head.text == "jests" + assert doc2[0].dep_ == "ROOT" + assert doc2[1].head.text == "jests" + assert doc2[1].dep_ == "prep" + assert doc2[2].head.text == "at" + assert doc2[2].dep_ == "pobj" + assert doc2[3].head.text == "jests" + assert doc2[3].dep_ == "punct" + # head set to itself, being the new artificial root (in sentence 2) + assert doc2[4].head.text == "They" + assert doc2[4].dep_ == "dep" + # head set to the new artificial head (in sentence 2) + assert doc2[4].head.text == "They" + assert doc2[4].dep_ == "dep" + # We should still have 2 sentences + sents = list(doc2.sents) + assert len(sents) == 2 + assert sents[0].text == "jests at scars ." + assert sents[1].text == "They never" + + +@Language.factory("my_pipe") +class CustomPipe: + def __init__(self, nlp, name="my_pipe"): + self.name = name + Span.set_extension("my_ext", getter=self._get_my_ext) + Doc.set_extension("my_ext", default=None) + + def __call__(self, doc): + gathered_ext = [] + for sent in doc.sents: + sent_ext = self._get_my_ext(sent) + sent._.set("my_ext", sent_ext) + gathered_ext.append(sent_ext) + + doc._.set("my_ext", "\n".join(gathered_ext)) + return doc + + @staticmethod + def _get_my_ext(span): + return str(span.end) + + +@pytest.mark.issue(4903) +def test_issue4903(): + """Ensure that this runs correctly and doesn't hang or crash on Windows / + macOS.""" + nlp = English() + nlp.add_pipe("sentencizer") + nlp.add_pipe("my_pipe", after="sentencizer") + text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."] + if isinstance(get_current_ops(), NumpyOps): + docs = list(nlp.pipe(text, n_process=2)) + assert docs[0].text == "I like bananas." + assert docs[1].text == "Do you like them?" + assert docs[2].text == "No, I prefer wasabi." + + +@pytest.mark.issue(5048) +def test_issue5048(en_vocab): + words = ["This", "is", "a", "sentence"] + pos_s = ["DET", "VERB", "DET", "NOUN"] + spaces = [" ", " ", " ", ""] + deps_s = ["dep", "adj", "nn", "atm"] + tags_s = ["DT", "VBZ", "DT", "NN"] + strings = en_vocab.strings + for w in words: + strings.add(w) + deps = [strings.add(d) for d in deps_s] + pos = [strings.add(p) for p in pos_s] + tags = [strings.add(t) for t in tags_s] + attrs = [POS, DEP, TAG] + array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64") + doc = Doc(en_vocab, words=words, spaces=spaces) + doc.from_array(attrs, array) + v1 = [(token.text, token.pos_, token.tag_) for token in doc] + doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s) + v2 = [(token.text, token.pos_, token.tag_) for token in doc2] + assert v1 == v2 + + @pytest.mark.parametrize("text", [["one", "two", "three"]]) def test_doc_api_compare_by_string_position(en_vocab, text): doc = Doc(en_vocab, words=text) @@ -350,6 +567,7 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer): "Merging the docs is fun.", "", "They don't think alike. ", + "", "Another doc.", ] en_texts_without_empty = [t for t in en_texts if len(t)] @@ -357,9 +575,9 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer): en_docs = [en_tokenizer(text) for text in en_texts] en_docs[0].spans["group"] = [en_docs[0][1:4]] en_docs[2].spans["group"] = [en_docs[2][1:4]] - en_docs[3].spans["group"] = [en_docs[3][0:1]] + en_docs[4].spans["group"] = [en_docs[4][0:1]] span_group_texts = sorted( - [en_docs[0][1:4].text, en_docs[2][1:4].text, en_docs[3][0:1].text] + [en_docs[0][1:4].text, en_docs[2][1:4].text, en_docs[4][0:1].text] ) de_doc = de_tokenizer(de_text) Token.set_extension("is_ambiguous", default=False) diff --git a/spacy/tests/doc/test_pickle_doc.py b/spacy/tests/doc/test_pickle_doc.py index 28cb66714..738a751a0 100644 --- a/spacy/tests/doc/test_pickle_doc.py +++ b/spacy/tests/doc/test_pickle_doc.py @@ -5,9 +5,11 @@ from spacy.compat import pickle def test_pickle_single_doc(): nlp = Language() doc = nlp("pickle roundtrip") + doc._context = 3 data = pickle.dumps(doc, 1) doc2 = pickle.loads(data) assert doc2.text == "pickle roundtrip" + assert doc2._context == 3 def test_list_of_docs_pickles_efficiently(): diff --git a/spacy/tests/doc/test_retokenize_split.py b/spacy/tests/doc/test_retokenize_split.py index 16df1713d..ec4deb033 100644 --- a/spacy/tests/doc/test_retokenize_split.py +++ b/spacy/tests/doc/test_retokenize_split.py @@ -1,8 +1,50 @@ +import numpy import pytest + from spacy.vocab import Vocab from spacy.tokens import Doc, Token +@pytest.mark.issue(3540) +def test_issue3540(en_vocab): + words = ["I", "live", "in", "NewYork", "right", "now"] + tensor = numpy.asarray( + [[1.0, 1.1], [2.0, 2.1], [3.0, 3.1], [4.0, 4.1], [5.0, 5.1], [6.0, 6.1]], + dtype="f", + ) + doc = Doc(en_vocab, words=words) + doc.tensor = tensor + gold_text = ["I", "live", "in", "NewYork", "right", "now"] + assert [token.text for token in doc] == gold_text + gold_lemma = ["I", "live", "in", "NewYork", "right", "now"] + for i, lemma in enumerate(gold_lemma): + doc[i].lemma_ = lemma + assert [token.lemma_ for token in doc] == gold_lemma + vectors_1 = [token.vector for token in doc] + assert len(vectors_1) == len(doc) + + with doc.retokenize() as retokenizer: + heads = [(doc[3], 1), doc[2]] + attrs = { + "POS": ["PROPN", "PROPN"], + "LEMMA": ["New", "York"], + "DEP": ["pobj", "compound"], + } + retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs) + + gold_text = ["I", "live", "in", "New", "York", "right", "now"] + assert [token.text for token in doc] == gold_text + gold_lemma = ["I", "live", "in", "New", "York", "right", "now"] + assert [token.lemma_ for token in doc] == gold_lemma + vectors_2 = [token.vector for token in doc] + assert len(vectors_2) == len(doc) + assert vectors_1[0].tolist() == vectors_2[0].tolist() + assert vectors_1[1].tolist() == vectors_2[1].tolist() + assert vectors_1[2].tolist() == vectors_2[2].tolist() + assert vectors_1[4].tolist() == vectors_2[5].tolist() + assert vectors_1[5].tolist() == vectors_2[6].tolist() + + def test_doc_retokenize_split(en_vocab): words = ["LosAngeles", "start", "."] heads = [1, 2, 2] diff --git a/spacy/tests/doc/test_span.py b/spacy/tests/doc/test_span.py index 2503ad94c..10aba5b94 100644 --- a/spacy/tests/doc/test_span.py +++ b/spacy/tests/doc/test_span.py @@ -1,7 +1,9 @@ import pytest import numpy from numpy.testing import assert_array_equal + from spacy.attrs import ORTH, LENGTH +from spacy.lang.en import English from spacy.tokens import Doc, Span, Token from spacy.vocab import Vocab from spacy.util import filter_spans @@ -43,6 +45,106 @@ def doc_not_parsed(en_tokenizer): return doc +@pytest.mark.issue(1537) +def test_issue1537(): + """Test that Span.as_doc() doesn't segfault.""" + string = "The sky is blue . The man is pink . The dog is purple ." + doc = Doc(Vocab(), words=string.split()) + doc[0].sent_start = True + for word in doc[1:]: + if word.nbor(-1).text == ".": + word.sent_start = True + else: + word.sent_start = False + sents = list(doc.sents) + sent0 = sents[0].as_doc() + sent1 = sents[1].as_doc() + assert isinstance(sent0, Doc) + assert isinstance(sent1, Doc) + + +@pytest.mark.issue(1612) +def test_issue1612(en_tokenizer): + """Test that span.orth_ is identical to span.text""" + doc = en_tokenizer("The black cat purrs.") + span = doc[1:3] + assert span.orth_ == span.text + + +@pytest.mark.issue(3199) +def test_issue3199(): + """Test that Span.noun_chunks works correctly if no noun chunks iterator + is available. To make this test future-proof, we're constructing a Doc + with a new Vocab here and a parse tree to make sure the noun chunks run. + """ + words = ["This", "is", "a", "sentence"] + doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words)) + with pytest.raises(NotImplementedError): + list(doc[0:3].noun_chunks) + + +@pytest.mark.issue(5152) +def test_issue5152(): + # Test that the comparison between a Span and a Token, goes well + # There was a bug when the number of tokens in the span equaled the number of characters in the token (!) + nlp = English() + text = nlp("Talk about being boring!") + text_var = nlp("Talk of being boring!") + y = nlp("Let") + span = text[0:3] # Talk about being + span_2 = text[0:3] # Talk about being + span_3 = text_var[0:3] # Talk of being + token = y[0] # Let + with pytest.warns(UserWarning): + assert span.similarity(token) == 0.0 + assert span.similarity(span_2) == 1.0 + with pytest.warns(UserWarning): + assert span_2.similarity(span_3) < 1.0 + + +@pytest.mark.issue(6755) +def test_issue6755(en_tokenizer): + doc = en_tokenizer("This is a magnificent sentence.") + span = doc[:0] + assert span.text_with_ws == "" + assert span.text == "" + + +@pytest.mark.parametrize( + "sentence, start_idx,end_idx,label", + [("Welcome to Mumbai, my friend", 11, 17, "GPE")], +) +@pytest.mark.issue(6815) +def test_issue6815_1(sentence, start_idx, end_idx, label): + nlp = English() + doc = nlp(sentence) + span = doc[:].char_span(start_idx, end_idx, label=label) + assert span.label_ == label + + +@pytest.mark.parametrize( + "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)] +) +@pytest.mark.issue(6815) +def test_issue6815_2(sentence, start_idx, end_idx, kb_id): + nlp = English() + doc = nlp(sentence) + span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id) + assert span.kb_id == kb_id + + +@pytest.mark.parametrize( + "sentence, start_idx,end_idx,vector", + [("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))], +) +@pytest.mark.issue(6815) +def test_issue6815_3(sentence, start_idx, end_idx, vector): + nlp = English() + doc = nlp(sentence) + span = doc[:].char_span(start_idx, end_idx, vector=vector) + assert (span.vector == vector).all() + + @pytest.mark.parametrize( "i_sent,i,j,text", [ @@ -98,6 +200,12 @@ def test_spans_span_sent(doc, doc_not_parsed): assert doc[:2].sent.root.text == "is" assert doc[:2].sent.text == "This is a sentence." assert doc[6:7].sent.root.left_edge.text == "This" + assert doc[0 : len(doc)].sent == list(doc.sents)[0] + assert list(doc[0 : len(doc)].sents) == list(doc.sents) + + with pytest.raises(ValueError): + doc_not_parsed[:2].sent + # test on manual sbd doc_not_parsed[0].is_sent_start = True doc_not_parsed[5].is_sent_start = True @@ -105,6 +213,35 @@ def test_spans_span_sent(doc, doc_not_parsed): assert doc_not_parsed[10:14].sent == doc_not_parsed[5:] +@pytest.mark.parametrize( + "start,end,expected_sentence", + [ + (0, 14, "This is"), # Entire doc + (1, 4, "This is"), # Overlapping with 2 sentences + (0, 2, "This is"), # Beginning of the Doc. Full sentence + (0, 1, "This is"), # Beginning of the Doc. Part of a sentence + (10, 14, "And a"), # End of the Doc. Overlapping with 2 senteces + (12, 14, "third."), # End of the Doc. Full sentence + (1, 1, "This is"), # Empty Span + ], +) +def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence): + + # Doc-level sents hook + def user_hook(doc): + return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)] + + doc.user_hooks["sents"] = user_hook + + # Make sure doc-level sents hook works + assert doc[start:end].sent.text == expected_sentence + + # Span-level sent hook + doc.user_span_hooks["sent"] = lambda x: x + # Now, span=level sent hook overrides the doc-level sents hook + assert doc[start:end].sent == doc[start:end] + + def test_spans_lca_matrix(en_tokenizer): """Test span's lca matrix generation""" tokens = en_tokenizer("the lazy dog slept") @@ -434,3 +571,38 @@ def test_span_with_vectors(doc): # single-token span with vector assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1]) doc.vocab.vectors = prev_vectors + + +@pytest.mark.parametrize( + "start,end,expected_sentences,expected_sentences_with_hook", + [ + (0, 14, 3, 7), # Entire doc + (3, 6, 2, 2), # Overlapping with 2 sentences + (0, 4, 1, 2), # Beginning of the Doc. Full sentence + (0, 3, 1, 2), # Beginning of the Doc. Part of a sentence + (9, 14, 2, 3), # End of the Doc. Overlapping with 2 senteces + (10, 14, 1, 2), # End of the Doc. Full sentence + (11, 14, 1, 2), # End of the Doc. Partial sentence + (0, 0, 1, 1), # Empty Span + ], +) +def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook): + + assert len(list(doc[start:end].sents)) == expected_sentences + + def user_hook(doc): + return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)] + + doc.user_hooks["sents"] = user_hook + + assert len(list(doc[start:end].sents)) == expected_sentences_with_hook + + doc.user_span_hooks["sents"] = lambda x: [x] + + assert list(doc[start:end].sents)[0] == doc[start:end] + assert len(list(doc[start:end].sents)) == 1 + + +def test_span_sents_not_parsed(doc_not_parsed): + with pytest.raises(ValueError): + list(Span(doc_not_parsed, 0, 3).sents) diff --git a/spacy/tests/regression/__init__.py b/spacy/tests/lang/af/__init__.py similarity index 100% rename from spacy/tests/regression/__init__.py rename to spacy/tests/lang/af/__init__.py diff --git a/spacy/tests/lang/af/test_text.py b/spacy/tests/lang/af/test_text.py new file mode 100644 index 000000000..99c2a9f4c --- /dev/null +++ b/spacy/tests/lang/af/test_text.py @@ -0,0 +1,22 @@ +import pytest + + +def test_long_text(af_tokenizer): + # Excerpt: Universal Declaration of Human Rights; “'n” changed to “die” in first sentence + text = """ +Hierdie Universele Verklaring van Menseregte as die algemene standaard vir die verwesenliking deur alle mense en nasies, +om te verseker dat elke individu en elke deel van die gemeenskap hierdie Verklaring in ag sal neem en deur opvoeding, +respek vir hierdie regte en vryhede te bevorder, op nasionale en internasionale vlak, daarna sal strewe om die universele +en effektiewe erkenning en agting van hierdie regte te verseker, nie net vir die mense van die Lidstate nie, maar ook vir +die mense in die gebiede onder hul jurisdiksie. + +""" + tokens = af_tokenizer(text) + assert len(tokens) == 100 + + +@pytest.mark.xfail +def test_indefinite_article(af_tokenizer): + text = "as 'n algemene standaard" + tokens = af_tokenizer(text) + assert len(tokens) == 4 diff --git a/spacy/tests/lang/af/test_tokenizer.py b/spacy/tests/lang/af/test_tokenizer.py new file mode 100644 index 000000000..db52db5e3 --- /dev/null +++ b/spacy/tests/lang/af/test_tokenizer.py @@ -0,0 +1,29 @@ +import pytest + +AF_BASIC_TOKENIZATION_TESTS = [ + ( + "Elkeen het die reg tot lewe, vryheid en sekuriteit van persoon.", + [ + "Elkeen", + "het", + "die", + "reg", + "tot", + "lewe", + ",", + "vryheid", + "en", + "sekuriteit", + "van", + "persoon", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", AF_BASIC_TOKENIZATION_TESTS) +def test_af_tokenizer_basic(af_tokenizer, text, expected_tokens): + tokens = af_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/ca/test_exception.py b/spacy/tests/lang/ca/test_exception.py index cfb574b63..499027ab1 100644 --- a/spacy/tests/lang/ca/test_exception.py +++ b/spacy/tests/lang/ca/test_exception.py @@ -11,7 +11,18 @@ def test_ca_tokenizer_handles_abbr(ca_tokenizer, text, lemma): def test_ca_tokenizer_handles_exc_in_text(ca_tokenizer): - text = "La Núria i el Pere han vingut aprox. a les 7 de la tarda." - tokens = ca_tokenizer(text) - assert len(tokens) == 15 - assert tokens[7].text == "aprox." + text = "La Dra. Puig viu a la pl. dels Til·lers." + doc = ca_tokenizer(text) + assert [t.text for t in doc] == [ + "La", + "Dra.", + "Puig", + "viu", + "a", + "la", + "pl.", + "d", + "els", + "Til·lers", + ".", + ] diff --git a/spacy/tests/lang/ca/test_prefix_suffix_infix.py b/spacy/tests/lang/ca/test_prefix_suffix_infix.py index a3c76ab5b..afbdf3696 100644 --- a/spacy/tests/lang/ca/test_prefix_suffix_infix.py +++ b/spacy/tests/lang/ca/test_prefix_suffix_infix.py @@ -2,7 +2,14 @@ import pytest @pytest.mark.parametrize( - "text,expected_tokens", [("d'un", ["d'", "un"]), ("s'ha", ["s'", "ha"])] + "text,expected_tokens", + [ + ("d'un", ["d'", "un"]), + ("s'ha", ["s'", "ha"]), + ("del", ["d", "el"]), + ("cantar-te", ["cantar", "-te"]), + ("-hola", ["-", "hola"]), + ], ) def test_contractions(ca_tokenizer, text, expected_tokens): """Test that the contractions are split into two tokens""" diff --git a/spacy/tests/lang/ca/test_text.py b/spacy/tests/lang/ca/test_text.py index 55bad0e94..5db7af553 100644 --- a/spacy/tests/lang/ca/test_text.py +++ b/spacy/tests/lang/ca/test_text.py @@ -12,17 +12,20 @@ def test_ca_tokenizer_handles_long_text(ca_tokenizer): una gerra de cervesa. Ens asseiem -fotògraf i periodista- en una terrassa buida.""" tokens = ca_tokenizer(text) - assert len(tokens) == 140 + assert len(tokens) == 146 @pytest.mark.parametrize( "text,length", [ - ("Perquè va anar-hi?", 4), + ("Perquè va anar-hi?", 5), + ("El cotxe dels veins.", 6), ("“Ah no?”", 5), ("""Sí! "Anem", va contestar el Joan Carles""", 11), ("Van córrer aprox. 10km", 5), ("Llavors perqué...", 3), + ("Vull parlar-te'n demà al matí", 8), + ("Vull explicar-t'ho demà al matí", 8), ], ) def test_ca_tokenizer_handles_cnts(ca_tokenizer, text, length): diff --git a/spacy/tests/lang/en/test_prefix_suffix_infix.py b/spacy/tests/lang/en/test_prefix_suffix_infix.py index 9dfb54fd6..a903496e8 100644 --- a/spacy/tests/lang/en/test_prefix_suffix_infix.py +++ b/spacy/tests/lang/en/test_prefix_suffix_infix.py @@ -119,6 +119,7 @@ def test_en_tokenizer_splits_period_abbr(en_tokenizer): assert tokens[4].text == "Mr." +@pytest.mark.issue(225) @pytest.mark.xfail(reason="Issue #225 - not yet implemented") def test_en_tokenizer_splits_em_dash_infix(en_tokenizer): tokens = en_tokenizer( diff --git a/spacy/tests/lang/en/test_sbd.py b/spacy/tests/lang/en/test_sbd.py index 39d8d3b59..d30c72750 100644 --- a/spacy/tests/lang/en/test_sbd.py +++ b/spacy/tests/lang/en/test_sbd.py @@ -4,6 +4,15 @@ from spacy.tokens import Doc from ...util import apply_transition_sequence +@pytest.mark.issue(309) +def test_issue309(en_vocab): + """Test Issue #309: SBD fails on empty string""" + doc = Doc(en_vocab, words=[" "], heads=[0], deps=["ROOT"]) + assert len(doc) == 1 + sents = list(doc.sents) + assert len(sents) == 1 + + @pytest.mark.parametrize("words", [["A", "test", "sentence"]]) @pytest.mark.parametrize("punct", [".", "!", "?", ""]) def test_en_sbd_single_punct(en_vocab, words, punct): diff --git a/spacy/tests/lang/en/test_tokenizer.py b/spacy/tests/lang/en/test_tokenizer.py new file mode 100644 index 000000000..e6d1d7d85 --- /dev/null +++ b/spacy/tests/lang/en/test_tokenizer.py @@ -0,0 +1,169 @@ +import pytest + + +@pytest.mark.issue(351) +def test_issue351(en_tokenizer): + doc = en_tokenizer(" This is a cat.") + assert doc[0].idx == 0 + assert len(doc[0]) == 3 + assert doc[1].idx == 3 + + +@pytest.mark.issue(360) +def test_issue360(en_tokenizer): + """Test tokenization of big ellipsis""" + tokens = en_tokenizer("$45...............Asking") + assert len(tokens) > 2 + + +@pytest.mark.issue(736) +@pytest.mark.parametrize("text,number", [("7am", "7"), ("11p.m.", "11")]) +def test_issue736(en_tokenizer, text, number): + """Test that times like "7am" are tokenized correctly and that numbers are + converted to string.""" + tokens = en_tokenizer(text) + assert len(tokens) == 2 + assert tokens[0].text == number + + +@pytest.mark.issue(740) +@pytest.mark.parametrize("text", ["3/4/2012", "01/12/1900"]) +def test_issue740(en_tokenizer, text): + """Test that dates are not split and kept as one token. This behaviour is + currently inconsistent, since dates separated by hyphens are still split. + This will be hard to prevent without causing clashes with numeric ranges.""" + tokens = en_tokenizer(text) + assert len(tokens) == 1 + + +@pytest.mark.issue(744) +@pytest.mark.parametrize("text", ["We were scared", "We Were Scared"]) +def test_issue744(en_tokenizer, text): + """Test that 'were' and 'Were' are excluded from the contractions + generated by the English tokenizer exceptions.""" + tokens = en_tokenizer(text) + assert len(tokens) == 3 + assert tokens[1].text.lower() == "were" + + +@pytest.mark.issue(759) +@pytest.mark.parametrize( + "text,is_num", [("one", True), ("ten", True), ("teneleven", False)] +) +def test_issue759(en_tokenizer, text, is_num): + tokens = en_tokenizer(text) + assert tokens[0].like_num == is_num + + +@pytest.mark.issue(775) +@pytest.mark.parametrize("text", ["Shell", "shell", "Shed", "shed"]) +def test_issue775(en_tokenizer, text): + """Test that 'Shell' and 'shell' are excluded from the contractions + generated by the English tokenizer exceptions.""" + tokens = en_tokenizer(text) + assert len(tokens) == 1 + assert tokens[0].text == text + + +@pytest.mark.issue(792) +@pytest.mark.parametrize("text", ["This is a string ", "This is a string\u0020"]) +def test_issue792(en_tokenizer, text): + """Test for Issue #792: Trailing whitespace is removed after tokenization.""" + doc = en_tokenizer(text) + assert "".join([token.text_with_ws for token in doc]) == text + + +@pytest.mark.issue(792) +@pytest.mark.parametrize("text", ["This is a string", "This is a string\n"]) +def test_control_issue792(en_tokenizer, text): + """Test base case for Issue #792: Non-trailing whitespace""" + doc = en_tokenizer(text) + assert "".join([token.text_with_ws for token in doc]) == text + + +@pytest.mark.issue(859) +@pytest.mark.parametrize( + "text", ["aaabbb@ccc.com\nThank you!", "aaabbb@ccc.com \nThank you!"] +) +def test_issue859(en_tokenizer, text): + """Test that no extra space is added in doc.text method.""" + doc = en_tokenizer(text) + assert doc.text == text + + +@pytest.mark.issue(886) +@pytest.mark.parametrize("text", ["Datum:2014-06-02\nDokument:76467"]) +def test_issue886(en_tokenizer, text): + """Test that token.idx matches the original text index for texts with newlines.""" + doc = en_tokenizer(text) + for token in doc: + assert len(token.text) == len(token.text_with_ws) + assert text[token.idx] == token.text[0] + + +@pytest.mark.issue(891) +@pytest.mark.parametrize("text", ["want/need"]) +def test_issue891(en_tokenizer, text): + """Test that / infixes are split correctly.""" + tokens = en_tokenizer(text) + assert len(tokens) == 3 + assert tokens[1].text == "/" + + +@pytest.mark.issue(957) +@pytest.mark.slow +def test_issue957(en_tokenizer): + """Test that spaCy doesn't hang on many punctuation characters. + If this test hangs, check (new) regular expressions for conflicting greedy operators + """ + # Skip test if pytest-timeout is not installed + pytest.importorskip("pytest_timeout") + for punct in [".", ",", "'", '"', ":", "?", "!", ";", "-"]: + string = "0" + for i in range(1, 100): + string += punct + str(i) + doc = en_tokenizer(string) + assert doc + + +@pytest.mark.parametrize("text", ["test@example.com", "john.doe@example.co.uk"]) +@pytest.mark.issue(1698) +def test_issue1698(en_tokenizer, text): + """Test that doc doesn't identify email-addresses as URLs""" + doc = en_tokenizer(text) + assert len(doc) == 1 + assert not doc[0].like_url + + +@pytest.mark.issue(1758) +def test_issue1758(en_tokenizer): + """Test that "would've" is handled by the English tokenizer exceptions.""" + tokens = en_tokenizer("would've") + assert len(tokens) == 2 + + +@pytest.mark.issue(1773) +def test_issue1773(en_tokenizer): + """Test that spaces don't receive a POS but no TAG. This is the root cause + of the serialization issue reported in #1773.""" + doc = en_tokenizer("\n") + if doc[0].pos_ == "SPACE": + assert doc[0].tag_ != "" + + +@pytest.mark.issue(3277) +def test_issue3277(es_tokenizer): + """Test that hyphens are split correctly as prefixes.""" + doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.") + assert len(doc) == 14 + assert doc[0].text == "\u2014" + assert doc[5].text == "\u2013" + assert doc[9].text == "\u2013" + + +@pytest.mark.parametrize("word", ["don't", "don’t", "I'd", "I’d"]) +@pytest.mark.issue(3521) +def test_issue3521(en_tokenizer, word): + tok = en_tokenizer(word)[1] + # 'not' and 'would' should be stopwords, also in their abbreviated forms + assert tok.is_stop diff --git a/spacy/tests/lang/es/test_noun_chunks.py b/spacy/tests/lang/es/test_noun_chunks.py index e5afd81c9..6118a0458 100644 --- a/spacy/tests/lang/es/test_noun_chunks.py +++ b/spacy/tests/lang/es/test_noun_chunks.py @@ -1,6 +1,156 @@ +from spacy.tokens import Doc import pytest +# fmt: off +@pytest.mark.parametrize( + "words,heads,deps,pos,chunk_offsets", + [ + # un gato -> "un gato" + ( + ["un", "gato"], + [1, 1], + ["det", "ROOT"], + ["DET", "NOUN"], + [(0, 2)], + ), + # la camisa negra -> "la camisa negra" + ( + ["la", "camisa", "negra"], + [1, 1, 1], + ["det", "ROOT", "amod"], + ["DET", "NOUN", "ADJ"], + [(0, 3)], + ), + # un lindo gatito -> "un lindo gatito" + ( + ["Un", "lindo", "gatito"], + [2, 2, 2], + ["det", "amod", "ROOT"], + ["DET", "ADJ", "NOUN"], + [(0,3)] + ), + # una chica hermosa e inteligente -> una chica hermosa e inteligente + ( + ["Una", "chica", "hermosa", "e", "inteligente"], + [1, 1, 1, 4, 2], + ["det", "ROOT", "amod", "cc", "conj"], + ["DET", "NOUN", "ADJ", "CCONJ", "ADJ"], + [(0,5)] + ), + # el fabuloso gato pardo -> "el fabuloso gato pardo" + ( + ["el", "fabuloso", "gato", "pardo"], + [2, 2, 2, 2], + ["det", "amod", "ROOT", "amod"], + ["DET", "ADJ", "NOUN", "ADJ"], + [(0,4)] + ), + # Tengo un gato y un perro -> un gato, un perro + ( + ["Tengo", "un", "gato", "y", "un", "perro"], + [0, 2, 0, 5, 5, 0], + ["ROOT", "det", "obj", "cc", "det", "conj"], + ["VERB", "DET", "NOUN", "CCONJ", "DET", "NOUN"], + [(1,3), (4,6)] + + ), + # Dom Pedro II -> Dom Pedro II + ( + ["Dom", "Pedro", "II"], + [0, 0, 0], + ["ROOT", "flat", "flat"], + ["PROPN", "PROPN", "PROPN"], + [(0,3)] + ), + # los Estados Unidos -> los Estados Unidos + ( + ["los", "Estados", "Unidos"], + [1, 1, 1], + ["det", "ROOT", "flat"], + ["DET", "PROPN", "PROPN"], + [(0,3)] + ), + # Miguel de Cervantes -> Miguel de Cervantes + ( + ["Miguel", "de", "Cervantes"], + [0, 2, 0], + ["ROOT", "case", "flat"], + ["PROPN", "ADP", "PROPN"], + [(0,3)] + ), + ( + ["Rio", "de", "Janeiro"], + [0, 2, 0], + ["ROOT", "case", "flat"], + ["PROPN", "ADP", "PROPN"], + [(0,3)] + ), + # la destrucción de la ciudad -> la destrucción, la ciudad + ( + ["la", "destrucción", "de", "la", "ciudad"], + [1, 1, 4, 4, 1], + ['det', 'ROOT', 'case', 'det', 'nmod'], + ['DET', 'NOUN', 'ADP', 'DET', 'NOUN'], + [(0,2), (3,5)] + ), + # la traducción de Susana del informe -> la traducción, Susana, informe + ( + ['la', 'traducción', 'de', 'Susana', 'del', 'informe'], + [1, 1, 3, 1, 5, 1], + ['det', 'ROOT', 'case', 'nmod', 'case', 'nmod'], + ['DET', 'NOUN', 'ADP', 'PROPN', 'ADP', 'NOUN'], + [(0,2), (3,4), (5,6)] + + ), + # El gato regordete de Susana y su amigo -> el gato regordete, Susana, su amigo + ( + ['El', 'gato', 'regordete', 'de', 'Susana', 'y', 'su', 'amigo'], + [1, 1, 1, 4, 1, 7, 7, 1], + ['det', 'ROOT', 'amod', 'case', 'nmod', 'cc', 'det', 'conj'], + ['DET', 'NOUN', 'ADJ', 'ADP', 'PROPN', 'CCONJ', 'DET', 'NOUN'], + [(0,3), (4,5), (6,8)] + ), + # Afirmó que sigue el criterio europeo y que trata de incentivar el mercado donde no lo hay -> el criterio europeo, el mercado, donde, lo + ( + ['Afirmó', 'que', 'sigue', 'el', 'criterio', 'europeo', 'y', 'que', 'trata', 'de', 'incentivar', 'el', 'mercado', 'donde', 'no', 'lo', 'hay'], + [0, 2, 0, 4, 2, 4, 8, 8, 2, 10, 8, 12, 10, 16, 16, 16, 0], + ['ROOT', 'mark', 'ccomp', 'det', 'obj', 'amod', 'cc', 'mark', 'conj', 'mark', 'xcomp', 'det', 'obj', 'obl', 'advmod', 'obj', 'advcl'], + ['VERB', 'SCONJ', 'VERB', 'DET', 'NOUN', 'ADJ', 'CCONJ', 'SCONJ', 'VERB', 'ADP', 'VERB', 'DET', 'NOUN', 'PRON', 'ADV', 'PRON', 'AUX'], + [(3,6), (11,13), (13,14), (15,16)] + ), + # En este sentido se refirió a la reciente creación del Ministerio de Ciencia y Tecnología y a las primeras declaraciones de su titular, Anna Birulés, sobre el impulso de la investigación, desarrollo e innovación -> este sentido, se, la reciente creación, Ministerio de Ciencia y Tecnología, a las primeras declaraciones, su titular, , Anna Birulés,, el impulso, la investigación, , desarrollo, innovación + ( + ['En', 'este', 'sentido', 'se', 'refirió', 'a', 'la', 'reciente', 'creación', 'del', 'Ministerio', 'de', 'Ciencia', 'y', 'Tecnología', 'y', 'a', 'las', 'primeras', 'declaraciones', 'de', 'su', 'titular', ',', 'Anna', 'Birulés', ',', 'sobre', 'el', 'impulso', 'de', 'la', 'investigación', ',', 'desarrollo', 'e', 'innovación'], + [2, 2, 4, 4, 4, 8, 8, 8, 4, 10, 8, 12, 10, 14, 12, 19, 19, 19, 19, 8, 22, 22, 19, 24, 22, 24, 24, 29, 29, 19, 32, 32, 29, 34, 32, 36, 32], + ['case', 'det', 'obl', 'obj', 'ROOT', 'case', 'det', 'amod', 'obj', 'case', 'nmod', 'case', 'flat', 'cc', 'conj', 'cc', 'case', 'det', 'amod', 'conj', 'case', 'det', 'nmod', 'punct', 'appos', 'flat', 'punct', 'case', 'det', 'nmod', 'case', 'det', 'nmod', 'punct', 'conj', 'cc', 'conj'], + ['ADP', 'DET', 'NOUN', 'PRON', 'VERB', 'ADP', 'DET', 'ADJ', 'NOUN', 'ADP', 'PROPN', 'ADP', 'PROPN', 'CCONJ', 'PROPN', 'CCONJ', 'ADP', 'DET', 'ADJ', 'NOUN', 'ADP', 'DET', 'NOUN', 'PUNCT', 'PROPN', 'PROPN', 'PUNCT', 'ADP', 'DET', 'NOUN', 'ADP', 'DET', 'NOUN', 'PUNCT', 'NOUN', 'CCONJ', 'NOUN'], + [(1, 3), (3, 4), (6, 9), (10, 15), (16, 20), (21, 23), (23, 27), (28, 30), (31, 33), (33, 35), (36, 37)] + ), + # Asimismo defiende la financiación pública de la investigación básica y pone de manifiesto que las empresas se centran más en la investigación y desarrollo con objetivos de mercado. -> la financiación pública, la investigación básica, manifiesto, las empresas, se, la investigación, desarrollo, objetivos, mercado + ( + ['Asimismo', 'defiende', 'la', 'financiación', 'pública', 'de', 'la', 'investigación', 'básica', 'y', 'pone', 'de', 'manifiesto', 'que', 'las', 'empresas', 'se', 'centran', 'más', 'en', 'la', 'investigación', 'y', 'desarrollo', 'con', 'objetivos', 'de', 'mercado'], + [1, 1, 3, 1, 3, 7, 7, 3, 7, 10, 1, 12, 10, 17, 15, 17, 17, 10, 17, 21, 21, 17, 23, 21, 25, 17, 27, 25], + ['advmod', 'ROOT', 'det', 'obj', 'amod', 'case', 'det', 'nmod', 'amod', 'cc', 'conj', 'case', 'obl', 'mark', 'det', 'nsubj', 'obj', 'ccomp', 'obj', 'case', 'det', 'obl', 'cc', 'conj', 'case', 'obl', 'case', 'nmod'], + ['ADV', 'VERB', 'DET', 'NOUN', 'ADJ', 'ADP', 'DET', 'NOUN', 'ADJ', 'CCONJ', 'VERB', 'ADP', 'NOUN', 'SCONJ', 'DET', 'NOUN', 'PRON', 'VERB', 'ADV', 'ADP', 'DET', 'NOUN', 'CCONJ', 'NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN'], + [(2, 5), (6, 9), (12, 13), (14, 16), (16, 17), (20, 22), (23, 24), (25, 26), (27, 28)] + ), + # Tras indicar que la inversión media en investigación en la Unión Europea se sitúa en el 1,8 por ciento del PIB, frente al 2,8 por ciento en Japón y EEUU, Couceiro dijo que España está en "el buen camino" y se está creando un entorno propicio para la innovación empresarial' -> la inversión media, investigación, la Unión Europea, se, PIB, Japón, EEUU, Couceiro, España, se, un entorno propicio para la innovación empresaria + ( + ['Tras', 'indicar', 'que', 'la', 'inversión', 'media', 'en', 'investigación', 'en', 'la', 'Unión', 'Europea', 'se', 'sitúa', 'en', 'el', '1,8', 'por', 'ciento', 'del', 'PIB', ',', 'frente', 'al', '2,8', 'por', 'ciento', 'en', 'Japón', 'y', 'EEUU', ',', 'Couceiro', 'dijo', 'que', 'España', 'está', 'en', '"', 'el', 'buen', 'camino', '"', 'y', 'se', 'está', 'creando', 'un', 'entorno', 'propicio', 'para', 'la', 'innovación', 'empresarial'], + [1, 33, 13, 4, 13, 4, 7, 4, 10, 10, 4, 10, 13, 1, 16, 16, 13, 18, 16, 20, 16, 24, 24, 22, 13, 26, 24, 28, 24, 30, 28, 1, 33, 33, 41, 41, 41, 41, 41, 41, 41, 33, 41, 46, 46, 46, 33, 48, 46, 48, 52, 52, 49, 52], + ['mark', 'advcl', 'mark', 'det', 'nsubj', 'amod', 'case', 'nmod', 'case', 'det', 'nmod', 'flat', 'obj', 'ccomp', 'case', 'det', 'obj', 'case', 'compound', 'case', 'nmod', 'punct', 'case', 'fixed', 'obl', 'case', 'compound', 'case', 'nmod', 'cc', 'conj', 'punct', 'nsubj', 'ROOT', 'mark', 'nsubj', 'cop', 'case', 'punct', 'det', 'amod', 'ccomp', 'punct', 'cc', 'obj', 'aux', 'conj', 'det', 'nsubj', 'amod', 'case', 'det', 'nmod', 'amod'], + ['ADP', 'VERB', 'SCONJ', 'DET', 'NOUN', 'ADJ', 'ADP', 'NOUN', 'ADP', 'DET', 'PROPN', 'PROPN', 'PRON', 'VERB', 'ADP', 'DET', 'NUM', 'ADP', 'NUM', 'ADP', 'PROPN', 'PUNCT', 'NOUN', 'ADP', 'NUM', 'ADP', 'NUM', 'ADP', 'PROPN', 'CCONJ', 'PROPN', 'PUNCT', 'PROPN', 'VERB', 'SCONJ', 'PROPN', 'AUX', 'ADP', 'PUNCT', 'DET', 'ADJ', 'NOUN', 'PUNCT', 'CCONJ', 'PRON', 'AUX', 'VERB', 'DET', 'NOUN', 'ADJ', 'ADP', 'DET', 'NOUN', 'ADJ'], + [(3, 6), (7, 8), (9, 12), (12, 13), (20, 21), (28, 29), (30, 31), (32, 33), (35, 36), (44, 45), (47, 54)] + ), + ], +) +# fmt: on +def test_es_noun_chunks(es_vocab, words, heads, deps, pos, chunk_offsets): + doc = Doc(es_vocab, words=words, heads=heads, deps=deps, pos=pos) + assert [(c.start, c.end) for c in doc.noun_chunks] == chunk_offsets + + def test_noun_chunks_is_parsed_es(es_tokenizer): """Test that noun_chunks raises Value Error for 'es' language if Doc is not parsed.""" doc = es_tokenizer("en Oxford este verano") diff --git a/spacy/tests/lang/es/test_text.py b/spacy/tests/lang/es/test_text.py index 96f6bcab5..d95f6d26b 100644 --- a/spacy/tests/lang/es/test_text.py +++ b/spacy/tests/lang/es/test_text.py @@ -1,5 +1,16 @@ import pytest from spacy.lang.es.lex_attrs import like_num +from spacy.lang.es import Spanish + + +@pytest.mark.issue(3803) +def test_issue3803(): + """Test that spanish num-like tokens have True for like_num attribute.""" + nlp = Spanish() + text = "2 dos 1000 mil 12 doce" + doc = nlp(text) + + assert [t.like_num for t in doc] == [True, True, True, True, True, True] def test_es_tokenizer_handles_long_text(es_tokenizer): diff --git a/spacy/tests/lang/et/__init__.py b/spacy/tests/lang/et/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/et/test_text.py b/spacy/tests/lang/et/test_text.py new file mode 100644 index 000000000..9515a7cc1 --- /dev/null +++ b/spacy/tests/lang/et/test_text.py @@ -0,0 +1,26 @@ +import pytest + + +def test_long_text(et_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +arvestades, et nimetatud deklaratsiooni eesmärk on tagada selles +kuulutatud õiguste üldine ja tõhus tunnustamine ning järgimine; +arvestades, et Euroopa Nõukogu eesmärk on saavutada tema +liikmete suurem ühtsus ning et üheks selle eesmärgi saavutamise +vahendiks on inimõiguste ja põhivabaduste järgimine ning +elluviimine; +taaskinnitades oma sügavat usku neisse põhivabadustesse, mis +on õigluse ja rahu aluseks maailmas ning mida kõige paremini +tagab ühelt poolt tõhus poliitiline demokraatia ning teiselt poolt +inimõiguste, millest nad sõltuvad, üldine mõistmine ja järgimine; +""" + tokens = et_tokenizer(text) + assert len(tokens) == 94 + + +@pytest.mark.xfail +def test_ordinal_number(et_tokenizer): + text = "10. detsembril 1948" + tokens = et_tokenizer(text) + assert len(tokens) == 3 diff --git a/spacy/tests/lang/et/test_tokenizer.py b/spacy/tests/lang/et/test_tokenizer.py new file mode 100644 index 000000000..f0f8079ca --- /dev/null +++ b/spacy/tests/lang/et/test_tokenizer.py @@ -0,0 +1,29 @@ +import pytest + +ET_BASIC_TOKENIZATION_TESTS = [ + ( + "Kedagi ei või piinata ega ebainimlikult või alandavalt kohelda " + "ega karistada.", + [ + "Kedagi", + "ei", + "või", + "piinata", + "ega", + "ebainimlikult", + "või", + "alandavalt", + "kohelda", + "ega", + "karistada", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", ET_BASIC_TOKENIZATION_TESTS) +def test_et_tokenizer_basic(et_tokenizer, text, expected_tokens): + tokens = et_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/fr/test_prefix_suffix_infix.py b/spacy/tests/lang/fr/test_prefix_suffix_infix.py index 7770f807b..272531b63 100644 --- a/spacy/tests/lang/fr/test_prefix_suffix_infix.py +++ b/spacy/tests/lang/fr/test_prefix_suffix_infix.py @@ -4,6 +4,7 @@ from spacy.lang.punctuation import TOKENIZER_INFIXES from spacy.lang.char_classes import ALPHA +@pytest.mark.issue(768) @pytest.mark.parametrize( "text,expected_tokens", [("l'avion", ["l'", "avion"]), ("j'ai", ["j'", "ai"])] ) diff --git a/spacy/tests/lang/hi/test_text.py b/spacy/tests/lang/hi/test_text.py new file mode 100644 index 000000000..791cc3822 --- /dev/null +++ b/spacy/tests/lang/hi/test_text.py @@ -0,0 +1,11 @@ +import pytest +from spacy.lang.hi import Hindi + + +@pytest.mark.issue(3625) +def test_issue3625(): + """Test that default punctuation rules applies to hindi unicode characters""" + nlp = Hindi() + doc = nlp("hi. how हुए. होटल, होटल") + expected = ["hi", ".", "how", "हुए", ".", "होटल", ",", "होटल"] + assert [token.text for token in doc] == expected diff --git a/spacy/tests/lang/hr/__init__.py b/spacy/tests/lang/hr/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/hr/test_text.py b/spacy/tests/lang/hr/test_text.py new file mode 100644 index 000000000..82e65afe7 --- /dev/null +++ b/spacy/tests/lang/hr/test_text.py @@ -0,0 +1,26 @@ +import pytest + + +def test_long_text(hr_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +uzimajući u obzir da ta deklaracija nastoji osigurati opće i djelotvorno +priznanje i poštovanje u njoj proglašenih prava; +uzimajući u obzir da je cilj Vijeća Europe postizanje većeg jedinstva +njegovih članica, i da je jedan od načina postizanja toga cilja +očuvanje i daljnje ostvarivanje ljudskih prava i temeljnih sloboda; +potvrđujući svoju duboku privrženost tim temeljnim slobodama +koje su osnova pravde i mira u svijetu i koje su najbolje zaštićene +istinskom političkom demokracijom s jedne strane te zajedničkim +razumijevanjem i poštovanjem ljudskih prava o kojima te slobode +ovise s druge strane; +""" + tokens = hr_tokenizer(text) + assert len(tokens) == 105 + + +@pytest.mark.xfail +def test_ordinal_number(hr_tokenizer): + text = "10. prosinca 1948" + tokens = hr_tokenizer(text) + assert len(tokens) == 3 diff --git a/spacy/tests/lang/hr/test_tokenizer.py b/spacy/tests/lang/hr/test_tokenizer.py new file mode 100644 index 000000000..dace33b2d --- /dev/null +++ b/spacy/tests/lang/hr/test_tokenizer.py @@ -0,0 +1,31 @@ +import pytest + +HR_BASIC_TOKENIZATION_TESTS = [ + ( + "Nitko se ne smije podvrgnuti mučenju ni nečovječnom ili " + "ponižavajućem postupanju ili kazni.", + [ + "Nitko", + "se", + "ne", + "smije", + "podvrgnuti", + "mučenju", + "ni", + "nečovječnom", + "ili", + "ponižavajućem", + "postupanju", + "ili", + "kazni", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", HR_BASIC_TOKENIZATION_TESTS) +def test_hr_tokenizer_basic(hr_tokenizer, text, expected_tokens): + tokens = hr_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/is/__init__.py b/spacy/tests/lang/is/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/is/test_text.py b/spacy/tests/lang/is/test_text.py new file mode 100644 index 000000000..6e3654a6e --- /dev/null +++ b/spacy/tests/lang/is/test_text.py @@ -0,0 +1,26 @@ +import pytest + + +def test_long_text(is_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +hafa í huga, að yfirlýsing þessi hefur það markmið að tryggja +almenna og raunhæfa viðurkenningu og vernd þeirra réttinda, +sem þar er lýst; +hafa í huga, að markmið Evrópuráðs er að koma á nánari einingu +aðildarríkjanna og að ein af leiðunum að því marki er sú, að +mannréttindi og mannfrelsi séu í heiðri höfð og efld; +lýsa á ný eindreginni trú sinni á það mannfrelsi, sem er undirstaða +réttlætis og friðar í heiminum og best er tryggt, annars vegar með +virku, lýðræðislegu stjórnarfari og, hins vegar, almennum skilningi +og varðveislu þeirra mannréttinda, sem eru grundvöllur frelsisins; +""" + tokens = is_tokenizer(text) + assert len(tokens) == 120 + + +@pytest.mark.xfail +def test_ordinal_number(is_tokenizer): + text = "10. desember 1948" + tokens = is_tokenizer(text) + assert len(tokens) == 3 diff --git a/spacy/tests/lang/is/test_tokenizer.py b/spacy/tests/lang/is/test_tokenizer.py new file mode 100644 index 000000000..0c05a6050 --- /dev/null +++ b/spacy/tests/lang/is/test_tokenizer.py @@ -0,0 +1,30 @@ +import pytest + +IS_BASIC_TOKENIZATION_TESTS = [ + ( + "Enginn maður skal sæta pyndingum eða ómannlegri eða " + "vanvirðandi meðferð eða refsingu. ", + [ + "Enginn", + "maður", + "skal", + "sæta", + "pyndingum", + "eða", + "ómannlegri", + "eða", + "vanvirðandi", + "meðferð", + "eða", + "refsingu", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", IS_BASIC_TOKENIZATION_TESTS) +def test_is_tokenizer_basic(is_tokenizer, text, expected_tokens): + tokens = is_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/it/test_text.py b/spacy/tests/lang/it/test_text.py new file mode 100644 index 000000000..6023a20b1 --- /dev/null +++ b/spacy/tests/lang/it/test_text.py @@ -0,0 +1,14 @@ +import pytest + + +@pytest.mark.issue(2822) +def test_issue2822(it_tokenizer): + """Test that the abbreviation of poco is kept as one word.""" + doc = it_tokenizer("Vuoi un po' di zucchero?") + assert len(doc) == 6 + assert doc[0].text == "Vuoi" + assert doc[1].text == "un" + assert doc[2].text == "po'" + assert doc[3].text == "di" + assert doc[4].text == "zucchero" + assert doc[5].text == "?" diff --git a/spacy/tests/lang/ja/test_lemmatization.py b/spacy/tests/lang/ja/test_lemmatization.py index 6041611e6..21879a569 100644 --- a/spacy/tests/lang/ja/test_lemmatization.py +++ b/spacy/tests/lang/ja/test_lemmatization.py @@ -8,3 +8,17 @@ import pytest def test_ja_lemmatizer_assigns(ja_tokenizer, word, lemma): test_lemma = ja_tokenizer(word)[0].lemma_ assert test_lemma == lemma + + +@pytest.mark.parametrize( + "word,norm", + [ + ("SUMMER", "サマー"), + ("食べ物", "食べ物"), + ("綜合", "総合"), + ("コンピュータ", "コンピューター"), + ], +) +def test_ja_lemmatizer_norm(ja_tokenizer, word, norm): + test_norm = ja_tokenizer(word)[0].norm_ + assert test_norm == norm diff --git a/spacy/tests/lang/ja/test_morphologizer_factory.py b/spacy/tests/lang/ja/test_morphologizer_factory.py new file mode 100644 index 000000000..a4e038d01 --- /dev/null +++ b/spacy/tests/lang/ja/test_morphologizer_factory.py @@ -0,0 +1,9 @@ +import pytest +from spacy.lang.ja import Japanese + + +def test_ja_morphologizer_factory(): + pytest.importorskip("sudachipy") + nlp = Japanese() + morphologizer = nlp.add_pipe("morphologizer") + assert morphologizer.cfg["extend"] is True diff --git a/spacy/tests/lang/ja/test_serialize.py b/spacy/tests/lang/ja/test_serialize.py index e05a363bf..011eb470f 100644 --- a/spacy/tests/lang/ja/test_serialize.py +++ b/spacy/tests/lang/ja/test_serialize.py @@ -1,3 +1,5 @@ +import pickle + from spacy.lang.ja import Japanese from ...util import make_tempdir @@ -31,3 +33,9 @@ def test_ja_tokenizer_serialize(ja_tokenizer): nlp_r.from_disk(d) assert nlp_bytes == nlp_r.to_bytes() assert nlp_r.tokenizer.split_mode == "B" + + +def test_ja_tokenizer_pickle(ja_tokenizer): + b = pickle.dumps(ja_tokenizer) + ja_tokenizer_re = pickle.loads(b) + assert ja_tokenizer.to_bytes() == ja_tokenizer_re.to_bytes() diff --git a/spacy/tests/lang/ja/test_tokenizer.py b/spacy/tests/lang/ja/test_tokenizer.py index c8c85d655..ef7bed06d 100644 --- a/spacy/tests/lang/ja/test_tokenizer.py +++ b/spacy/tests/lang/ja/test_tokenizer.py @@ -34,26 +34,38 @@ SENTENCE_TESTS = [ ] tokens1 = [ - DetailedToken(surface="委員", tag="名詞-普通名詞-一般", inf="", lemma="委員", reading="イイン", sub_tokens=None), - DetailedToken(surface="会", tag="名詞-普通名詞-一般", inf="", lemma="会", reading="カイ", sub_tokens=None), + DetailedToken(surface="委員", tag="名詞-普通名詞-一般", inf="", lemma="委員", norm="委員", reading="イイン", sub_tokens=None), + DetailedToken(surface="会", tag="名詞-普通名詞-一般", inf="", lemma="会", norm="会", reading="カイ", sub_tokens=None), ] tokens2 = [ - DetailedToken(surface="選挙", tag="名詞-普通名詞-サ変可能", inf="", lemma="選挙", reading="センキョ", sub_tokens=None), - DetailedToken(surface="管理", tag="名詞-普通名詞-サ変可能", inf="", lemma="管理", reading="カンリ", sub_tokens=None), - DetailedToken(surface="委員", tag="名詞-普通名詞-一般", inf="", lemma="委員", reading="イイン", sub_tokens=None), - DetailedToken(surface="会", tag="名詞-普通名詞-一般", inf="", lemma="会", reading="カイ", sub_tokens=None), + DetailedToken(surface="選挙", tag="名詞-普通名詞-サ変可能", inf="", lemma="選挙", norm="選挙", reading="センキョ", sub_tokens=None), + DetailedToken(surface="管理", tag="名詞-普通名詞-サ変可能", inf="", lemma="管理", norm="管理", reading="カンリ", sub_tokens=None), + DetailedToken(surface="委員", tag="名詞-普通名詞-一般", inf="", lemma="委員", norm="委員", reading="イイン", sub_tokens=None), + DetailedToken(surface="会", tag="名詞-普通名詞-一般", inf="", lemma="会", norm="会", reading="カイ", sub_tokens=None), ] tokens3 = [ - DetailedToken(surface="選挙", tag="名詞-普通名詞-サ変可能", inf="", lemma="選挙", reading="センキョ", sub_tokens=None), - DetailedToken(surface="管理", tag="名詞-普通名詞-サ変可能", inf="", lemma="管理", reading="カンリ", sub_tokens=None), - DetailedToken(surface="委員会", tag="名詞-普通名詞-一般", inf="", lemma="委員会", reading="イインカイ", sub_tokens=None), + DetailedToken(surface="選挙", tag="名詞-普通名詞-サ変可能", inf="", lemma="選挙", norm="選挙", reading="センキョ", sub_tokens=None), + DetailedToken(surface="管理", tag="名詞-普通名詞-サ変可能", inf="", lemma="管理", norm="管理", reading="カンリ", sub_tokens=None), + DetailedToken(surface="委員会", tag="名詞-普通名詞-一般", inf="", lemma="委員会", norm="委員会", reading="イインカイ", sub_tokens=None), ] SUB_TOKEN_TESTS = [ - ("選挙管理委員会", [None, None, None, None], [None, None, [tokens1]], [[tokens2, tokens3]]) + ("選挙管理委員会", [None, None, [tokens1]], [[tokens2, tokens3]]) ] # fmt: on +@pytest.mark.issue(2901) +def test_issue2901(): + """Test that `nlp` doesn't fail.""" + try: + nlp = Japanese() + except ImportError: + pytest.skip() + + doc = nlp("pythonが大好きです") + assert doc + + @pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS) def test_ja_tokenizer(ja_tokenizer, text, expected_tokens): tokens = [token.text for token in ja_tokenizer(text)] @@ -111,18 +123,16 @@ def test_ja_tokenizer_split_modes(ja_tokenizer, text, len_a, len_b, len_c): assert len(nlp_c(text)) == len_c -@pytest.mark.parametrize( - "text,sub_tokens_list_a,sub_tokens_list_b,sub_tokens_list_c", SUB_TOKEN_TESTS -) +@pytest.mark.parametrize("text,sub_tokens_list_b,sub_tokens_list_c", SUB_TOKEN_TESTS) def test_ja_tokenizer_sub_tokens( - ja_tokenizer, text, sub_tokens_list_a, sub_tokens_list_b, sub_tokens_list_c + ja_tokenizer, text, sub_tokens_list_b, sub_tokens_list_c ): nlp_a = Japanese.from_config({"nlp": {"tokenizer": {"split_mode": "A"}}}) nlp_b = Japanese.from_config({"nlp": {"tokenizer": {"split_mode": "B"}}}) nlp_c = Japanese.from_config({"nlp": {"tokenizer": {"split_mode": "C"}}}) - assert ja_tokenizer(text).user_data["sub_tokens"] == sub_tokens_list_a - assert nlp_a(text).user_data["sub_tokens"] == sub_tokens_list_a + assert ja_tokenizer(text).user_data.get("sub_tokens") is None + assert nlp_a(text).user_data.get("sub_tokens") is None assert nlp_b(text).user_data["sub_tokens"] == sub_tokens_list_b assert nlp_c(text).user_data["sub_tokens"] == sub_tokens_list_c @@ -132,16 +142,20 @@ def test_ja_tokenizer_sub_tokens( [ ( "取ってつけた", - ("五段-ラ行,連用形-促音便", "", "下一段-カ行,連用形-一般", "助動詞-タ,終止形-一般"), - ("トッ", "テ", "ツケ", "タ"), + (["五段-ラ行;連用形-促音便"], [], ["下一段-カ行;連用形-一般"], ["助動詞-タ;終止形-一般"]), + (["トッ"], ["テ"], ["ツケ"], ["タ"]), ), + ("2=3", ([], [], []), (["ニ"], ["_"], ["サン"])), ], ) def test_ja_tokenizer_inflections_reading_forms( ja_tokenizer, text, inflections, reading_forms ): - assert ja_tokenizer(text).user_data["inflections"] == inflections - assert ja_tokenizer(text).user_data["reading_forms"] == reading_forms + tokens = ja_tokenizer(text) + test_inflections = [tt.morph.get("Inflection") for tt in tokens] + assert test_inflections == list(inflections) + test_readings = [tt.morph.get("Reading") for tt in tokens] + assert test_readings == list(reading_forms) def test_ja_tokenizer_emptyish_texts(ja_tokenizer): diff --git a/spacy/tests/lang/ko/test_serialize.py b/spacy/tests/lang/ko/test_serialize.py new file mode 100644 index 000000000..75288fcc5 --- /dev/null +++ b/spacy/tests/lang/ko/test_serialize.py @@ -0,0 +1,24 @@ +import pickle + +from spacy.lang.ko import Korean +from ...util import make_tempdir + + +def test_ko_tokenizer_serialize(ko_tokenizer): + tokenizer_bytes = ko_tokenizer.to_bytes() + nlp = Korean() + nlp.tokenizer.from_bytes(tokenizer_bytes) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + with make_tempdir() as d: + file_path = d / "tokenizer" + ko_tokenizer.to_disk(file_path) + nlp = Korean() + nlp.tokenizer.from_disk(file_path) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + +def test_ko_tokenizer_pickle(ko_tokenizer): + b = pickle.dumps(ko_tokenizer) + ko_tokenizer_re = pickle.loads(b) + assert ko_tokenizer.to_bytes() == ko_tokenizer_re.to_bytes() diff --git a/spacy/tests/lang/ky/test_tokenizer.py b/spacy/tests/lang/ky/test_tokenizer.py index 91a048764..5cf6eb1a6 100644 --- a/spacy/tests/lang/ky/test_tokenizer.py +++ b/spacy/tests/lang/ky/test_tokenizer.py @@ -1,6 +1,3 @@ -# coding: utf8 -from __future__ import unicode_literals - import pytest diff --git a/spacy/tests/lang/lv/__init__.py b/spacy/tests/lang/lv/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/lv/test_text.py b/spacy/tests/lang/lv/test_text.py new file mode 100644 index 000000000..5ca5fd0a7 --- /dev/null +++ b/spacy/tests/lang/lv/test_text.py @@ -0,0 +1,27 @@ +import pytest + + +def test_long_text(lv_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +Ievērodamas, ka šī deklarācija paredz nodrošināt vispārēju un +efektīvu tajā pasludināto tiesību atzīšanu un ievērošanu; +Ievērodamas, ka Eiropas Padomes mērķis ir panākt lielāku vienotību +tās dalībvalstu starpā un ka viens no līdzekļiem, kā šo mērķi +sasniegt, ir cilvēka tiesību un pamatbrīvību ievērošana un turpmāka +īstenošana; +No jauna apliecinādamas patiesu pārliecību, ka šīs pamatbrīvības +ir taisnīguma un miera pamats visā pasaulē un ka tās vislabāk var +nodrošināt patiess demokrātisks politisks režīms no vienas puses un +vispārējo cilvēktiesību, uz kurām tās pamatojas, kopīga izpratne un +ievērošana no otras puses; +""" + tokens = lv_tokenizer(text) + assert len(tokens) == 109 + + +@pytest.mark.xfail +def test_ordinal_number(lv_tokenizer): + text = "10. decembrī" + tokens = lv_tokenizer(text) + assert len(tokens) == 2 diff --git a/spacy/tests/lang/lv/test_tokenizer.py b/spacy/tests/lang/lv/test_tokenizer.py new file mode 100644 index 000000000..3ce7ad5fa --- /dev/null +++ b/spacy/tests/lang/lv/test_tokenizer.py @@ -0,0 +1,30 @@ +import pytest + +LV_BASIC_TOKENIZATION_TESTS = [ + ( + "Nevienu nedrīkst spīdzināt vai cietsirdīgi vai pazemojoši ar viņu " + "apieties vai sodīt.", + [ + "Nevienu", + "nedrīkst", + "spīdzināt", + "vai", + "cietsirdīgi", + "vai", + "pazemojoši", + "ar", + "viņu", + "apieties", + "vai", + "sodīt", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", LV_BASIC_TOKENIZATION_TESTS) +def test_lv_tokenizer_basic(lv_tokenizer, text, expected_tokens): + tokens = lv_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/pt/test_noun_chunks.py b/spacy/tests/lang/pt/test_noun_chunks.py new file mode 100644 index 000000000..9a42ce268 --- /dev/null +++ b/spacy/tests/lang/pt/test_noun_chunks.py @@ -0,0 +1,221 @@ +from spacy.tokens import Doc +import pytest + + +# fmt: off +@pytest.mark.parametrize( + "words,heads,deps,pos,chunk_offsets", + [ + # determiner + noun + # um cachorro -> um cachorro + ( + ["um", "cachorro"], + [1, 1], + ["det", "ROOT"], + ["DET", "NOUN"], + [(0, 2)], + ), + # two determiners + noun + # meu o pai -> meu o pai + ( + ["meu", "o", "pai"], + [2, 2, 2], + ["det", "det", "ROOT"], + ["DET", "DET", "NOUN"], + [(0, 3)], + ), + # two determiners + noun + # todos essos caros -> todos essos caros + ( + ["todos", "essos", "caros"], + [2, 2, 2], + ["det", "det", "ROOT"], + ["DET", "DET", "NOUN"], + [(0, 3)], + ), + # two determiners, one is after noun + # um irmão meu -> um irmão meu + ( + ["um", "irmão", "meu"], + [1, 1, 1], + ["det", "ROOT", "det"], + ["DET", "NOUN", "DET"], + [(0, 3)], + ), + # two determiners + noun + # o meu pai -> o meu pai + ( + ["o", "meu", "pai"], + [2, 2, 2], + ["det","det", "ROOT"], + ["DET", "DET", "NOUN"], + [(0, 3)], + ), + # relative pronoun + # A bicicleta essa está estragada -> A bicicleta + ( + ['A', 'bicicleta', 'essa', 'está', 'estragada'], + [1, 4, 1, 4, 4], + ['det', 'nsubj', 'det', 'cop', 'ROOT'], + ['DET', 'NOUN', 'PRON', 'AUX', 'ADJ'], + [(0,2)] + ), + # relative subclause + # o computador que comprou -> o computador + ( + ['o', 'computador', 'que', 'comprou'], + [1, 1, 3, 1], + ['det', 'ROOT', 'nsubj', 'acl:relcl'], + ['DET', 'NOUN', 'PRON', 'VERB'], + [(0, 2), (2, 3)] + ), + # det + noun + adj + # O cachorro marrom -> O cachorro marrom + ( + ["O", "cachorro", "marrom"], + [1, 1, 1], + ["det", "ROOT", "amod"], + ["DET", "NOUN", "ADJ"], + [(0, 3)], + ), + # det + noun + adj plural + # As calças baratas -> As calças baratas + ( + ["As", "calças", "baratas"], + [1, 1, 1], + ["det", "ROOT", "amod"], + ["DET", "NOUN", "ADJ"], + [(0, 3)], + ), + # det + adj + noun + # Uma boa ideia -> Uma boa ideia + ( + ['uma', 'boa', 'ideia'], + [2, 2, 2], + ["det", "amod", "ROOT"], + ["DET", "ADJ", "NOUN"], + [(0,3)] + ), + # multiple adjectives + # Uma garota esperta e inteligente -> Uma garota esperta e inteligente + ( + ["Uma", "garota", "esperta", "e", "inteligente"], + [1, 1, 1, 4, 2], + ["det", "ROOT", "amod", "cc", "conj"], + ["DET", "NOUN", "ADJ", "CCONJ", "ADJ"], + [(0,5)] + ), + # determiner, adjective, compound created by flat + # a grande São Paolo -> a grande São Paolo + ( + ["a", "grande", "São", "Paolo"], + [2, 2, 2, 2], + ["det", "amod", "ROOT", "flat:name"], + ["DET", "ADJ", "PROPN", "PROPN"], + [(0,4)] + ), + # one determiner + one noun + one adjective qualified by an adverb + # alguns fazendeiros muito ricos -> alguns fazendeiros muito ricos + ( + ['alguns', 'fazendeiros', 'muito', 'ricos'], + [1, 1, 3, 1], + ['det', 'ROOT', 'advmod', 'amod'], + ['DET', 'NOUN', 'ADV', 'ADJ'], + [(0,4)] + ), + # Two NPs conjuncted + # Eu tenho um cachorro e um gato -> Eu, um cacharo, um gato + ( + ["Eu", "tenho", "um", "cachorro", "e", "um", "gato"], + [1, 1, 3, 1, 6, 6, 3], + ['nsubj', 'ROOT', 'det', 'obj', 'cc', 'det', 'conj'], + ['PRON', 'VERB', 'DET', 'NOUN', 'CCONJ', 'DET', 'NOUN'], + [(0,1), (2,4), (5,7)] + + ), + # Two NPs together + # o escritor brasileiro Aníbal Machado -> o escritor brasileiro, Aníbal Machado + ( + ['o', 'escritor', 'brasileiro', 'Aníbal', 'Machado'], + [1, 1, 1, 1, 3], + ['det', 'ROOT', 'amod', 'appos', 'flat:name'], + ['DET', 'NOUN', 'ADJ', 'PROPN', 'PROPN'], + [(0, 3), (3, 5)] + ), + # Noun compound, person name and titles + # Dom Pedro II -> Dom Pedro II + ( + ["Dom", "Pedro", "II"], + [0, 0, 0], + ["ROOT", "flat:name", "flat:name"], + ["PROPN", "PROPN", "PROPN"], + [(0,3)] + ), + # Noun compound created by flat + # os Estados Unidos -> os Estados Unidos + ( + ["os", "Estados", "Unidos"], + [1, 1, 1], + ["det", "ROOT", "flat:name"], + ["DET", "PROPN", "PROPN"], + [(0,3)] + ), + # nmod relation between NPs + # a destruição da cidade -> a destruição, cidade + ( + ['a', 'destruição', 'da', 'cidade'], + [1, 1, 3, 1], + ['det', 'ROOT', 'case', 'nmod'], + ['DET', 'NOUN', 'ADP', 'NOUN'], + [(0,2), (3,4)] + ), + # Compounding by nmod, several NPs chained together + # a primeira fábrica de medicamentos do governo -> a primeira fábrica, medicamentos, governo + ( + ["a", "primeira", "fábrica", "de", "medicamentos", "do", "governo"], + [2, 2, 2, 4, 2, 6, 2], + ['det', 'amod', 'ROOT', 'case', 'nmod', 'case', 'nmod'], + ['DET', 'ADJ', 'NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN'], + [(0, 3), (4, 5), (6, 7)] + ), + # several NPs + # Tradução da reportagem de Susana -> Tradução, reportagem, Susana + ( + ['Tradução', 'da', 'reportagem', 'de', 'Susana'], + [0, 2, 0, 4, 2], + ['ROOT', 'case', 'nmod', 'case', 'nmod'], + ['NOUN', 'ADP', 'NOUN', 'ADP', 'PROPN'], + [(0,1), (2,3), (4,5)] + + ), + # Several NPs + # O gato gordo da Susana e seu amigo -> O gato gordo, Susana, seu amigo + ( + ['O', 'gato', 'gordo', 'da', 'Susana', 'e', 'seu', 'amigo'], + [1, 1, 1, 4, 1, 7, 7, 1], + ['det', 'ROOT', 'amod', 'case', 'nmod', 'cc', 'det', 'conj'], + ['DET', 'NOUN', 'ADJ', 'ADP', 'PROPN', 'CCONJ', 'DET', 'NOUN'], + [(0,3), (4,5), (6,8)] + ), + # Passive subject + # Os novos gastos são alimentados pela grande conta bancária de Clinton -> Os novos gastos, grande conta bancária, Clinton + ( + ['Os', 'novos', 'gastos', 'são', 'alimentados', 'pela', 'grande', 'conta', 'bancária', 'de', 'Clinton'], + [2, 2, 4, 4, 4, 7, 7, 4, 7, 10, 7], + ['det', 'amod', 'nsubj:pass', 'aux:pass', 'ROOT', 'case', 'amod', 'obl:agent', 'amod', 'case', 'nmod'], + ['DET', 'ADJ', 'NOUN', 'AUX', 'VERB', 'ADP', 'ADJ', 'NOUN', 'ADJ', 'ADP', 'PROPN'], + [(0, 3), (6, 9), (10, 11)] + ) + ], +) +# fmt: on +def test_pt_noun_chunks(pt_vocab, words, heads, deps, pos, chunk_offsets): + doc = Doc(pt_vocab, words=words, heads=heads, deps=deps, pos=pos) + assert [(c.start, c.end) for c in doc.noun_chunks] == chunk_offsets + + +def test_noun_chunks_is_parsed_pt(pt_tokenizer): + """Test that noun_chunks raises Value Error for 'pt' language if Doc is not parsed.""" + doc = pt_tokenizer("en Oxford este verano") + with pytest.raises(ValueError): + list(doc.noun_chunks) diff --git a/spacy/tests/lang/sk/__init__.py b/spacy/tests/lang/sk/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/sk/test_text.py b/spacy/tests/lang/sk/test_text.py new file mode 100644 index 000000000..62ea2a783 --- /dev/null +++ b/spacy/tests/lang/sk/test_text.py @@ -0,0 +1,48 @@ +import pytest + + +def test_long_text(sk_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +majúc na zreteli, že cieľom tejto deklarácie je zabezpečiť všeobecné +a účinné uznávanie a dodržiavanie práv v nej vyhlásených; +majúc na zreteli, že cieľom Rady Európy je dosiahnutie väčšej +jednoty medzi jej členmi, a že jedným zo spôsobov, ktorým sa +má tento cieľ napĺňať, je ochrana a ďalší rozvoj ľudských práv +a základných slobôd; +znovu potvrdzujúc svoju hlbokú vieru v tie základné slobody, ktoré +sú základom spravodlivosti a mieru vo svete, a ktoré sú najlepšie +zachovávané na jednej strane účinnou politickou demokraciou +a na strane druhej spoločným poňatím a dodržiavaním ľudských +práv, od ktorých závisia; + """ + tokens = sk_tokenizer(text) + assert len(tokens) == 118 + + +@pytest.mark.parametrize( + "text,match", + [ + ("10", True), + ("1", True), + ("10,000", True), + ("10,00", True), + ("štyri", True), + ("devätnásť", True), + ("milión", True), + ("pes", False), + (",", False), + ("1/2", True), + ], +) +def test_lex_attrs_like_number(sk_tokenizer, text, match): + tokens = sk_tokenizer(text) + assert len(tokens) == 1 + assert tokens[0].like_num == match + + +@pytest.mark.xfail +def test_ordinal_number(sk_tokenizer): + text = "10. decembra 1948" + tokens = sk_tokenizer(text) + assert len(tokens) == 3 diff --git a/spacy/tests/lang/sk/test_tokenizer.py b/spacy/tests/lang/sk/test_tokenizer.py new file mode 100644 index 000000000..247847284 --- /dev/null +++ b/spacy/tests/lang/sk/test_tokenizer.py @@ -0,0 +1,15 @@ +import pytest + +SK_BASIC_TOKENIZATION_TESTS = [ + ( + "Kedy sa narodil Andrej Kiska?", + ["Kedy", "sa", "narodil", "Andrej", "Kiska", "?"], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", SK_BASIC_TOKENIZATION_TESTS) +def test_sk_tokenizer_basic(sk_tokenizer, text, expected_tokens): + tokens = sk_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/sl/__init__.py b/spacy/tests/lang/sl/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/sl/test_text.py b/spacy/tests/lang/sl/test_text.py new file mode 100644 index 000000000..ddc5b6b5d --- /dev/null +++ b/spacy/tests/lang/sl/test_text.py @@ -0,0 +1,27 @@ +import pytest + + +def test_long_text(sl_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +upoštevajoč, da si ta deklaracija prizadeva zagotoviti splošno in +učinkovito priznavanje in spoštovanje v njej razglašenih pravic, +upoštevajoč, da je cilj Sveta Evrope doseči večjo enotnost med +njegovimi članicami, in da je eden izmed načinov za zagotavljanje +tega cilja varstvo in nadaljnji razvoj človekovih pravic in temeljnih +svoboščin, +ponovno potrjujoč svojo globoko vero v temeljne svoboščine, na +katerih temeljita pravičnost in mir v svetu, in ki jih je mogoče najbolje +zavarovati na eni strani z dejansko politično demokracijo in na drugi +strani s skupnim razumevanjem in spoštovanjem človekovih pravic, +od katerih so te svoboščine odvisne, +""" + tokens = sl_tokenizer(text) + assert len(tokens) == 116 + + +@pytest.mark.xfail +def test_ordinal_number(sl_tokenizer): + text = "10. decembra 1948" + tokens = sl_tokenizer(text) + assert len(tokens) == 3 diff --git a/spacy/tests/lang/sl/test_tokenizer.py b/spacy/tests/lang/sl/test_tokenizer.py new file mode 100644 index 000000000..f2b15b0ff --- /dev/null +++ b/spacy/tests/lang/sl/test_tokenizer.py @@ -0,0 +1,32 @@ +import pytest + +SL_BASIC_TOKENIZATION_TESTS = [ + ( + "Vsakdo ima pravico do spoštovanja njegovega zasebnega in " + "družinskega življenja, doma in dopisovanja.", + [ + "Vsakdo", + "ima", + "pravico", + "do", + "spoštovanja", + "njegovega", + "zasebnega", + "in", + "družinskega", + "življenja", + ",", + "doma", + "in", + "dopisovanja", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", SL_BASIC_TOKENIZATION_TESTS) +def test_sl_tokenizer_basic(sl_tokenizer, text, expected_tokens): + tokens = sl_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/sq/__init__.py b/spacy/tests/lang/sq/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/sq/test_text.py b/spacy/tests/lang/sq/test_text.py new file mode 100644 index 000000000..44eedaa54 --- /dev/null +++ b/spacy/tests/lang/sq/test_text.py @@ -0,0 +1,25 @@ +import pytest + + +def test_long_text(sq_tokenizer): + # Excerpt: European Convention on Human Rights + text = """ +Qeveritë nënshkruese, anëtare të Këshillit të Evropës, +Duke pasur parasysh Deklaratën Universale të të Drejtave të +Njeriut, të shpallur nga Asambleja e Përgjithshme e Kombeve të +Bashkuara më 10 dhjetor 1948; +Duke pasur parasysh, se kjo Deklaratë ka për qëllim të sigurojë +njohjen dhe zbatimin universal dhe efektiv të të drejtave të +shpallura në të; +Duke pasur parasysh se qëllimi i Këshillit të Evropës është që të +realizojë një bashkim më të ngushtë midis anëtarëve të tij dhe +se një nga mjetet për të arritur këtë qëllim është mbrojtja dhe +zhvillimi i të drejtave të njeriut dhe i lirive themelore; +Duke ripohuar besimin e tyre të thellë në këto liri themelore që +përbëjnë themelet e drejtësisë dhe të paqes në botë, ruajtja e të +cilave mbështetet kryesisht mbi një regjim politik demokratik nga +njëra anë, dhe nga ana tjetër mbi një kuptim dhe respektim të +përbashkët të të drejtave të njeriut nga të cilat varen; +""" + tokens = sq_tokenizer(text) + assert len(tokens) == 182 diff --git a/spacy/tests/lang/sq/test_tokenizer.py b/spacy/tests/lang/sq/test_tokenizer.py new file mode 100644 index 000000000..8fd25f588 --- /dev/null +++ b/spacy/tests/lang/sq/test_tokenizer.py @@ -0,0 +1,31 @@ +import pytest + +SQ_BASIC_TOKENIZATION_TESTS = [ + ( + "Askush nuk mund t’i nënshtrohet torturës ose dënimeve ose " + "trajtimeve çnjerëzore ose poshtëruese.", + [ + "Askush", + "nuk", + "mund", + "t’i", + "nënshtrohet", + "torturës", + "ose", + "dënimeve", + "ose", + "trajtimeve", + "çnjerëzore", + "ose", + "poshtëruese", + ".", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", SQ_BASIC_TOKENIZATION_TESTS) +def test_sq_tokenizer_basic(sq_tokenizer, text, expected_tokens): + tokens = sq_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/lang/sv/test_exceptions.py b/spacy/tests/lang/sv/test_exceptions.py index e6cae4d2b..b49a0c832 100644 --- a/spacy/tests/lang/sv/test_exceptions.py +++ b/spacy/tests/lang/sv/test_exceptions.py @@ -1,6 +1,5 @@ import pytest - SV_TOKEN_EXCEPTION_TESTS = [ ( "Smörsåsen används bl.a. till fisk", @@ -17,6 +16,26 @@ SV_TOKEN_EXCEPTION_TESTS = [ ] +@pytest.mark.issue(805) +@pytest.mark.parametrize( + "text,expected_tokens", + [ + ( + "Smörsåsen används bl.a. till fisk", + ["Smörsåsen", "används", "bl.a.", "till", "fisk"], + ), + ( + "Jag kommer först kl. 13 p.g.a. diverse förseningar", + ["Jag", "kommer", "först", "kl.", "13", "p.g.a.", "diverse", "förseningar"], + ), + ], +) +def test_issue805(sv_tokenizer, text, expected_tokens): + tokens = sv_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list + + @pytest.mark.parametrize("text,expected_tokens", SV_TOKEN_EXCEPTION_TESTS) def test_sv_tokenizer_handles_exception_cases(sv_tokenizer, text, expected_tokens): tokens = sv_tokenizer(text) diff --git a/spacy/tests/lang/test_attrs.py b/spacy/tests/lang/test_attrs.py index b39109455..1c27c1744 100644 --- a/spacy/tests/lang/test_attrs.py +++ b/spacy/tests/lang/test_attrs.py @@ -1,6 +1,16 @@ import pytest -from spacy.attrs import intify_attrs, ORTH, NORM, LEMMA, IS_ALPHA -from spacy.lang.lex_attrs import is_punct, is_ascii, is_currency, like_url, word_shape +from spacy.attrs import intify_attrs, ENT_IOB + +from spacy.attrs import IS_ALPHA, LEMMA, NORM, ORTH, intify_attrs +from spacy.lang.en.stop_words import STOP_WORDS +from spacy.lang.lex_attrs import is_ascii, is_currency, is_punct, is_stop +from spacy.lang.lex_attrs import like_url, word_shape + + +@pytest.mark.parametrize("word", ["the"]) +@pytest.mark.issue(1889) +def test_issue1889(word): + assert is_stop(word, STOP_WORDS) == is_stop(word.upper(), STOP_WORDS) @pytest.mark.parametrize("text", ["dog"]) @@ -24,6 +34,38 @@ def test_attrs_do_deprecated(text): assert int_attrs == {ORTH: 10, IS_ALPHA: True} +def test_attrs_ent_iob_intify(): + int_attrs = intify_attrs({"ENT_IOB": ""}) + assert int_attrs == {ENT_IOB: 0} + + int_attrs = intify_attrs({"ENT_IOB": "I"}) + assert int_attrs == {ENT_IOB: 1} + + int_attrs = intify_attrs({"ENT_IOB": "O"}) + assert int_attrs == {ENT_IOB: 2} + + int_attrs = intify_attrs({"ENT_IOB": "B"}) + assert int_attrs == {ENT_IOB: 3} + + int_attrs = intify_attrs({ENT_IOB: ""}) + assert int_attrs == {ENT_IOB: 0} + + int_attrs = intify_attrs({ENT_IOB: "I"}) + assert int_attrs == {ENT_IOB: 1} + + int_attrs = intify_attrs({ENT_IOB: "O"}) + assert int_attrs == {ENT_IOB: 2} + + int_attrs = intify_attrs({ENT_IOB: "B"}) + assert int_attrs == {ENT_IOB: 3} + + with pytest.raises(ValueError): + int_attrs = intify_attrs({"ENT_IOB": "XX"}) + + with pytest.raises(ValueError): + int_attrs = intify_attrs({ENT_IOB: "XX"}) + + @pytest.mark.parametrize("text,match", [(",", True), (" ", False), ("a", False)]) def test_lex_attrs_is_punct(text, match): assert is_punct(text) == match @@ -58,9 +100,10 @@ def test_lex_attrs_is_currency(text, match): ("www.google.com", True), ("google.com", True), ("sydney.com", True), - ("2girls1cup.org", True), + ("1abc2def.org", True), ("http://stupid", True), ("www.hi", True), + ("example.com/example", True), ("dog", False), ("1.2", False), ("1.a", False), diff --git a/spacy/tests/lang/th/test_serialize.py b/spacy/tests/lang/th/test_serialize.py new file mode 100644 index 000000000..a3de4bf54 --- /dev/null +++ b/spacy/tests/lang/th/test_serialize.py @@ -0,0 +1,24 @@ +import pickle + +from spacy.lang.th import Thai +from ...util import make_tempdir + + +def test_th_tokenizer_serialize(th_tokenizer): + tokenizer_bytes = th_tokenizer.to_bytes() + nlp = Thai() + nlp.tokenizer.from_bytes(tokenizer_bytes) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + with make_tempdir() as d: + file_path = d / "tokenizer" + th_tokenizer.to_disk(file_path) + nlp = Thai() + nlp.tokenizer.from_disk(file_path) + assert tokenizer_bytes == nlp.tokenizer.to_bytes() + + +def test_th_tokenizer_pickle(th_tokenizer): + b = pickle.dumps(th_tokenizer) + th_tokenizer_re = pickle.loads(b) + assert th_tokenizer.to_bytes() == th_tokenizer_re.to_bytes() diff --git a/spacy/tests/lang/ti/test_text.py b/spacy/tests/lang/ti/test_text.py index 177a9e4b2..d21005640 100644 --- a/spacy/tests/lang/ti/test_text.py +++ b/spacy/tests/lang/ti/test_text.py @@ -37,7 +37,7 @@ def test_ti_tokenizer_handles_cnts(ti_tokenizer, text, length): ("10.000", True), ("1000", True), ("999,0", True), - ("ሐደ", True), + ("ሓደ", True), ("ክልተ", True), ("ትሪልዮን", True), ("ከልቢ", False), diff --git a/spacy/tests/lang/tl/__init__.py b/spacy/tests/lang/tl/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/tl/test_indices.py b/spacy/tests/lang/tl/test_indices.py new file mode 100644 index 000000000..7c99ae573 --- /dev/null +++ b/spacy/tests/lang/tl/test_indices.py @@ -0,0 +1,8 @@ +def test_tl_simple_punct(tl_tokenizer): + text = "Sige, punta ka dito" + tokens = tl_tokenizer(text) + assert tokens[0].idx == 0 + assert tokens[1].idx == 4 + assert tokens[2].idx == 6 + assert tokens[3].idx == 12 + assert tokens[4].idx == 15 diff --git a/spacy/tests/lang/tl/test_punct.py b/spacy/tests/lang/tl/test_punct.py new file mode 100644 index 000000000..d6bcf297d --- /dev/null +++ b/spacy/tests/lang/tl/test_punct.py @@ -0,0 +1,127 @@ +import pytest +from spacy.util import compile_prefix_regex +from spacy.lang.punctuation import TOKENIZER_PREFIXES + + +PUNCT_OPEN = ["(", "[", "{", "*"] +PUNCT_CLOSE = [")", "]", "}", "*"] +PUNCT_PAIRED = [("(", ")"), ("[", "]"), ("{", "}"), ("*", "*")] + + +@pytest.mark.parametrize("text", ["(", "((", "<"]) +def test_tl_tokenizer_handles_only_punct(tl_tokenizer, text): + tokens = tl_tokenizer(text) + assert len(tokens) == len(text) + + +@pytest.mark.parametrize("punct", PUNCT_OPEN) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_split_open_punct(tl_tokenizer, punct, text): + tokens = tl_tokenizer(punct + text) + assert len(tokens) == 2 + assert tokens[0].text == punct + assert tokens[1].text == text + + +@pytest.mark.parametrize("punct", PUNCT_CLOSE) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_close_punct(tl_tokenizer, punct, text): + tokens = tl_tokenizer(text + punct) + assert len(tokens) == 2 + assert tokens[0].text == text + assert tokens[1].text == punct + + +@pytest.mark.parametrize("punct", PUNCT_OPEN) +@pytest.mark.parametrize("punct_add", ["`"]) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_two_diff_open_punct(tl_tokenizer, punct, punct_add, text): + tokens = tl_tokenizer(punct + punct_add + text) + assert len(tokens) == 3 + assert tokens[0].text == punct + assert tokens[1].text == punct_add + assert tokens[2].text == text + + +@pytest.mark.parametrize("punct", PUNCT_CLOSE) +@pytest.mark.parametrize("punct_add", ["`"]) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_two_diff_close_punct(tl_tokenizer, punct, punct_add, text): + tokens = tl_tokenizer(text + punct + punct_add) + assert len(tokens) == 3 + assert tokens[0].text == text + assert tokens[1].text == punct + assert tokens[2].text == punct_add + + +@pytest.mark.parametrize("punct", PUNCT_OPEN) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_same_open_punct(tl_tokenizer, punct, text): + tokens = tl_tokenizer(punct + punct + punct + text) + assert len(tokens) == 4 + assert tokens[0].text == punct + assert tokens[3].text == text + + +@pytest.mark.parametrize("punct", PUNCT_CLOSE) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_same_close_punct(tl_tokenizer, punct, text): + tokens = tl_tokenizer(text + punct + punct + punct) + assert len(tokens) == 4 + assert tokens[0].text == text + assert tokens[1].text == punct + + +@pytest.mark.parametrize("text", ["'Ang"]) +def test_tl_tokenizer_splits_open_apostrophe(tl_tokenizer, text): + tokens = tl_tokenizer(text) + assert len(tokens) == 2 + assert tokens[0].text == "'" + + +@pytest.mark.parametrize("text", ["Mabuhay''"]) +def test_tl_tokenizer_splits_double_end_quote(tl_tokenizer, text): + tokens = tl_tokenizer(text) + assert len(tokens) == 2 + tokens_punct = tl_tokenizer("''") + assert len(tokens_punct) == 1 + + +@pytest.mark.parametrize("punct_open,punct_close", PUNCT_PAIRED) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_splits_open_close_punct( + tl_tokenizer, punct_open, punct_close, text +): + tokens = tl_tokenizer(punct_open + text + punct_close) + assert len(tokens) == 3 + assert tokens[0].text == punct_open + assert tokens[1].text == text + assert tokens[2].text == punct_close + + +@pytest.mark.parametrize("punct_open,punct_close", PUNCT_PAIRED) +@pytest.mark.parametrize("punct_open2,punct_close2", [("`", "'")]) +@pytest.mark.parametrize("text", ["Mabuhay"]) +def test_tl_tokenizer_two_diff_punct( + tl_tokenizer, punct_open, punct_close, punct_open2, punct_close2, text +): + tokens = tl_tokenizer(punct_open2 + punct_open + text + punct_close + punct_close2) + assert len(tokens) == 5 + assert tokens[0].text == punct_open2 + assert tokens[1].text == punct_open + assert tokens[2].text == text + assert tokens[3].text == punct_close + assert tokens[4].text == punct_close2 + + +@pytest.mark.parametrize("text,punct", [("(sa'yo", "(")]) +def test_tl_tokenizer_splits_pre_punct_regex(text, punct): + tl_search_prefixes = compile_prefix_regex(TOKENIZER_PREFIXES).search + match = tl_search_prefixes(text) + assert match.group() == punct + + +def test_tl_tokenizer_splits_bracket_period(tl_tokenizer): + text = "(Dumating siya kahapon)." + tokens = tl_tokenizer(text) + assert tokens[len(tokens) - 1].text == "." diff --git a/spacy/tests/lang/tl/test_text.py b/spacy/tests/lang/tl/test_text.py new file mode 100644 index 000000000..17429617c --- /dev/null +++ b/spacy/tests/lang/tl/test_text.py @@ -0,0 +1,73 @@ +import pytest +from spacy.lang.tl.lex_attrs import like_num + +# https://github.com/explosion/spaCy/blob/master/spacy/tests/lang/en/test_text.py + + +def test_tl_tokenizer_handles_long_text(tl_tokenizer): + # Excerpt: "Sapagkat ang Pilosopiya ay Ginagawa" by Padre Roque Ferriols + text = """ + Tingin tayo nang tingin. Kailangan lamang nating dumilat at + marami tayong makikita. At ang pagtingin ay isang gawain na ako lamang ang + makagagawa, kung ako nga ang makakita. Kahit na napanood na ng aking + matalik na kaibigan ang isang sine, kailangan ko pa ring panoorin, kung + ako nga ang may gustong makakita. Kahit na gaano kadikit ang aming + pagkabuklod, hindi siya maaaring tumingin sa isang paraan na ako ang + nakakakita. Kung ako ang makakita, ako lamang ang makatitingin. + """ + tokens = tl_tokenizer(text) + assert len(tokens) == 97 + + +@pytest.mark.parametrize( + "text,length", + [ + ("Huwag mo nang itanong sa akin.", 7), + ("Nasubukan mo na bang hulihin ang hangin?", 8), + ("Hindi ba?", 3), + ("Nagbukas ang DFA ng 1,000 appointment slots para sa pasaporte.", 11), + ("'Wala raw pasok bukas kasi may bagyo!' sabi ni Micah.", 14), + ("'Ingat,' aniya. 'Maingay sila pag malayo at tahimik kung malapit.'", 17), + ], +) +def test_tl_tokenizer_handles_cnts(tl_tokenizer, text, length): + tokens = tl_tokenizer(text) + assert len(tokens) == length + + +@pytest.mark.parametrize( + "text,match", + [ + ("10", True), + ("isa", True), + ("dalawa", True), + ("tatlumpu", True), + pytest.param( + "isang daan", + True, + marks=pytest.mark.xfail(reason="Not yet implemented (means 100)"), + ), + pytest.param( + "kalahati", + True, + marks=pytest.mark.xfail(reason="Not yet implemented (means 1/2)"), + ), + pytest.param( + "isa't kalahati", + True, + marks=pytest.mark.xfail( + reason="Not yet implemented (means one-and-a-half)" + ), + ), + ], +) +def test_lex_attrs_like_number(tl_tokenizer, text, match): + tokens = tl_tokenizer(text) + assert all([token.like_num for token in tokens]) == match + + +@pytest.mark.xfail(reason="Not yet implemented, fails when capitalized.") +@pytest.mark.parametrize("word", ["isa", "dalawa", "tatlo"]) +def test_tl_lex_attrs_capitals(word): + assert like_num(word) + assert like_num(word.upper()) diff --git a/spacy/tests/lang/vi/test_serialize.py b/spacy/tests/lang/vi/test_serialize.py index ed4652df7..55dab799c 100644 --- a/spacy/tests/lang/vi/test_serialize.py +++ b/spacy/tests/lang/vi/test_serialize.py @@ -1,3 +1,5 @@ +import pickle + from spacy.lang.vi import Vietnamese from ...util import make_tempdir @@ -31,3 +33,9 @@ def test_vi_tokenizer_serialize(vi_tokenizer): nlp_r.from_disk(d) assert nlp_bytes == nlp_r.to_bytes() assert nlp_r.tokenizer.use_pyvi is False + + +def test_vi_tokenizer_pickle(vi_tokenizer): + b = pickle.dumps(vi_tokenizer) + vi_tokenizer_re = pickle.loads(b) + assert vi_tokenizer.to_bytes() == vi_tokenizer_re.to_bytes() diff --git a/spacy/tests/lang/xx/__init__.py b/spacy/tests/lang/xx/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/spacy/tests/lang/xx/test_text.py b/spacy/tests/lang/xx/test_text.py new file mode 100644 index 000000000..477f0ebe2 --- /dev/null +++ b/spacy/tests/lang/xx/test_text.py @@ -0,0 +1,24 @@ +import pytest + + +def test_long_text(xx_tokenizer): + # Excerpt: Text in Skolt Sami taken from https://www.samediggi.fi + text = """ +Säʹmmla lie Euroopp unioon oʹdinakai alggmeer. Säʹmmlai alggmeerstatus lij raʹvvjum Lääʹddjânnam vuâđđlääʹjjest. +Alggmeer kriteeʹr vuâđđâʹvve meeraikõskksaž tuâjjorganisaatio, ILO, suåppmõʹšše nââmar 169. +Suåppmõõžž mieʹldd jiõččvälddsaž jânnmin jälsteei meeraid ââʹnet alggmeeran, +ko sij puõlvvâʹvve naroodâst, kååʹtt jânnam välddmõõžž leʹbe aazztummuž leʹbe ânnʼjõž riikkraaʹji šõddâm ääiʹj jälste +jânnmest leʹbe tõn mäddtiõđlaž vuuʹdest, koozz jânnam kooll. Alggmeer ij leäkku mieʹrreei sââʹjest jiiʹjjes jälstemvuuʹdest. +Alggmeer âlgg jiõčč ââʹnned jiiʹjjes alggmeeran leʹbe leeʹd tõn miõlâst, što sij lie alggmeer. +Alggmeer lij õlggâm seeilted vuõiggâdvuõđlaž sââʹjest huõlǩâni obbnes leʹbe vueʹzzi jiiʹjjes sosiaalʼlaž, täälʼlaž, +kulttuurlaž da poliittlaž instituutioid. + +Säʹmmlai statuuzz ǩeeʹrjteš Lääʹddjânnam vuâđđläkka eeʹjj 1995. Säʹmmlain alggmeeran lij vuõiggâdvuõtt tuõʹllʼjed da +ooudâsviikkâd ǩiõlâz da kulttuurâz di tõõzz kuulli ääʹrbvuâlaž jieʹllemvueʹjjeez. Sääʹmǩiõl ââʹnnmest veʹrǧǧniiʹǩǩi +åʹrnn lij šiõttuum jiiʹjjes lääʹǩǩ. Säʹmmlain lij leämmaž eeʹjjest 1996 vueʹljeeʹl dommvuuʹdsteez ǩiõlâz da kulttuurâz kuõskki +vuâđđlääʹjj meâldlaž jiõččvaaldâšm. Säʹmmlai jiõččvaldšma kuulli tuâjaid håidd säʹmmlai vaalin vaʹlljääm parlameʹntt, +Sääʹmteʹǧǧ. +""" + + tokens = xx_tokenizer(text) + assert len(tokens) == 179 diff --git a/spacy/tests/lang/xx/test_tokenizer.py b/spacy/tests/lang/xx/test_tokenizer.py new file mode 100644 index 000000000..15c760a6b --- /dev/null +++ b/spacy/tests/lang/xx/test_tokenizer.py @@ -0,0 +1,25 @@ +import pytest + +XX_BASIC_TOKENIZATION_TESTS = [ + ( + "Lääʹddjânnmest lie nuʹtt 10 000 säʹmmliʹžžed. Seeʹst pâʹjjel", + [ + "Lääʹddjânnmest", + "lie", + "nuʹtt", + "10", + "000", + "säʹmmliʹžžed", + ".", + "Seeʹst", + "pâʹjjel", + ], + ), +] + + +@pytest.mark.parametrize("text,expected_tokens", XX_BASIC_TOKENIZATION_TESTS) +def test_xx_tokenizer_basic(xx_tokenizer, text, expected_tokens): + tokens = xx_tokenizer(text) + token_list = [token.text for token in tokens if not token.is_space] + assert expected_tokens == token_list diff --git a/spacy/tests/matcher/test_dependency_matcher.py b/spacy/tests/matcher/test_dependency_matcher.py index 61ae43c52..1728c82af 100644 --- a/spacy/tests/matcher/test_dependency_matcher.py +++ b/spacy/tests/matcher/test_dependency_matcher.py @@ -370,6 +370,7 @@ def test_dependency_matcher_span_user_data(en_tokenizer): assert doc_t_i == span_t_i + offset +@pytest.mark.issue(9263) def test_dependency_matcher_order_issue(en_tokenizer): # issue from #9263 doc = en_tokenizer("I like text") @@ -415,6 +416,7 @@ def test_dependency_matcher_order_issue(en_tokenizer): assert matches == [] +@pytest.mark.issue(9263) def test_dependency_matcher_remove(en_tokenizer): # issue from #9263 doc = en_tokenizer("The red book") diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py index c02d65cdf..a27baf130 100644 --- a/spacy/tests/matcher/test_matcher_api.py +++ b/spacy/tests/matcher/test_matcher_api.py @@ -642,3 +642,30 @@ def test_matcher_no_zero_length(en_vocab): matcher = Matcher(en_vocab) matcher.add("TEST", [[{"TAG": "C", "OP": "?"}]]) assert len(matcher(doc)) == 0 + + +def test_matcher_ent_iob_key(en_vocab): + """Test that patterns with ent_iob works correctly.""" + matcher = Matcher(en_vocab) + matcher.add("Rule", [[{"ENT_IOB": "I"}]]) + doc1 = Doc(en_vocab, words=["I", "visited", "New", "York", "and", "California"]) + doc1.ents = [Span(doc1, 2, 4, label="GPE"), Span(doc1, 5, 6, label="GPE")] + doc2 = Doc(en_vocab, words=["I", "visited", "my", "friend", "Alicia"]) + doc2.ents = [Span(doc2, 4, 5, label="PERSON")] + matches1 = [doc1[start:end].text for _, start, end in matcher(doc1)] + matches2 = [doc2[start:end].text for _, start, end in matcher(doc2)] + assert len(matches1) == 1 + assert matches1[0] == "York" + assert len(matches2) == 0 + + matcher = Matcher(en_vocab) # Test iob pattern with operators + matcher.add("Rule", [[{"ENT_IOB": "I", "OP": "+"}]]) + doc = Doc( + en_vocab, words=["I", "visited", "my", "friend", "Anna", "Maria", "Esperanza"] + ) + doc.ents = [Span(doc, 4, 7, label="PERSON")] + matches = [doc[start:end].text for _, start, end in matcher(doc)] + assert len(matches) == 3 + assert matches[0] == "Maria" + assert matches[1] == "Maria Esperanza" + assert matches[2] == "Esperanza" diff --git a/spacy/tests/matcher/test_matcher_logic.py b/spacy/tests/matcher/test_matcher_logic.py index dcbe1ff33..3649b07ed 100644 --- a/spacy/tests/matcher/test_matcher_logic.py +++ b/spacy/tests/matcher/test_matcher_logic.py @@ -1,10 +1,14 @@ -import pytest import re -from spacy.lang.en import English -from spacy.matcher import Matcher -from spacy.tokens import Doc, Span +import pytest +from spacy.attrs import IS_PUNCT, LOWER, ORTH +from spacy.errors import MatchPatternError +from spacy.lang.en import English +from spacy.lang.lex_attrs import LEX_ATTRS +from spacy.matcher import Matcher +from spacy.tokens import Doc, Span, Token +from spacy.vocab import Vocab pattern1 = [{"ORTH": "A"}, {"ORTH": "A", "OP": "*"}] pattern2 = [{"ORTH": "A", "OP": "*"}, {"ORTH": "A"}] @@ -36,6 +40,473 @@ def doc(en_tokenizer, text): return doc +@pytest.mark.issue(118) +@pytest.mark.parametrize( + "patterns", + [ + [[{"LOWER": "celtics"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], + [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "celtics"}]], + ], +) +def test_issue118(en_tokenizer, patterns): + """Test a bug that arose from having overlapping matches""" + text = ( + "how many points did lebron james score against the boston celtics last night" + ) + doc = en_tokenizer(text) + ORG = doc.vocab.strings["ORG"] + matcher = Matcher(doc.vocab) + matcher.add("BostonCeltics", patterns) + assert len(list(doc.ents)) == 0 + matches = [(ORG, start, end) for _, start, end in matcher(doc)] + assert matches == [(ORG, 9, 11), (ORG, 10, 11)] + doc.ents = matches[:1] + ents = list(doc.ents) + assert len(ents) == 1 + assert ents[0].label == ORG + assert ents[0].start == 9 + assert ents[0].end == 11 + + +@pytest.mark.issue(118) +@pytest.mark.parametrize( + "patterns", + [ + [[{"LOWER": "boston"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], + [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "boston"}]], + ], +) +def test_issue118_prefix_reorder(en_tokenizer, patterns): + """Test a bug that arose from having overlapping matches""" + text = ( + "how many points did lebron james score against the boston celtics last night" + ) + doc = en_tokenizer(text) + ORG = doc.vocab.strings["ORG"] + matcher = Matcher(doc.vocab) + matcher.add("BostonCeltics", patterns) + assert len(list(doc.ents)) == 0 + matches = [(ORG, start, end) for _, start, end in matcher(doc)] + doc.ents += tuple(matches)[1:] + assert matches == [(ORG, 9, 10), (ORG, 9, 11)] + ents = doc.ents + assert len(ents) == 1 + assert ents[0].label == ORG + assert ents[0].start == 9 + assert ents[0].end == 11 + + +@pytest.mark.issue(242) +def test_issue242(en_tokenizer): + """Test overlapping multi-word phrases.""" + text = "There are different food safety standards in different countries." + patterns = [ + [{"LOWER": "food"}, {"LOWER": "safety"}], + [{"LOWER": "safety"}, {"LOWER": "standards"}], + ] + doc = en_tokenizer(text) + matcher = Matcher(doc.vocab) + matcher.add("FOOD", patterns) + matches = [(ent_type, start, end) for ent_type, start, end in matcher(doc)] + match1, match2 = matches + assert match1[1] == 3 + assert match1[2] == 5 + assert match2[1] == 4 + assert match2[2] == 6 + with pytest.raises(ValueError): + # One token can only be part of one entity, so test that the matches + # can't be added as entities + doc.ents += tuple(matches) + + +@pytest.mark.issue(587) +def test_issue587(en_tokenizer): + """Test that Matcher doesn't segfault on particular input""" + doc = en_tokenizer("a b; c") + matcher = Matcher(doc.vocab) + matcher.add("TEST1", [[{ORTH: "a"}, {ORTH: "b"}]]) + matches = matcher(doc) + assert len(matches) == 1 + matcher.add("TEST2", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "c"}]]) + matches = matcher(doc) + assert len(matches) == 2 + matcher.add("TEST3", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "d"}]]) + matches = matcher(doc) + assert len(matches) == 2 + + +@pytest.mark.issue(588) +def test_issue588(en_vocab): + """Test if empty specs still cause an error when adding patterns""" + matcher = Matcher(en_vocab) + with pytest.raises(ValueError): + matcher.add("TEST", [[]]) + + +@pytest.mark.issue(590) +def test_issue590(en_vocab): + """Test overlapping matches""" + doc = Doc(en_vocab, words=["n", "=", "1", ";", "a", ":", "5", "%"]) + matcher = Matcher(en_vocab) + matcher.add( + "ab", [[{"IS_ALPHA": True}, {"ORTH": ":"}, {"LIKE_NUM": True}, {"ORTH": "%"}]] + ) + matcher.add("ab", [[{"IS_ALPHA": True}, {"ORTH": "="}, {"LIKE_NUM": True}]]) + matches = matcher(doc) + assert len(matches) == 2 + + +@pytest.mark.issue(615) +def test_issue615(en_tokenizer): + def merge_phrases(matcher, doc, i, matches): + """Merge a phrase. We have to be careful here because we'll change the + token indices. To avoid problems, merge all the phrases once we're called + on the last match.""" + if i != len(matches) - 1: + return None + spans = [Span(doc, start, end, label=label) for label, start, end in matches] + with doc.retokenize() as retokenizer: + for span in spans: + tag = "NNP" if span.label_ else span.root.tag_ + attrs = {"tag": tag, "lemma": span.text} + retokenizer.merge(span, attrs=attrs) + doc.ents = doc.ents + (span,) + + text = "The golf club is broken" + pattern = [{"ORTH": "golf"}, {"ORTH": "club"}] + label = "Sport_Equipment" + doc = en_tokenizer(text) + matcher = Matcher(doc.vocab) + matcher.add(label, [pattern], on_match=merge_phrases) + matcher(doc) + entities = list(doc.ents) + assert entities != [] + assert entities[0].label != 0 + + +@pytest.mark.issue(850) +def test_issue850(): + """The variable-length pattern matches the succeeding token. Check we + handle the ambiguity correctly.""" + vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) + matcher = Matcher(vocab) + pattern = [{"LOWER": "bob"}, {"OP": "*"}, {"LOWER": "frank"}] + matcher.add("FarAway", [pattern]) + doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) + match = matcher(doc) + assert len(match) == 1 + ent_id, start, end = match[0] + assert start == 0 + assert end == 4 + + +@pytest.mark.issue(850) +def test_issue850_basic(): + """Test Matcher matches with '*' operator and Boolean flag""" + vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) + matcher = Matcher(vocab) + pattern = [{"LOWER": "bob"}, {"OP": "*", "LOWER": "and"}, {"LOWER": "frank"}] + matcher.add("FarAway", [pattern]) + doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) + match = matcher(doc) + assert len(match) == 1 + ent_id, start, end = match[0] + assert start == 0 + assert end == 4 + + +@pytest.mark.issue(1434) +def test_issue1434(): + """Test matches occur when optional element at end of short doc.""" + pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}] + vocab = Vocab(lex_attr_getters=LEX_ATTRS) + hello_world = Doc(vocab, words=["Hello", "World"]) + hello = Doc(vocab, words=["Hello"]) + matcher = Matcher(vocab) + matcher.add("MyMatcher", [pattern]) + matches = matcher(hello_world) + assert matches + matches = matcher(hello) + assert matches + + +@pytest.mark.parametrize( + "string,start,end", + [ + ("a", 0, 1), + ("a b", 0, 2), + ("a c", 0, 1), + ("a b c", 0, 2), + ("a b b c", 0, 3), + ("a b b", 0, 3), + ], +) +@pytest.mark.issue(1450) +def test_issue1450(string, start, end): + """Test matcher works when patterns end with * operator.""" + pattern = [{"ORTH": "a"}, {"ORTH": "b", "OP": "*"}] + matcher = Matcher(Vocab()) + matcher.add("TSTEND", [pattern]) + doc = Doc(Vocab(), words=string.split()) + matches = matcher(doc) + if start is None or end is None: + assert matches == [] + assert matches[-1][1] == start + assert matches[-1][2] == end + + +@pytest.mark.issue(1945) +def test_issue1945(): + """Test regression in Matcher introduced in v2.0.6.""" + matcher = Matcher(Vocab()) + matcher.add("MWE", [[{"orth": "a"}, {"orth": "a"}]]) + doc = Doc(matcher.vocab, words=["a", "a", "a"]) + matches = matcher(doc) # we should see two overlapping matches here + assert len(matches) == 2 + assert matches[0][1:] == (0, 2) + assert matches[1][1:] == (1, 3) + + +@pytest.mark.issue(1971) +def test_issue1971(en_vocab): + # Possibly related to #2675 and #2671? + matcher = Matcher(en_vocab) + pattern = [ + {"ORTH": "Doe"}, + {"ORTH": "!", "OP": "?"}, + {"_": {"optional": True}, "OP": "?"}, + {"ORTH": "!", "OP": "?"}, + ] + Token.set_extension("optional", default=False) + matcher.add("TEST", [pattern]) + doc = Doc(en_vocab, words=["Hello", "John", "Doe", "!"]) + # We could also assert length 1 here, but this is more conclusive, because + # the real problem here is that it returns a duplicate match for a match_id + # that's not actually in the vocab! + matches = matcher(doc) + assert all([match_id in en_vocab.strings for match_id, start, end in matches]) + + +@pytest.mark.issue(1971) +def test_issue_1971_2(en_vocab): + matcher = Matcher(en_vocab) + pattern1 = [{"ORTH": "EUR", "LOWER": {"IN": ["eur"]}}, {"LIKE_NUM": True}] + pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}] # {"IN": ["EUR"]}}] + doc = Doc(en_vocab, words=["EUR", "10", "is", "10", "EUR"]) + matcher.add("TEST1", [pattern1, pattern2]) + matches = matcher(doc) + assert len(matches) == 2 + + +@pytest.mark.issue(1971) +def test_issue_1971_3(en_vocab): + """Test that pattern matches correctly for multiple extension attributes.""" + Token.set_extension("a", default=1, force=True) + Token.set_extension("b", default=2, force=True) + doc = Doc(en_vocab, words=["hello", "world"]) + matcher = Matcher(en_vocab) + matcher.add("A", [[{"_": {"a": 1}}]]) + matcher.add("B", [[{"_": {"b": 2}}]]) + matches = sorted((en_vocab.strings[m_id], s, e) for m_id, s, e in matcher(doc)) + assert len(matches) == 4 + assert matches == sorted([("A", 0, 1), ("A", 1, 2), ("B", 0, 1), ("B", 1, 2)]) + + +@pytest.mark.issue(1971) +def test_issue_1971_4(en_vocab): + """Test that pattern matches correctly with multiple extension attribute + values on a single token. + """ + Token.set_extension("ext_a", default="str_a", force=True) + Token.set_extension("ext_b", default="str_b", force=True) + matcher = Matcher(en_vocab) + doc = Doc(en_vocab, words=["this", "is", "text"]) + pattern = [{"_": {"ext_a": "str_a", "ext_b": "str_b"}}] * 3 + matcher.add("TEST", [pattern]) + matches = matcher(doc) + # Uncommenting this caused a segmentation fault + assert len(matches) == 1 + assert matches[0] == (en_vocab.strings["TEST"], 0, 3) + + +@pytest.mark.issue(2464) +def test_issue2464(en_vocab): + """Test problem with successive ?. This is the same bug, so putting it here.""" + matcher = Matcher(en_vocab) + doc = Doc(en_vocab, words=["a", "b"]) + matcher.add("4", [[{"OP": "?"}, {"OP": "?"}]]) + matches = matcher(doc) + assert len(matches) == 3 + + +@pytest.mark.issue(2569) +def test_issue2569(en_tokenizer): + """Test that operator + is greedy.""" + doc = en_tokenizer("It is May 15, 1993.") + doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])] + matcher = Matcher(doc.vocab) + matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]]) + matched = [doc[start:end] for _, start, end in matcher(doc)] + matched = sorted(matched, key=len, reverse=True) + assert len(matched) == 10 + assert len(matched[0]) == 4 + assert matched[0].text == "May 15, 1993" + + +@pytest.mark.issue(2671) +def test_issue2671(): + """Ensure the correct entity ID is returned for matches with quantifiers. + See also #2675 + """ + nlp = English() + matcher = Matcher(nlp.vocab) + pattern_id = "test_pattern" + pattern = [ + {"LOWER": "high"}, + {"IS_PUNCT": True, "OP": "?"}, + {"LOWER": "adrenaline"}, + ] + matcher.add(pattern_id, [pattern]) + doc1 = nlp("This is a high-adrenaline situation.") + doc2 = nlp("This is a high adrenaline situation.") + matches1 = matcher(doc1) + for match_id, start, end in matches1: + assert nlp.vocab.strings[match_id] == pattern_id + matches2 = matcher(doc2) + for match_id, start, end in matches2: + assert nlp.vocab.strings[match_id] == pattern_id + + +@pytest.mark.issue(3009) +def test_issue3009(en_vocab): + """Test problem with matcher quantifiers""" + patterns = [ + [{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}], + [ + {"ORTH": "has"}, + {"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"}, + {"LOWER": "to"}, + {"LOWER": "do"}, + {"TAG": "IN"}, + ], + [ + {"ORTH": "has"}, + {"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"}, + {"LOWER": "to"}, + {"LOWER": "do"}, + {"TAG": "IN"}, + ], + ] + words = ["also", "has", "to", "do", "with"] + tags = ["RB", "VBZ", "TO", "VB", "IN"] + pos = ["ADV", "VERB", "ADP", "VERB", "ADP"] + doc = Doc(en_vocab, words=words, tags=tags, pos=pos) + matcher = Matcher(en_vocab) + for i, pattern in enumerate(patterns): + matcher.add(str(i), [pattern]) + matches = matcher(doc) + assert matches + + +@pytest.mark.issue(3328) +def test_issue3328(en_vocab): + doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"]) + matcher = Matcher(en_vocab) + patterns = [ + [{"LOWER": {"IN": ["hello", "how"]}}], + [{"LOWER": {"IN": ["you", "doing"]}}], + ] + matcher.add("TEST", patterns) + matches = matcher(doc) + assert len(matches) == 4 + matched_texts = [doc[start:end].text for _, start, end in matches] + assert matched_texts == ["Hello", "how", "you", "doing"] + + +@pytest.mark.issue(3549) +def test_issue3549(en_vocab): + """Test that match pattern validation doesn't raise on empty errors.""" + matcher = Matcher(en_vocab, validate=True) + pattern = [{"LOWER": "hello"}, {"LOWER": "world"}] + matcher.add("GOOD", [pattern]) + with pytest.raises(MatchPatternError): + matcher.add("BAD", [[{"X": "Y"}]]) + + +@pytest.mark.skip("Matching currently only works on strings and integers") +@pytest.mark.issue(3555) +def test_issue3555(en_vocab): + """Test that custom extensions with default None don't break matcher.""" + Token.set_extension("issue3555", default=None) + matcher = Matcher(en_vocab) + pattern = [{"ORTH": "have"}, {"_": {"issue3555": True}}] + matcher.add("TEST", [pattern]) + doc = Doc(en_vocab, words=["have", "apple"]) + matcher(doc) + + +@pytest.mark.issue(3839) +def test_issue3839(en_vocab): + """Test that match IDs returned by the matcher are correct, are in the string""" + doc = Doc(en_vocab, words=["terrific", "group", "of", "people"]) + matcher = Matcher(en_vocab) + match_id = "PATTERN" + pattern1 = [{"LOWER": "terrific"}, {"OP": "?"}, {"LOWER": "group"}] + pattern2 = [{"LOWER": "terrific"}, {"OP": "?"}, {"OP": "?"}, {"LOWER": "group"}] + matcher.add(match_id, [pattern1]) + matches = matcher(doc) + assert matches[0][0] == en_vocab.strings[match_id] + matcher = Matcher(en_vocab) + matcher.add(match_id, [pattern2]) + matches = matcher(doc) + assert matches[0][0] == en_vocab.strings[match_id] + + +@pytest.mark.issue(3879) +def test_issue3879(en_vocab): + doc = Doc(en_vocab, words=["This", "is", "a", "test", "."]) + assert len(doc) == 5 + pattern = [{"ORTH": "This", "OP": "?"}, {"OP": "?"}, {"ORTH": "test"}] + matcher = Matcher(en_vocab) + matcher.add("TEST", [pattern]) + assert len(matcher(doc)) == 2 # fails because of a FP match 'is a test' + + +@pytest.mark.issue(3951) +def test_issue3951(en_vocab): + """Test that combinations of optional rules are matched correctly.""" + matcher = Matcher(en_vocab) + pattern = [ + {"LOWER": "hello"}, + {"LOWER": "this", "OP": "?"}, + {"OP": "?"}, + {"LOWER": "world"}, + ] + matcher.add("TEST", [pattern]) + doc = Doc(en_vocab, words=["Hello", "my", "new", "world"]) + matches = matcher(doc) + assert len(matches) == 0 + + +@pytest.mark.issue(4120) +def test_issue4120(en_vocab): + """Test that matches without a final {OP: ?} token are returned.""" + matcher = Matcher(en_vocab) + matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}]]) + doc1 = Doc(en_vocab, words=["a"]) + assert len(matcher(doc1)) == 1 # works + doc2 = Doc(en_vocab, words=["a", "b", "c"]) + assert len(matcher(doc2)) == 2 # fixed + matcher = Matcher(en_vocab) + matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b"}]]) + doc3 = Doc(en_vocab, words=["a", "b", "b", "c"]) + assert len(matcher(doc3)) == 2 # works + matcher = Matcher(en_vocab) + matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b", "OP": "?"}]]) + doc4 = Doc(en_vocab, words=["a", "b", "b", "c"]) + assert len(matcher(doc4)) == 3 # fixed + + @pytest.mark.parametrize( "pattern,re_pattern", [ @@ -152,6 +623,7 @@ def test_operator_combos(en_vocab): assert not matches, (string, pattern_str) +@pytest.mark.issue(1450) def test_matcher_end_zero_plus(en_vocab): """Test matcher works when patterns end with * operator. (issue 1450)""" matcher = Matcher(en_vocab) diff --git a/spacy/tests/matcher/test_pattern_validation.py b/spacy/tests/matcher/test_pattern_validation.py index 4d21aea81..8c265785c 100644 --- a/spacy/tests/matcher/test_pattern_validation.py +++ b/spacy/tests/matcher/test_pattern_validation.py @@ -12,6 +12,7 @@ TEST_PATTERNS = [ ([{"IS_PUNCT": True, "OP": "$"}], 1, 1), ([{"_": "foo"}], 1, 1), ('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1), + ([{"ENT_IOB": "foo"}], 1, 1), ([1, 2, 3], 3, 1), # Bad patterns flagged outside of Matcher ([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 2, 0), # prev: (1, 0) @@ -22,6 +23,8 @@ TEST_PATTERNS = [ ([{"TEXT": {"VALUE": "foo"}}], 2, 0), # prev: (1, 0) ([{"IS_DIGIT": -1}], 1, 0), ([{"ORTH": -1}], 1, 0), + ([{"ENT_ID": -1}], 1, 0), + ([{"ENT_KB_ID": -1}], 1, 0), # Good patterns ([{"TEXT": "foo"}, {"LOWER": "bar"}], 0, 0), ([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0, 0), @@ -33,6 +36,8 @@ TEST_PATTERNS = [ ([{"orth": "foo"}], 0, 0), # prev: xfail ([{"IS_SENT_START": True}], 0, 0), ([{"SENT_START": True}], 0, 0), + ([{"ENT_ID": "STRING"}], 0, 0), + ([{"ENT_KB_ID": "STRING"}], 0, 0), ] diff --git a/spacy/tests/matcher/test_phrase_matcher.py b/spacy/tests/matcher/test_phrase_matcher.py index 478949601..f893d81f8 100644 --- a/spacy/tests/matcher/test_phrase_matcher.py +++ b/spacy/tests/matcher/test_phrase_matcher.py @@ -1,8 +1,125 @@ import pytest import srsly from mock import Mock -from spacy.matcher import PhraseMatcher + +from spacy.lang.en import English +from spacy.matcher import PhraseMatcher, Matcher from spacy.tokens import Doc, Span +from spacy.vocab import Vocab + + +from ..util import make_tempdir + + +@pytest.mark.issue(3248) +def test_issue3248_1(): + """Test that the PhraseMatcher correctly reports its number of rules, not + total number of patterns.""" + nlp = English() + matcher = PhraseMatcher(nlp.vocab) + matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) + matcher.add("TEST2", [nlp("d")]) + assert len(matcher) == 2 + + +@pytest.mark.issue(3331) +def test_issue3331(en_vocab): + """Test that duplicate patterns for different rules result in multiple + matches, one per rule. + """ + matcher = PhraseMatcher(en_vocab) + matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])]) + matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])]) + doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"]) + matches = matcher(doc) + assert len(matches) == 2 + match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]] + assert sorted(match_ids) == ["A", "B"] + + +@pytest.mark.issue(3972) +def test_issue3972(en_vocab): + """Test that the PhraseMatcher returns duplicates for duplicate match IDs.""" + matcher = PhraseMatcher(en_vocab) + matcher.add("A", [Doc(en_vocab, words=["New", "York"])]) + matcher.add("B", [Doc(en_vocab, words=["New", "York"])]) + doc = Doc(en_vocab, words=["I", "live", "in", "New", "York"]) + matches = matcher(doc) + + assert len(matches) == 2 + + # We should have a match for each of the two rules + found_ids = [en_vocab.strings[ent_id] for (ent_id, _, _) in matches] + assert "A" in found_ids + assert "B" in found_ids + + +@pytest.mark.issue(4002) +def test_issue4002(en_vocab): + """Test that the PhraseMatcher can match on overwritten NORM attributes.""" + matcher = PhraseMatcher(en_vocab, attr="NORM") + pattern1 = Doc(en_vocab, words=["c", "d"]) + assert [t.norm_ for t in pattern1] == ["c", "d"] + matcher.add("TEST", [pattern1]) + doc = Doc(en_vocab, words=["a", "b", "c", "d"]) + assert [t.norm_ for t in doc] == ["a", "b", "c", "d"] + matches = matcher(doc) + assert len(matches) == 1 + matcher = PhraseMatcher(en_vocab, attr="NORM") + pattern2 = Doc(en_vocab, words=["1", "2"]) + pattern2[0].norm_ = "c" + pattern2[1].norm_ = "d" + assert [t.norm_ for t in pattern2] == ["c", "d"] + matcher.add("TEST", [pattern2]) + matches = matcher(doc) + assert len(matches) == 1 + + +@pytest.mark.issue(4373) +def test_issue4373(): + """Test that PhraseMatcher.vocab can be accessed (like Matcher.vocab).""" + matcher = Matcher(Vocab()) + assert isinstance(matcher.vocab, Vocab) + matcher = PhraseMatcher(Vocab()) + assert isinstance(matcher.vocab, Vocab) + + +@pytest.mark.issue(4651) +def test_issue4651_with_phrase_matcher_attr(): + """Test that the EntityRuler PhraseMatcher is deserialized correctly using + the method from_disk when the EntityRuler argument phrase_matcher_attr is + specified. + """ + text = "Spacy is a python library for nlp" + nlp = English() + patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}] + ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) + ruler.add_patterns(patterns) + doc = nlp(text) + res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents] + nlp_reloaded = English() + with make_tempdir() as d: + file_path = d / "entityruler" + ruler.to_disk(file_path) + nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path) + doc_reloaded = nlp_reloaded(text) + res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents] + assert res == res_reloaded + + +@pytest.mark.issue(6839) +def test_issue6839(en_vocab): + """Ensure that PhraseMatcher accepts Span as input""" + # fmt: off + words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."] + # fmt: on + doc = Doc(en_vocab, words=words) + span = doc[:8] + pattern = Doc(en_vocab, words=["Spans", "and", "Docs"]) + matcher = PhraseMatcher(en_vocab) + matcher.add("SPACY", [pattern]) + matches = matcher(span) + assert matches def test_matcher_phrase_matcher(en_vocab): diff --git a/spacy/tests/parser/test_arc_eager_oracle.py b/spacy/tests/parser/test_arc_eager_oracle.py index cba6fa81e..bb226f9c5 100644 --- a/spacy/tests/parser/test_arc_eager_oracle.py +++ b/spacy/tests/parser/test_arc_eager_oracle.py @@ -40,6 +40,28 @@ def arc_eager(vocab): return moves +@pytest.mark.issue(7056) +def test_issue7056(): + """Test that the Unshift transition works properly, and doesn't cause + sentence segmentation errors.""" + vocab = Vocab() + ae = ArcEager( + vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"]) + ) + doc = Doc(vocab, words="Severe pain , after trauma".split()) + state = ae.init_batch([doc])[0] + ae.apply_transition(state, "S") + ae.apply_transition(state, "L-amod") + ae.apply_transition(state, "S") + ae.apply_transition(state, "S") + ae.apply_transition(state, "S") + ae.apply_transition(state, "R-pobj") + ae.apply_transition(state, "D") + ae.apply_transition(state, "D") + ae.apply_transition(state, "D") + assert not state.eol() + + def test_oracle_four_words(arc_eager, vocab): words = ["a", "b", "c", "d"] heads = [1, 1, 3, 3] diff --git a/spacy/tests/parser/test_ner.py b/spacy/tests/parser/test_ner.py index c7e4fb826..05a466d87 100644 --- a/spacy/tests/parser/test_ner.py +++ b/spacy/tests/parser/test_ner.py @@ -1,13 +1,16 @@ +import random + import pytest from numpy.testing import assert_equal -from spacy.attrs import ENT_IOB +from spacy.attrs import ENT_IOB from spacy import util, registry from spacy.lang.en import English +from spacy.lang.it import Italian from spacy.language import Language from spacy.lookups import Lookups from spacy.pipeline._parser_internals.ner import BiluoPushDown -from spacy.training import Example +from spacy.training import Example, iob_to_biluo from spacy.tokens import Doc, Span from spacy.vocab import Vocab from thinc.api import fix_random_seed @@ -59,6 +62,152 @@ def tsys(vocab, entity_types): return BiluoPushDown(vocab.strings, actions) +@pytest.mark.parametrize("label", ["U-JOB-NAME"]) +@pytest.mark.issue(1967) +def test_issue1967(label): + nlp = Language() + config = {} + ner = nlp.create_pipe("ner", config=config) + example = Example.from_dict( + Doc(ner.vocab, words=["word"]), + { + "ids": [0], + "words": ["word"], + "tags": ["tag"], + "heads": [0], + "deps": ["dep"], + "entities": [label], + }, + ) + assert "JOB-NAME" in ner.moves.get_actions(examples=[example])[1] + + +@pytest.mark.issue(2179) +def test_issue2179(): + """Test that spurious 'extra_labels' aren't created when initializing NER.""" + nlp = Italian() + ner = nlp.add_pipe("ner") + ner.add_label("CITIZENSHIP") + nlp.initialize() + nlp2 = Italian() + nlp2.add_pipe("ner") + assert len(nlp2.get_pipe("ner").labels) == 0 + model = nlp2.get_pipe("ner").model + model.attrs["resize_output"](model, nlp.get_pipe("ner").moves.n_moves) + nlp2.from_bytes(nlp.to_bytes()) + assert "extra_labels" not in nlp2.get_pipe("ner").cfg + assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",) + + +@pytest.mark.issue(2385) +def test_issue2385(): + """Test that IOB tags are correctly converted to BILUO tags.""" + # fix bug in labels with a 'b' character + tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER") + assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"] + # maintain support for iob1 format + tags2 = ("I-ORG", "I-ORG", "B-ORG") + assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"] + # maintain support for iob2 format + tags3 = ("B-PERSON", "I-PERSON", "B-PERSON") + assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"] + + +@pytest.mark.issue(2800) +def test_issue2800(): + """Test issue that arises when too many labels are added to NER model. + Used to cause segfault. + """ + nlp = English() + train_data = [] + train_data.extend( + [Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})] + ) + entity_types = [str(i) for i in range(1000)] + ner = nlp.add_pipe("ner") + for entity_type in list(entity_types): + ner.add_label(entity_type) + optimizer = nlp.initialize() + for i in range(20): + losses = {} + random.shuffle(train_data) + for example in train_data: + nlp.update([example], sgd=optimizer, losses=losses, drop=0.5) + + +@pytest.mark.issue(3209) +def test_issue3209(): + """Test issue that occurred in spaCy nightly where NER labels were being + mapped to classes incorrectly after loading the model, when the labels + were added using ner.add_label(). + """ + nlp = English() + ner = nlp.add_pipe("ner") + ner.add_label("ANIMAL") + nlp.initialize() + move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"] + assert ner.move_names == move_names + nlp2 = English() + ner2 = nlp2.add_pipe("ner") + model = ner2.model + model.attrs["resize_output"](model, ner.moves.n_moves) + nlp2.from_bytes(nlp.to_bytes()) + assert ner2.move_names == move_names + + +@pytest.mark.issue(4267) +def test_issue4267(): + """Test that running an entity_ruler after ner gives consistent results""" + nlp = English() + ner = nlp.add_pipe("ner") + ner.add_label("PEOPLE") + nlp.initialize() + assert "ner" in nlp.pipe_names + # assert that we have correct IOB annotations + doc1 = nlp("hi") + assert doc1.has_annotation("ENT_IOB") + for token in doc1: + assert token.ent_iob == 2 + # add entity ruler and run again + patterns = [{"label": "SOFTWARE", "pattern": "spacy"}] + ruler = nlp.add_pipe("entity_ruler") + ruler.add_patterns(patterns) + assert "entity_ruler" in nlp.pipe_names + assert "ner" in nlp.pipe_names + # assert that we still have correct IOB annotations + doc2 = nlp("hi") + assert doc2.has_annotation("ENT_IOB") + for token in doc2: + assert token.ent_iob == 2 + + +@pytest.mark.issue(4313) +def test_issue4313(): + """This should not crash or exit with some strange error code""" + beam_width = 16 + beam_density = 0.0001 + nlp = English() + config = { + "beam_width": beam_width, + "beam_density": beam_density, + } + ner = nlp.add_pipe("beam_ner", config=config) + ner.add_label("SOME_LABEL") + nlp.initialize() + # add a new label to the doc + doc = nlp("What do you think about Apple ?") + assert len(ner.labels) == 1 + assert "SOME_LABEL" in ner.labels + apple_ent = Span(doc, 5, 6, label="MY_ORG") + doc.ents = list(doc.ents) + [apple_ent] + + # ensure the beam_parse still works with the new label + docs = [doc] + ner.beam_parse(docs, drop=0.0, beam_width=beam_width, beam_density=beam_density) + assert len(ner.labels) == 2 + assert "MY_ORG" in ner.labels + + def test_get_oracle_moves(tsys, doc, entity_annots): example = Example.from_dict(doc, {"entities": entity_annots}) act_classes = tsys.get_oracle_sequence(example, _debug=False) diff --git a/spacy/tests/parser/test_parse.py b/spacy/tests/parser/test_parse.py index d597d353d..75b983eee 100644 --- a/spacy/tests/parser/test_parse.py +++ b/spacy/tests/parser/test_parse.py @@ -1,16 +1,19 @@ import pytest from numpy.testing import assert_equal -from spacy.attrs import DEP +from thinc.api import Adam +from spacy import registry, util +from spacy.attrs import DEP, NORM from spacy.lang.en import English from spacy.training import Example from spacy.tokens import Doc +from spacy.vocab import Vocab from spacy import util, registry from thinc.api import fix_random_seed -from ..util import apply_transition_sequence, make_tempdir from ...pipeline import DependencyParser from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL +from ..util import apply_transition_sequence, make_tempdir TRAIN_DATA = [ ( @@ -62,6 +65,94 @@ PARSERS = ["parser"] # TODO: Test beam_parser when ready eps = 0.1 +@pytest.fixture +def vocab(): + return Vocab(lex_attr_getters={NORM: lambda s: s}) + + +@pytest.fixture +def parser(vocab): + vocab.strings.add("ROOT") + cfg = {"model": DEFAULT_PARSER_MODEL} + model = registry.resolve(cfg, validate=True)["model"] + parser = DependencyParser(vocab, model) + parser.cfg["token_vector_width"] = 4 + parser.cfg["hidden_width"] = 32 + # parser.add_label('right') + parser.add_label("left") + parser.initialize(lambda: [_parser_example(parser)]) + sgd = Adam(0.001) + + for i in range(10): + losses = {} + doc = Doc(vocab, words=["a", "b", "c", "d"]) + example = Example.from_dict( + doc, {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]} + ) + parser.update([example], sgd=sgd, losses=losses) + return parser + + +def _parser_example(parser): + doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) + gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]} + return Example.from_dict(doc, gold) + + +@pytest.mark.issue(2772) +def test_issue2772(en_vocab): + """Test that deprojectivization doesn't mess up sentence boundaries.""" + # fmt: off + words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."] + # fmt: on + # A tree with a non-projective (i.e. crossing) arc + # The arcs (0, 4) and (2, 9) cross. + heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9] + deps = ["dep"] * len(heads) + doc = Doc(en_vocab, words=words, heads=heads, deps=deps) + assert doc[1].is_sent_start is False + + +@pytest.mark.issue(3830) +def test_issue3830_no_subtok(): + """Test that the parser doesn't have subtok label if not learn_tokens""" + config = { + "learn_tokens": False, + } + model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] + parser = DependencyParser(Vocab(), model, **config) + parser.add_label("nsubj") + assert "subtok" not in parser.labels + parser.initialize(lambda: [_parser_example(parser)]) + assert "subtok" not in parser.labels + + +@pytest.mark.issue(3830) +def test_issue3830_with_subtok(): + """Test that the parser does have subtok label if learn_tokens=True.""" + config = { + "learn_tokens": True, + } + model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] + parser = DependencyParser(Vocab(), model, **config) + parser.add_label("nsubj") + assert "subtok" not in parser.labels + parser.initialize(lambda: [_parser_example(parser)]) + assert "subtok" in parser.labels + + +@pytest.mark.issue(7716) +@pytest.mark.xfail(reason="Not fixed yet") +def test_partial_annotation(parser): + doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) + doc[2].is_sent_start = False + # Note that if the following line is used, then doc[2].is_sent_start == False + # doc[3].is_sent_start = False + + doc = parser(doc) + assert doc[2].is_sent_start == False + + def test_parser_root(en_vocab): words = ["i", "do", "n't", "have", "other", "assistance"] heads = [3, 3, 3, 3, 5, 3] diff --git a/spacy/tests/pipeline/test_attributeruler.py b/spacy/tests/pipeline/test_attributeruler.py index 9c750ffd0..dab3ebf57 100644 --- a/spacy/tests/pipeline/test_attributeruler.py +++ b/spacy/tests/pipeline/test_attributeruler.py @@ -32,24 +32,6 @@ def pattern_dicts(): ] -@registry.misc("attribute_ruler_patterns") -def attribute_ruler_patterns(): - return [ - { - "patterns": [[{"ORTH": "a"}], [{"ORTH": "irrelevant"}]], - "attrs": {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"}, - }, - # one pattern sets the lemma - {"patterns": [[{"ORTH": "test"}]], "attrs": {"LEMMA": "cat"}}, - # another pattern sets the morphology - { - "patterns": [[{"ORTH": "test"}]], - "attrs": {"MORPH": "Case=Nom|Number=Sing"}, - "index": 0, - }, - ] - - @pytest.fixture def tag_map(): return { @@ -121,7 +103,25 @@ def test_attributeruler_init_patterns(nlp, pattern_dicts): assert doc.has_annotation("LEMMA") assert doc.has_annotation("MORPH") nlp.remove_pipe("attribute_ruler") + # initialize with patterns from misc registry + @registry.misc("attribute_ruler_patterns") + def attribute_ruler_patterns(): + return [ + { + "patterns": [[{"ORTH": "a"}], [{"ORTH": "irrelevant"}]], + "attrs": {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"}, + }, + # one pattern sets the lemma + {"patterns": [[{"ORTH": "test"}]], "attrs": {"LEMMA": "cat"}}, + # another pattern sets the morphology + { + "patterns": [[{"ORTH": "test"}]], + "attrs": {"MORPH": "Case=Nom|Number=Sing"}, + "index": 0, + }, + ] + nlp.config["initialize"]["components"]["attribute_ruler"] = { "patterns": {"@misc": "attribute_ruler_patterns"} } @@ -162,6 +162,26 @@ def test_attributeruler_score(nlp, pattern_dicts): assert scores["lemma_acc"] == pytest.approx(0.2) # no morphs are set assert scores["morph_acc"] is None + nlp.remove_pipe("attribute_ruler") + + # test with custom scorer + @registry.misc("weird_scorer.v1") + def make_weird_scorer(): + def weird_scorer(examples, weird_score, **kwargs): + return {"weird_score": weird_score} + + return weird_scorer + + ruler = nlp.add_pipe( + "attribute_ruler", config={"scorer": {"@misc": "weird_scorer.v1"}} + ) + ruler.initialize(lambda: [], patterns=pattern_dicts) + scores = nlp.evaluate(dev_examples, scorer_cfg={"weird_score": 0.12345}) + assert scores["weird_score"] == 0.12345 + assert "token_acc" in scores + assert "lemma_acc" not in scores + scores = nlp.evaluate(dev_examples, scorer_cfg={"weird_score": 0.23456}) + assert scores["weird_score"] == 0.23456 def test_attributeruler_rule_order(nlp): diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index a98d01964..3740e430e 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -1,18 +1,20 @@ from typing import Callable, Iterable + import pytest from numpy.testing import assert_equal + +from spacy import registry, util from spacy.attrs import ENT_KB_ID from spacy.compat import pickle -from spacy.kb import KnowledgeBase, get_candidates, Candidate -from spacy.vocab import Vocab - -from spacy import util, registry +from spacy.kb import Candidate, KnowledgeBase, get_candidates +from spacy.lang.en import English from spacy.ml import load_kb from spacy.scorer import Scorer -from spacy.training import Example -from spacy.lang.en import English from spacy.tests.util import make_tempdir from spacy.tokens import Span +from spacy.training import Example +from spacy.util import ensure_path +from spacy.vocab import Vocab @pytest.fixture @@ -25,6 +27,198 @@ def assert_almost_equal(a, b): assert a - delta <= b <= a + delta +@pytest.mark.issue(4674) +def test_issue4674(): + """Test that setting entities with overlapping identifiers does not mess up IO""" + nlp = English() + kb = KnowledgeBase(nlp.vocab, entity_vector_length=3) + vector1 = [0.9, 1.1, 1.01] + vector2 = [1.8, 2.25, 2.01] + with pytest.warns(UserWarning): + kb.set_entities( + entity_list=["Q1", "Q1"], + freq_list=[32, 111], + vector_list=[vector1, vector2], + ) + assert kb.get_size_entities() == 1 + # dumping to file & loading back in + with make_tempdir() as d: + dir_path = ensure_path(d) + if not dir_path.exists(): + dir_path.mkdir() + file_path = dir_path / "kb" + kb.to_disk(str(file_path)) + kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3) + kb2.from_disk(str(file_path)) + assert kb2.get_size_entities() == 1 + + +@pytest.mark.issue(6730) +def test_issue6730(en_vocab): + """Ensure that the KB does not accept empty strings, but otherwise IO works fine.""" + from spacy.kb import KnowledgeBase + + kb = KnowledgeBase(en_vocab, entity_vector_length=3) + kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3]) + + with pytest.raises(ValueError): + kb.add_alias(alias="", entities=["1"], probabilities=[0.4]) + assert kb.contains_alias("") is False + + kb.add_alias(alias="x", entities=["1"], probabilities=[0.2]) + kb.add_alias(alias="y", entities=["1"], probabilities=[0.1]) + + with make_tempdir() as tmp_dir: + kb.to_disk(tmp_dir) + kb.from_disk(tmp_dir) + assert kb.get_size_aliases() == 2 + assert set(kb.get_alias_strings()) == {"x", "y"} + + +@pytest.mark.issue(7065) +def test_issue7065(): + text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival." + nlp = English() + nlp.add_pipe("sentencizer") + ruler = nlp.add_pipe("entity_ruler") + patterns = [ + { + "label": "THING", + "pattern": [ + {"LOWER": "symphony"}, + {"LOWER": "no"}, + {"LOWER": "."}, + {"LOWER": "8"}, + ], + } + ] + ruler.add_patterns(patterns) + + doc = nlp(text) + sentences = [s for s in doc.sents] + assert len(sentences) == 2 + sent0 = sentences[0] + ent = doc.ents[0] + assert ent.start < sent0.end < ent.end + assert sentences.index(ent.sent) == 0 + + +@pytest.mark.issue(7065) +def test_issue7065_b(): + # Test that the NEL doesn't crash when an entity crosses a sentence boundary + nlp = English() + vector_length = 3 + nlp.add_pipe("sentencizer") + text = "Mahler 's Symphony No. 8 was beautiful." + entities = [(0, 6, "PERSON"), (10, 24, "WORK")] + links = { + (0, 6): {"Q7304": 1.0, "Q270853": 0.0}, + (10, 24): {"Q7304": 0.0, "Q270853": 1.0}, + } + sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0] + doc = nlp(text) + example = Example.from_dict( + doc, {"entities": entities, "links": links, "sent_starts": sent_starts} + ) + train_examples = [example] + + def create_kb(vocab): + # create artificial KB + mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) + mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7]) + mykb.add_alias( + alias="No. 8", + entities=["Q270853"], + probabilities=[1.0], + ) + mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3]) + mykb.add_alias( + alias="Mahler", + entities=["Q7304"], + probabilities=[1.0], + ) + return mykb + + # Create the Entity Linker component and add it to the pipeline + entity_linker = nlp.add_pipe("entity_linker", last=True) + entity_linker.set_kb(create_kb) + # train the NEL pipe + optimizer = nlp.initialize(get_examples=lambda: train_examples) + for i in range(2): + losses = {} + nlp.update(train_examples, sgd=optimizer, losses=losses) + + # Add a custom rule-based component to mimick NER + patterns = [ + {"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}, + { + "label": "WORK", + "pattern": [ + {"LOWER": "symphony"}, + {"LOWER": "no"}, + {"LOWER": "."}, + {"LOWER": "8"}, + ], + }, + ] + ruler = nlp.add_pipe("entity_ruler", before="entity_linker") + ruler.add_patterns(patterns) + # test the trained model - this should not throw E148 + doc = nlp(text) + assert doc + + +def test_partial_links(): + # Test that having some entities on the doc without gold links, doesn't crash + TRAIN_DATA = [ + ( + "Russ Cochran his reprints include EC Comics.", + { + "links": {(0, 12): {"Q2146908": 1.0}}, + "entities": [(0, 12, "PERSON")], + "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0], + }, + ) + ] + nlp = English() + vector_length = 3 + train_examples = [] + for text, annotation in TRAIN_DATA: + doc = nlp(text) + train_examples.append(Example.from_dict(doc, annotation)) + + def create_kb(vocab): + # create artificial KB + mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) + mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) + mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) + return mykb + + # Create and train the Entity Linker + entity_linker = nlp.add_pipe("entity_linker", last=True) + entity_linker.set_kb(create_kb) + optimizer = nlp.initialize(get_examples=lambda: train_examples) + for i in range(2): + losses = {} + nlp.update(train_examples, sgd=optimizer, losses=losses) + + # adding additional components that are required for the entity_linker + nlp.add_pipe("sentencizer", first=True) + patterns = [ + {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}, + {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}, + ] + ruler = nlp.add_pipe("entity_ruler", before="entity_linker") + ruler.add_patterns(patterns) + + # this will run the pipeline on the examples and shouldn't crash + results = nlp.evaluate(train_examples) + assert "PERSON" in results["ents_per_type"] + assert "PERSON" in results["nel_f_per_type"] + assert "ORG" in results["ents_per_type"] + assert "ORG" not in results["nel_f_per_type"] + + def test_kb_valid_entities(nlp): """Test the valid construction of a KB with 3 entities and two aliases""" mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3) diff --git a/spacy/tests/pipeline/test_entity_ruler.py b/spacy/tests/pipeline/test_entity_ruler.py index dc0ca0301..f2031d0a9 100644 --- a/spacy/tests/pipeline/test_entity_ruler.py +++ b/spacy/tests/pipeline/test_entity_ruler.py @@ -1,10 +1,14 @@ import pytest from spacy import registry -from spacy.tokens import Span +from spacy.tokens import Doc, Span from spacy.language import Language -from spacy.pipeline import EntityRuler +from spacy.lang.en import English +from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities +from spacy.pipeline.ner import DEFAULT_NER_MODEL from spacy.errors import MatchPatternError +from spacy.tests.util import make_tempdir + from thinc.api import NumpyOps, get_current_ops @@ -32,6 +36,117 @@ def add_ent_component(doc): return doc +@pytest.mark.issue(3345) +def test_issue3345(): + """Test case where preset entity crosses sentence boundary.""" + nlp = English() + doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"]) + doc[4].is_sent_start = True + ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}]) + cfg = {"model": DEFAULT_NER_MODEL} + model = registry.resolve(cfg, validate=True)["model"] + ner = EntityRecognizer(doc.vocab, model) + # Add the OUT action. I wouldn't have thought this would be necessary... + ner.moves.add_action(5, "") + ner.add_label("GPE") + doc = ruler(doc) + # Get into the state just before "New" + state = ner.moves.init_batch([doc])[0] + ner.moves.apply_transition(state, "O") + ner.moves.apply_transition(state, "O") + ner.moves.apply_transition(state, "O") + # Check that B-GPE is valid. + assert ner.moves.is_valid(state, "B-GPE") + + +@pytest.mark.issue(4849) +def test_issue4849(): + nlp = English() + patterns = [ + {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"}, + {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"}, + ] + ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) + ruler.add_patterns(patterns) + text = """ + The left is starting to take aim at Democratic front-runner Joe Biden. + Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy." + """ + # USING 1 PROCESS + count_ents = 0 + for doc in nlp.pipe([text], n_process=1): + count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) + assert count_ents == 2 + # USING 2 PROCESSES + if isinstance(get_current_ops, NumpyOps): + count_ents = 0 + for doc in nlp.pipe([text], n_process=2): + count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) + assert count_ents == 2 + + +@pytest.mark.issue(5918) +def test_issue5918(): + # Test edge case when merging entities. + nlp = English() + ruler = nlp.add_pipe("entity_ruler") + patterns = [ + {"label": "ORG", "pattern": "Digicon Inc"}, + {"label": "ORG", "pattern": "Rotan Mosle Inc's"}, + {"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"}, + ] + ruler.add_patterns(patterns) + + text = """ + Digicon Inc said it has completed the previously-announced disposition + of its computer systems division to an investment group led by + Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate. + """ + doc = nlp(text) + assert len(doc.ents) == 3 + # make it so that the third span's head is within the entity (ent_iob=I) + # bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents. + # TODO: test for logging here + # with pytest.warns(UserWarning): + # doc[29].head = doc[33] + doc = merge_entities(doc) + assert len(doc.ents) == 3 + + +@pytest.mark.issue(8168) +def test_issue8168(): + nlp = English() + ruler = nlp.add_pipe("entity_ruler") + patterns = [ + {"label": "ORG", "pattern": "Apple"}, + { + "label": "GPE", + "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}], + "id": "san-francisco", + }, + { + "label": "GPE", + "pattern": [{"LOWER": "san"}, {"LOWER": "fran"}], + "id": "san-francisco", + }, + ] + ruler.add_patterns(patterns) + + assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")} + + +@pytest.mark.issue(8216) +def test_entity_ruler_fix8216(nlp, patterns): + """Test that patterns don't get added excessively.""" + ruler = nlp.add_pipe("entity_ruler", config={"validate": True}) + ruler.add_patterns(patterns) + pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) + assert pattern_count > 0 + ruler.add_patterns([]) + after_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) + assert after_count == pattern_count + + def test_entity_ruler_init(nlp, patterns): ruler = EntityRuler(nlp, patterns=patterns) assert len(ruler) == len(patterns) @@ -238,3 +353,205 @@ def test_entity_ruler_multiprocessing(nlp, n_process): for doc in nlp.pipe(texts, n_process=2): for ent in doc.ents: assert ent.ent_id_ == "1234" + + +def test_entity_ruler_serialize_jsonl(nlp, patterns): + ruler = nlp.add_pipe("entity_ruler") + ruler.add_patterns(patterns) + with make_tempdir() as d: + ruler.to_disk(d / "test_ruler.jsonl") + ruler.from_disk(d / "test_ruler.jsonl") # read from an existing jsonl file + with pytest.raises(ValueError): + ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file + + +def test_entity_ruler_serialize_dir(nlp, patterns): + ruler = nlp.add_pipe("entity_ruler") + ruler.add_patterns(patterns) + with make_tempdir() as d: + ruler.to_disk(d / "test_ruler") + ruler.from_disk(d / "test_ruler") # read from an existing directory + with pytest.raises(ValueError): + ruler.from_disk(d / "non_existing_dir") # read from a bad directory + + +def test_entity_ruler_remove_basic(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + {"label": "ORG", "pattern": "ACM"}, + ] + ruler.add_patterns(patterns) + doc = ruler(nlp.make_doc("Duygu went to school")) + assert len(ruler.patterns) == 3 + assert len(doc.ents) == 1 + assert doc.ents[0].label_ == "PERSON" + assert doc.ents[0].text == "Duygu" + assert "PERSON||duygu" in ruler.phrase_matcher + ruler.remove("duygu") + doc = ruler(nlp.make_doc("Duygu went to school")) + assert len(doc.ents) == 0 + assert "PERSON||duygu" not in ruler.phrase_matcher + assert len(ruler.patterns) == 2 + + +def test_entity_ruler_remove_same_id_multiple_patterns(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "DuyguCorp", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + ] + ruler.add_patterns(patterns) + doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) + assert len(ruler.patterns) == 3 + assert "PERSON||duygu" in ruler.phrase_matcher + assert "ORG||duygu" in ruler.phrase_matcher + assert len(doc.ents) == 3 + ruler.remove("duygu") + doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) + assert len(ruler.patterns) == 1 + assert "PERSON||duygu" not in ruler.phrase_matcher + assert "ORG||duygu" not in ruler.phrase_matcher + assert len(doc.ents) == 1 + + +def test_entity_ruler_remove_nonexisting_pattern(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + {"label": "ORG", "pattern": "ACM"}, + ] + ruler.add_patterns(patterns) + assert len(ruler.patterns) == 3 + with pytest.raises(ValueError): + ruler.remove("nepattern") + assert len(ruler.patterns) == 3 + + +def test_entity_ruler_remove_several_patterns(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + {"label": "ORG", "pattern": "ACM"}, + ] + ruler.add_patterns(patterns) + doc = ruler(nlp.make_doc("Duygu founded her company ACME.")) + assert len(ruler.patterns) == 3 + assert len(doc.ents) == 2 + assert doc.ents[0].label_ == "PERSON" + assert doc.ents[0].text == "Duygu" + assert doc.ents[1].label_ == "ORG" + assert doc.ents[1].text == "ACME" + ruler.remove("duygu") + doc = ruler(nlp.make_doc("Duygu founded her company ACME")) + assert len(ruler.patterns) == 2 + assert len(doc.ents) == 1 + assert doc.ents[0].label_ == "ORG" + assert doc.ents[0].text == "ACME" + ruler.remove("acme") + doc = ruler(nlp.make_doc("Duygu founded her company ACME")) + assert len(ruler.patterns) == 1 + assert len(doc.ents) == 0 + + +def test_entity_ruler_remove_patterns_in_a_row(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + {"label": "DATE", "pattern": "her birthday", "id": "bday"}, + {"label": "ORG", "pattern": "ACM"}, + ] + ruler.add_patterns(patterns) + doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) + assert len(doc.ents) == 3 + assert doc.ents[0].label_ == "PERSON" + assert doc.ents[0].text == "Duygu" + assert doc.ents[1].label_ == "ORG" + assert doc.ents[1].text == "ACME" + assert doc.ents[2].label_ == "DATE" + assert doc.ents[2].text == "her birthday" + ruler.remove("duygu") + ruler.remove("acme") + ruler.remove("bday") + doc = ruler(nlp.make_doc("Duygu went to school")) + assert len(doc.ents) == 0 + + +def test_entity_ruler_remove_all_patterns(nlp): + ruler = EntityRuler(nlp) + patterns = [ + {"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, + {"label": "ORG", "pattern": "ACME", "id": "acme"}, + {"label": "DATE", "pattern": "her birthday", "id": "bday"}, + ] + ruler.add_patterns(patterns) + assert len(ruler.patterns) == 3 + ruler.remove("duygu") + assert len(ruler.patterns) == 2 + ruler.remove("acme") + assert len(ruler.patterns) == 1 + ruler.remove("bday") + assert len(ruler.patterns) == 0 + with pytest.warns(UserWarning): + doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) + assert len(doc.ents) == 0 + + +def test_entity_ruler_remove_and_add(nlp): + ruler = EntityRuler(nlp) + patterns = [{"label": "DATE", "pattern": "last time"}] + ruler.add_patterns(patterns) + doc = ruler( + nlp.make_doc("I saw him last time we met, this time he brought some flowers") + ) + assert len(ruler.patterns) == 1 + assert len(doc.ents) == 1 + assert doc.ents[0].label_ == "DATE" + assert doc.ents[0].text == "last time" + patterns1 = [{"label": "DATE", "pattern": "this time", "id": "ttime"}] + ruler.add_patterns(patterns1) + doc = ruler( + nlp.make_doc("I saw him last time we met, this time he brought some flowers") + ) + assert len(ruler.patterns) == 2 + assert len(doc.ents) == 2 + assert doc.ents[0].label_ == "DATE" + assert doc.ents[0].text == "last time" + assert doc.ents[1].label_ == "DATE" + assert doc.ents[1].text == "this time" + ruler.remove("ttime") + doc = ruler( + nlp.make_doc("I saw him last time we met, this time he brought some flowers") + ) + assert len(ruler.patterns) == 1 + assert len(doc.ents) == 1 + assert doc.ents[0].label_ == "DATE" + assert doc.ents[0].text == "last time" + ruler.add_patterns(patterns1) + doc = ruler( + nlp.make_doc("I saw him last time we met, this time he brought some flowers") + ) + assert len(ruler.patterns) == 2 + assert len(doc.ents) == 2 + patterns2 = [{"label": "DATE", "pattern": "another time", "id": "ttime"}] + ruler.add_patterns(patterns2) + doc = ruler( + nlp.make_doc( + "I saw him last time we met, this time he brought some flowers, another time some chocolate." + ) + ) + assert len(ruler.patterns) == 3 + assert len(doc.ents) == 3 + ruler.remove("ttime") + doc = ruler( + nlp.make_doc( + "I saw him last time we met, this time he brought some flowers, another time some chocolate." + ) + ) + assert len(ruler.patterns) == 1 + assert len(doc.ents) == 1 diff --git a/spacy/tests/pipeline/test_functions.py b/spacy/tests/pipeline/test_functions.py index 454d7b08b..e4adfe2fe 100644 --- a/spacy/tests/pipeline/test_functions.py +++ b/spacy/tests/pipeline/test_functions.py @@ -3,6 +3,8 @@ from spacy.pipeline.functions import merge_subtokens from spacy.language import Language from spacy.tokens import Span, Doc +from ..doc.test_underscore import clean_underscore # noqa: F401 + @pytest.fixture def doc(en_vocab): @@ -74,3 +76,26 @@ def test_token_splitter(): "i", ] assert all(len(t.text) <= token_splitter.split_length for t in doc) + + +@pytest.mark.usefixtures("clean_underscore") +def test_factories_doc_cleaner(): + nlp = Language() + nlp.add_pipe("doc_cleaner") + doc = nlp.make_doc("text") + doc.tensor = [1, 2, 3] + doc = nlp(doc) + assert doc.tensor is None + + nlp = Language() + nlp.add_pipe("doc_cleaner", config={"silent": False}) + with pytest.warns(UserWarning): + doc = nlp("text") + + Doc.set_extension("test_attr", default=-1) + nlp = Language() + nlp.add_pipe("doc_cleaner", config={"attrs": {"_.test_attr": 0}}) + doc = nlp.make_doc("text") + doc._.test_attr = 100 + doc = nlp(doc) + assert doc._.test_attr == 0 diff --git a/spacy/tests/pipeline/test_morphologizer.py b/spacy/tests/pipeline/test_morphologizer.py index 9680d70d2..11d6f0477 100644 --- a/spacy/tests/pipeline/test_morphologizer.py +++ b/spacy/tests/pipeline/test_morphologizer.py @@ -8,6 +8,7 @@ from spacy.language import Language from spacy.tests.util import make_tempdir from spacy.morphology import Morphology from spacy.attrs import MORPH +from spacy.tokens import Doc def test_label_types(): @@ -137,6 +138,41 @@ def test_overfitting_IO(): assert [str(t.morph) for t in doc] == gold_morphs assert [t.pos_ for t in doc] == gold_pos_tags + # Test overwrite+extend settings + # (note that "" is unset, "_" is set and empty) + morphs = ["Feat=V", "Feat=N", "_"] + doc = Doc(nlp.vocab, words=["blue", "ham", "like"], morphs=morphs) + orig_morphs = [str(t.morph) for t in doc] + orig_pos_tags = [t.pos_ for t in doc] + morphologizer = nlp.get_pipe("morphologizer") + + # don't overwrite or extend + morphologizer.cfg["overwrite"] = False + doc = morphologizer(doc) + assert [str(t.morph) for t in doc] == orig_morphs + assert [t.pos_ for t in doc] == orig_pos_tags + + # overwrite and extend + morphologizer.cfg["overwrite"] = True + morphologizer.cfg["extend"] = True + doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""]) + doc = morphologizer(doc) + assert [str(t.morph) for t in doc] == ["Feat=N|That=A|This=A", "Feat=V"] + + # extend without overwriting + morphologizer.cfg["overwrite"] = False + morphologizer.cfg["extend"] = True + doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", "That=B"]) + doc = morphologizer(doc) + assert [str(t.morph) for t in doc] == ["Feat=A|That=A|This=A", "Feat=V|That=B"] + + # overwrite without extending + morphologizer.cfg["overwrite"] = True + morphologizer.cfg["extend"] = False + doc = Doc(nlp.vocab, words=["I", "like"], morphs=["Feat=A|That=A|This=A", ""]) + doc = morphologizer(doc) + assert [str(t.morph) for t in doc] == ["Feat=N", "Feat=V"] + # Test with unset morph and partial POS nlp.remove_pipe("morphologizer") nlp.add_pipe("morphologizer") diff --git a/spacy/tests/pipeline/test_pipe_factories.py b/spacy/tests/pipeline/test_pipe_factories.py index 0c2554727..4128e2a48 100644 --- a/spacy/tests/pipeline/test_pipe_factories.py +++ b/spacy/tests/pipeline/test_pipe_factories.py @@ -1,4 +1,6 @@ import pytest + +import spacy from spacy.language import Language from spacy.lang.en import English from spacy.lang.de import German @@ -11,6 +13,37 @@ from pydantic import StrictInt, StrictStr from ..util import make_tempdir +@pytest.mark.issue(5137) +def test_issue5137(): + factory_name = "test_issue5137" + pipe_name = "my_component" + + @Language.factory(factory_name) + class MyComponent: + def __init__(self, nlp, name=pipe_name, categories="all_categories"): + self.nlp = nlp + self.categories = categories + self.name = name + + def __call__(self, doc): + pass + + def to_disk(self, path, **kwargs): + pass + + def from_disk(self, path, **cfg): + pass + + nlp = English() + my_component = nlp.add_pipe(factory_name, name=pipe_name) + assert my_component.categories == "all_categories" + with make_tempdir() as tmpdir: + nlp.to_disk(tmpdir) + overrides = {"components": {pipe_name: {"categories": "my_categories"}}} + nlp2 = spacy.load(tmpdir, config=overrides) + assert nlp2.get_pipe(pipe_name).categories == "my_categories" + + def test_pipe_function_component(): name = "test_component" diff --git a/spacy/tests/pipeline/test_pipe_methods.py b/spacy/tests/pipeline/test_pipe_methods.py index 87fd64307..4b8fb8ebc 100644 --- a/spacy/tests/pipeline/test_pipe_methods.py +++ b/spacy/tests/pipeline/test_pipe_methods.py @@ -1,9 +1,17 @@ +import gc + +import numpy import pytest +from thinc.api import get_current_ops + +from spacy.lang.en import English +from spacy.lang.en.syntax_iterators import noun_chunks from spacy.language import Language from spacy.pipeline import TrainablePipe +from spacy.tokens import Doc from spacy.training import Example from spacy.util import SimpleFrozenList, get_arg_names -from spacy.lang.en import English +from spacy.vocab import Vocab @pytest.fixture @@ -21,6 +29,138 @@ def other_pipe(doc): return doc +@pytest.mark.issue(1506) +def test_issue1506(): + def string_generator(): + for _ in range(10001): + yield "It's sentence produced by that bug." + for _ in range(10001): + yield "I erase some hbdsaj lemmas." + for _ in range(10001): + yield "I erase lemmas." + for _ in range(10001): + yield "It's sentence produced by that bug." + for _ in range(10001): + yield "It's sentence produced by that bug." + + nlp = English() + for i, d in enumerate(nlp.pipe(string_generator())): + # We should run cleanup more than one time to actually cleanup data. + # In first run — clean up only mark strings as «not hitted». + if i == 10000 or i == 20000 or i == 30000: + gc.collect() + for t in d: + str(t.lemma_) + + +@pytest.mark.issue(1654) +def test_issue1654(): + nlp = Language(Vocab()) + assert not nlp.pipeline + + @Language.component("component") + def component(doc): + return doc + + nlp.add_pipe("component", name="1") + nlp.add_pipe("component", name="2", after="1") + nlp.add_pipe("component", name="3", after="2") + assert nlp.pipe_names == ["1", "2", "3"] + nlp2 = Language(Vocab()) + assert not nlp2.pipeline + nlp2.add_pipe("component", name="3") + nlp2.add_pipe("component", name="2", before="3") + nlp2.add_pipe("component", name="1", before="2") + assert nlp2.pipe_names == ["1", "2", "3"] + + +@pytest.mark.issue(3880) +def test_issue3880(): + """Test that `nlp.pipe()` works when an empty string ends the batch. + + Fixed in v7.0.5 of Thinc. + """ + texts = ["hello", "world", "", ""] + nlp = English() + nlp.add_pipe("parser").add_label("dep") + nlp.add_pipe("ner").add_label("PERSON") + nlp.add_pipe("tagger").add_label("NN") + nlp.initialize() + for doc in nlp.pipe(texts): + pass + + +@pytest.mark.issue(5082) +def test_issue5082(): + # Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens + nlp = English() + vocab = nlp.vocab + array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32) + array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32) + array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32) + array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32) + array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32) + vocab.set_vector("I", array1) + vocab.set_vector("like", array2) + vocab.set_vector("David", array3) + vocab.set_vector("Bowie", array4) + text = "I like David Bowie" + patterns = [ + {"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]} + ] + ruler = nlp.add_pipe("entity_ruler") + ruler.add_patterns(patterns) + parsed_vectors_1 = [t.vector for t in nlp(text)] + assert len(parsed_vectors_1) == 4 + ops = get_current_ops() + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[0]), array1) + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[1]), array2) + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[2]), array3) + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[3]), array4) + nlp.add_pipe("merge_entities") + parsed_vectors_2 = [t.vector for t in nlp(text)] + assert len(parsed_vectors_2) == 3 + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[0]), array1) + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[1]), array2) + numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[2]), array34) + + +@pytest.mark.issue(5458) +def test_issue5458(): + # Test that the noun chuncker does not generate overlapping spans + # fmt: off + words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."] + vocab = Vocab(strings=words) + deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"] + pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"] + heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0] + # fmt: on + en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps) + en_doc.noun_chunks_iterator = noun_chunks + + # if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans" + nlp = English() + merge_nps = nlp.create_pipe("merge_noun_chunks") + merge_nps(en_doc) + + +def test_multiple_predictions(): + class DummyPipe(TrainablePipe): + def __init__(self): + self.model = "dummy_model" + + def predict(self, docs): + return ([1, 2, 3], [4, 5, 6]) + + def set_annotations(self, docs, scores): + return docs + + nlp = Language() + doc = nlp.make_doc("foo") + dummy_pipe = DummyPipe() + dummy_pipe(doc) + + def test_add_pipe_no_name(nlp): nlp.add_pipe("new_pipe") assert "new_pipe" in nlp.pipe_names diff --git a/spacy/tests/pipeline/test_spancat.py b/spacy/tests/pipeline/test_spancat.py index 5c3a9d27d..39d2e97da 100644 --- a/spacy/tests/pipeline/test_spancat.py +++ b/spacy/tests/pipeline/test_spancat.py @@ -1,7 +1,7 @@ import pytest import numpy from numpy.testing import assert_array_equal, assert_almost_equal -from thinc.api import get_current_ops +from thinc.api import get_current_ops, Ragged from spacy import util from spacy.lang.en import English @@ -29,6 +29,7 @@ TRAIN_DATA_OVERLAPPING = [ "I like London and Berlin", {"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}}, ), + ("", {"spans": {SPAN_KEY: []}}), ] @@ -78,7 +79,8 @@ def test_explicit_labels(): nlp.initialize() assert spancat.labels == ("PERSON", "LOC") - +#TODO figure out why this is flaky +@pytest.mark.skip(reason="Test is unreliable for unknown reason") def test_doc_gc(): # If the Doc object is garbage collected, the spans won't be functional afterwards nlp = Language() @@ -96,6 +98,7 @@ def test_doc_gc(): assert isinstance(spangroups, SpanGroups) for key, spangroup in spangroups.items(): assert isinstance(spangroup, SpanGroup) + # XXX This fails with length 0 sometimes assert len(spangroup) > 0 with pytest.raises(RuntimeError): span = spangroup[0] @@ -365,3 +368,31 @@ def test_overfitting_IO_overlapping(): "London and Berlin", } assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"} + + +def test_zero_suggestions(): + # Test with a suggester that returns 0 suggestions + + @registry.misc("test_zero_suggester") + def make_zero_suggester(): + def zero_suggester(docs, *, ops=None): + if ops is None: + ops = get_current_ops() + return Ragged( + ops.xp.zeros((0, 0), dtype="i"), ops.xp.zeros((len(docs),), dtype="i") + ) + + return zero_suggester + + fix_random_seed(0) + nlp = English() + spancat = nlp.add_pipe( + "spancat", + config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY}, + ) + train_examples = make_examples(nlp) + optimizer = nlp.initialize(get_examples=lambda: train_examples) + assert spancat.model.get_dim("nO") == 2 + assert set(spancat.labels) == {"LOC", "PERSON"} + + nlp.update(train_examples, sgd=optimizer) diff --git a/spacy/tests/pipeline/test_tagger.py b/spacy/tests/pipeline/test_tagger.py index ec14b70da..96e75851e 100644 --- a/spacy/tests/pipeline/test_tagger.py +++ b/spacy/tests/pipeline/test_tagger.py @@ -6,10 +6,27 @@ from spacy import util from spacy.training import Example from spacy.lang.en import English from spacy.language import Language +from thinc.api import compounding from ..util import make_tempdir +@pytest.mark.issue(4348) +def test_issue4348(): + """Test that training the tagger with empty data, doesn't throw errors""" + nlp = English() + example = Example.from_dict(nlp.make_doc(""), {"tags": []}) + TRAIN_DATA = [example, example] + tagger = nlp.add_pipe("tagger") + tagger.add_label("A") + optimizer = nlp.initialize() + for i in range(5): + losses = {} + batches = util.minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) + for batch in batches: + nlp.update(batch, sgd=optimizer, losses=losses) + + def test_label_types(): nlp = Language() tagger = nlp.add_pipe("tagger") diff --git a/spacy/tests/pipeline/test_textcat.py b/spacy/tests/pipeline/test_textcat.py index b134b8508..282789f2b 100644 --- a/spacy/tests/pipeline/test_textcat.py +++ b/spacy/tests/pipeline/test_textcat.py @@ -1,20 +1,31 @@ -import pytest import random + import numpy.random +import pytest from numpy.testing import assert_almost_equal -from thinc.api import fix_random_seed +from thinc.api import Config, compounding, fix_random_seed, get_current_ops +from wasabi import msg + +import spacy from spacy import util +from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat from spacy.lang.en import English from spacy.language import Language from spacy.pipeline import TextCategorizer -from spacy.tokens import Doc +from spacy.pipeline.textcat import single_label_bow_config +from spacy.pipeline.textcat import single_label_cnn_config +from spacy.pipeline.textcat import single_label_default_config +from spacy.pipeline.textcat_multilabel import multi_label_bow_config +from spacy.pipeline.textcat_multilabel import multi_label_cnn_config +from spacy.pipeline.textcat_multilabel import multi_label_default_config from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.scorer import Scorer +from spacy.tokens import Doc, DocBin from spacy.training import Example +from spacy.training.initialize import init_nlp from ..util import make_tempdir - TRAIN_DATA_SINGLE_LABEL = [ ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}), ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}), @@ -48,6 +59,224 @@ def make_get_examples_multi_label(nlp): return get_examples +@pytest.mark.issue(3611) +def test_issue3611(): + """Test whether adding n-grams in the textcat works even when n > token length of some docs""" + unique_classes = ["offensive", "inoffensive"] + x_train = [ + "This is an offensive text", + "This is the second offensive text", + "inoff", + ] + y_train = ["offensive", "offensive", "inoffensive"] + nlp = spacy.blank("en") + # preparing the data + train_data = [] + for text, train_instance in zip(x_train, y_train): + cat_dict = {label: label == train_instance for label in unique_classes} + train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) + # add a text categorizer component + model = { + "@architectures": "spacy.TextCatBOW.v1", + "exclusive_classes": True, + "ngram_size": 2, + "no_output_layer": False, + } + textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) + for label in unique_classes: + textcat.add_label(label) + # training the network + with nlp.select_pipes(enable="textcat"): + optimizer = nlp.initialize() + for i in range(3): + losses = {} + batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) + + for batch in batches: + nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) + + +@pytest.mark.issue(4030) +def test_issue4030(): + """Test whether textcat works fine with empty doc""" + unique_classes = ["offensive", "inoffensive"] + x_train = [ + "This is an offensive text", + "This is the second offensive text", + "inoff", + ] + y_train = ["offensive", "offensive", "inoffensive"] + nlp = spacy.blank("en") + # preparing the data + train_data = [] + for text, train_instance in zip(x_train, y_train): + cat_dict = {label: label == train_instance for label in unique_classes} + train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) + # add a text categorizer component + model = { + "@architectures": "spacy.TextCatBOW.v1", + "exclusive_classes": True, + "ngram_size": 2, + "no_output_layer": False, + } + textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) + for label in unique_classes: + textcat.add_label(label) + # training the network + with nlp.select_pipes(enable="textcat"): + optimizer = nlp.initialize() + for i in range(3): + losses = {} + batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) + + for batch in batches: + nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) + # processing of an empty doc should result in 0.0 for all categories + doc = nlp("") + assert doc.cats["offensive"] == 0.0 + assert doc.cats["inoffensive"] == 0.0 + + +@pytest.mark.parametrize( + "textcat_config", + [ + single_label_default_config, + single_label_bow_config, + single_label_cnn_config, + multi_label_default_config, + multi_label_bow_config, + multi_label_cnn_config, + ], +) +@pytest.mark.issue(5551) +def test_issue5551(textcat_config): + """Test that after fixing the random seed, the results of the pipeline are truly identical""" + component = "textcat" + + pipe_cfg = Config().from_str(textcat_config) + results = [] + for i in range(3): + fix_random_seed(0) + nlp = English() + text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g." + annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}} + pipe = nlp.add_pipe(component, config=pipe_cfg, last=True) + for label in set(annots["cats"]): + pipe.add_label(label) + # Train + nlp.initialize() + doc = nlp.make_doc(text) + nlp.update([Example.from_dict(doc, annots)]) + # Store the result of each iteration + result = pipe.model.predict([doc]) + results.append(result[0]) + # All results should be the same because of the fixed seed + assert len(results) == 3 + ops = get_current_ops() + assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5) + assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5) + + +CONFIG_ISSUE_6908 = """ +[paths] +train = "TRAIN_PLACEHOLDER" +raw = null +init_tok2vec = null +vectors = null + +[system] +seed = 0 +gpu_allocator = null + +[nlp] +lang = "en" +pipeline = ["textcat"] +tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} +disabled = [] +before_creation = null +after_creation = null +after_pipeline_creation = null +batch_size = 1000 + +[components] + +[components.textcat] +factory = "TEXTCAT_PLACEHOLDER" + +[corpora] + +[corpora.train] +@readers = "spacy.Corpus.v1" +path = ${paths:train} + +[corpora.dev] +@readers = "spacy.Corpus.v1" +path = ${paths:train} + + +[training] +train_corpus = "corpora.train" +dev_corpus = "corpora.dev" +seed = ${system.seed} +gpu_allocator = ${system.gpu_allocator} +frozen_components = [] +before_to_disk = null + +[pretraining] + +[initialize] +vectors = ${paths.vectors} +init_tok2vec = ${paths.init_tok2vec} +vocab_data = null +lookups = null +before_init = null +after_init = null + +[initialize.components] + +[initialize.components.textcat] +labels = ['label1', 'label2'] + +[initialize.tokenizer] +""" + + +@pytest.mark.parametrize( + "component_name", + ["textcat", "textcat_multilabel"], +) +@pytest.mark.issue(6908) +def test_issue6908(component_name): + """Test intializing textcat with labels in a list""" + + def create_data(out_file): + nlp = spacy.blank("en") + doc = nlp.make_doc("Some text") + doc.cats = {"label1": 0, "label2": 1} + out_data = DocBin(docs=[doc]).to_bytes() + with out_file.open("wb") as file_: + file_.write(out_data) + + with make_tempdir() as tmp_path: + train_path = tmp_path / "train.spacy" + create_data(train_path) + config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name) + config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix()) + config = util.load_config_from_str(config_str) + init_nlp(config) + + +@pytest.mark.issue(7019) +def test_issue7019(): + scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None} + print_textcats_auc_per_cat(msg, scores) + scores = { + "LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932}, + "LABEL_B": {"p": None, "r": None, "f": None}, + } + print_prf_per_type(msg, scores, name="foo", type="bar") + + @pytest.mark.skip(reason="Test is flakey when run with others") def test_simple_train(): nlp = Language() diff --git a/spacy/tests/regression/test_issue1-1000.py b/spacy/tests/regression/test_issue1-1000.py deleted file mode 100644 index 6bb71f6f4..000000000 --- a/spacy/tests/regression/test_issue1-1000.py +++ /dev/null @@ -1,453 +0,0 @@ -import pytest -import random -from spacy import util -from spacy.training import Example -from spacy.matcher import Matcher -from spacy.attrs import IS_PUNCT, ORTH, LOWER -from spacy.vocab import Vocab -from spacy.lang.en import English -from spacy.lookups import Lookups -from spacy.tokens import Doc, Span - -from ..util import make_tempdir - - -@pytest.mark.parametrize( - "patterns", - [ - [[{"LOWER": "celtics"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], - [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "celtics"}]], - ], -) -def test_issue118(en_tokenizer, patterns): - """Test a bug that arose from having overlapping matches""" - text = ( - "how many points did lebron james score against the boston celtics last night" - ) - doc = en_tokenizer(text) - ORG = doc.vocab.strings["ORG"] - matcher = Matcher(doc.vocab) - matcher.add("BostonCeltics", patterns) - assert len(list(doc.ents)) == 0 - matches = [(ORG, start, end) for _, start, end in matcher(doc)] - assert matches == [(ORG, 9, 11), (ORG, 10, 11)] - doc.ents = matches[:1] - ents = list(doc.ents) - assert len(ents) == 1 - assert ents[0].label == ORG - assert ents[0].start == 9 - assert ents[0].end == 11 - - -@pytest.mark.parametrize( - "patterns", - [ - [[{"LOWER": "boston"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]], - [[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "boston"}]], - ], -) -def test_issue118_prefix_reorder(en_tokenizer, patterns): - """Test a bug that arose from having overlapping matches""" - text = ( - "how many points did lebron james score against the boston celtics last night" - ) - doc = en_tokenizer(text) - ORG = doc.vocab.strings["ORG"] - matcher = Matcher(doc.vocab) - matcher.add("BostonCeltics", patterns) - assert len(list(doc.ents)) == 0 - matches = [(ORG, start, end) for _, start, end in matcher(doc)] - doc.ents += tuple(matches)[1:] - assert matches == [(ORG, 9, 10), (ORG, 9, 11)] - ents = doc.ents - assert len(ents) == 1 - assert ents[0].label == ORG - assert ents[0].start == 9 - assert ents[0].end == 11 - - -def test_issue242(en_tokenizer): - """Test overlapping multi-word phrases.""" - text = "There are different food safety standards in different countries." - patterns = [ - [{"LOWER": "food"}, {"LOWER": "safety"}], - [{"LOWER": "safety"}, {"LOWER": "standards"}], - ] - doc = en_tokenizer(text) - matcher = Matcher(doc.vocab) - matcher.add("FOOD", patterns) - matches = [(ent_type, start, end) for ent_type, start, end in matcher(doc)] - match1, match2 = matches - assert match1[1] == 3 - assert match1[2] == 5 - assert match2[1] == 4 - assert match2[2] == 6 - with pytest.raises(ValueError): - # One token can only be part of one entity, so test that the matches - # can't be added as entities - doc.ents += tuple(matches) - - -def test_issue309(en_vocab): - """Test Issue #309: SBD fails on empty string""" - doc = Doc(en_vocab, words=[" "], heads=[0], deps=["ROOT"]) - assert len(doc) == 1 - sents = list(doc.sents) - assert len(sents) == 1 - - -def test_issue351(en_tokenizer): - doc = en_tokenizer(" This is a cat.") - assert doc[0].idx == 0 - assert len(doc[0]) == 3 - assert doc[1].idx == 3 - - -def test_issue360(en_tokenizer): - """Test tokenization of big ellipsis""" - tokens = en_tokenizer("$45...............Asking") - assert len(tokens) > 2 - - -@pytest.mark.parametrize("text1,text2", [("cat", "dog")]) -def test_issue361(en_vocab, text1, text2): - """Test Issue #361: Equality of lexemes""" - assert en_vocab[text1] == en_vocab[text1] - assert en_vocab[text1] != en_vocab[text2] - - -def test_issue587(en_tokenizer): - """Test that Matcher doesn't segfault on particular input""" - doc = en_tokenizer("a b; c") - matcher = Matcher(doc.vocab) - matcher.add("TEST1", [[{ORTH: "a"}, {ORTH: "b"}]]) - matches = matcher(doc) - assert len(matches) == 1 - matcher.add("TEST2", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "c"}]]) - matches = matcher(doc) - assert len(matches) == 2 - matcher.add("TEST3", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "d"}]]) - matches = matcher(doc) - assert len(matches) == 2 - - -def test_issue588(en_vocab): - matcher = Matcher(en_vocab) - with pytest.raises(ValueError): - matcher.add("TEST", [[]]) - - -def test_issue590(en_vocab): - """Test overlapping matches""" - doc = Doc(en_vocab, words=["n", "=", "1", ";", "a", ":", "5", "%"]) - matcher = Matcher(en_vocab) - matcher.add( - "ab", [[{"IS_ALPHA": True}, {"ORTH": ":"}, {"LIKE_NUM": True}, {"ORTH": "%"}]] - ) - matcher.add("ab", [[{"IS_ALPHA": True}, {"ORTH": "="}, {"LIKE_NUM": True}]]) - matches = matcher(doc) - assert len(matches) == 2 - - -@pytest.mark.skip(reason="Old vocab-based lemmatization") -def test_issue595(): - """Test lemmatization of base forms""" - words = ["Do", "n't", "feed", "the", "dog"] - lookups = Lookups() - lookups.add_table("lemma_rules", {"verb": [["ed", "e"]]}) - lookups.add_table("lemma_index", {"verb": {}}) - lookups.add_table("lemma_exc", {"verb": {}}) - vocab = Vocab() - doc = Doc(vocab, words=words) - doc[2].tag_ = "VB" - assert doc[2].text == "feed" - assert doc[2].lemma_ == "feed" - - -def test_issue599(en_vocab): - doc = Doc(en_vocab) - doc2 = Doc(doc.vocab) - doc2.from_bytes(doc.to_bytes()) - assert doc2.has_annotation("DEP") - - -def test_issue600(): - vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}}) - doc = Doc(vocab, words=["hello"]) - doc[0].tag_ = "NN" - - -def test_issue615(en_tokenizer): - def merge_phrases(matcher, doc, i, matches): - """Merge a phrase. We have to be careful here because we'll change the - token indices. To avoid problems, merge all the phrases once we're called - on the last match.""" - if i != len(matches) - 1: - return None - spans = [Span(doc, start, end, label=label) for label, start, end in matches] - with doc.retokenize() as retokenizer: - for span in spans: - tag = "NNP" if span.label_ else span.root.tag_ - attrs = {"tag": tag, "lemma": span.text} - retokenizer.merge(span, attrs=attrs) - doc.ents = doc.ents + (span,) - - text = "The golf club is broken" - pattern = [{"ORTH": "golf"}, {"ORTH": "club"}] - label = "Sport_Equipment" - doc = en_tokenizer(text) - matcher = Matcher(doc.vocab) - matcher.add(label, [pattern], on_match=merge_phrases) - matcher(doc) - entities = list(doc.ents) - assert entities != [] - assert entities[0].label != 0 - - -@pytest.mark.parametrize("text,number", [("7am", "7"), ("11p.m.", "11")]) -def test_issue736(en_tokenizer, text, number): - """Test that times like "7am" are tokenized correctly and that numbers are - converted to string.""" - tokens = en_tokenizer(text) - assert len(tokens) == 2 - assert tokens[0].text == number - - -@pytest.mark.parametrize("text", ["3/4/2012", "01/12/1900"]) -def test_issue740(en_tokenizer, text): - """Test that dates are not split and kept as one token. This behaviour is - currently inconsistent, since dates separated by hyphens are still split. - This will be hard to prevent without causing clashes with numeric ranges.""" - tokens = en_tokenizer(text) - assert len(tokens) == 1 - - -def test_issue743(): - doc = Doc(Vocab(), ["hello", "world"]) - token = doc[0] - s = set([token]) - items = list(s) - assert items[0] is token - - -@pytest.mark.parametrize("text", ["We were scared", "We Were Scared"]) -def test_issue744(en_tokenizer, text): - """Test that 'were' and 'Were' are excluded from the contractions - generated by the English tokenizer exceptions.""" - tokens = en_tokenizer(text) - assert len(tokens) == 3 - assert tokens[1].text.lower() == "were" - - -@pytest.mark.parametrize( - "text,is_num", [("one", True), ("ten", True), ("teneleven", False)] -) -def test_issue759(en_tokenizer, text, is_num): - tokens = en_tokenizer(text) - assert tokens[0].like_num == is_num - - -@pytest.mark.parametrize("text", ["Shell", "shell", "Shed", "shed"]) -def test_issue775(en_tokenizer, text): - """Test that 'Shell' and 'shell' are excluded from the contractions - generated by the English tokenizer exceptions.""" - tokens = en_tokenizer(text) - assert len(tokens) == 1 - assert tokens[0].text == text - - -@pytest.mark.parametrize("text", ["This is a string ", "This is a string\u0020"]) -def test_issue792(en_tokenizer, text): - """Test for Issue #792: Trailing whitespace is removed after tokenization.""" - doc = en_tokenizer(text) - assert "".join([token.text_with_ws for token in doc]) == text - - -@pytest.mark.parametrize("text", ["This is a string", "This is a string\n"]) -def test_control_issue792(en_tokenizer, text): - """Test base case for Issue #792: Non-trailing whitespace""" - doc = en_tokenizer(text) - assert "".join([token.text_with_ws for token in doc]) == text - - -@pytest.mark.skip( - reason="Can not be fixed unless with variable-width lookbehinds, cf. PR #3218" -) -@pytest.mark.parametrize( - "text,tokens", - [ - ('"deserve,"--and', ['"', "deserve", ',"--', "and"]), - ("exception;--exclusive", ["exception", ";--", "exclusive"]), - ("day.--Is", ["day", ".--", "Is"]), - ("refinement:--just", ["refinement", ":--", "just"]), - ("memories?--To", ["memories", "?--", "To"]), - ("Useful.=--Therefore", ["Useful", ".=--", "Therefore"]), - ("=Hope.=--Pandora", ["=", "Hope", ".=--", "Pandora"]), - ], -) -def test_issue801(en_tokenizer, text, tokens): - """Test that special characters + hyphens are split correctly.""" - doc = en_tokenizer(text) - assert len(doc) == len(tokens) - assert [t.text for t in doc] == tokens - - -@pytest.mark.parametrize( - "text,expected_tokens", - [ - ( - "Smörsåsen används bl.a. till fisk", - ["Smörsåsen", "används", "bl.a.", "till", "fisk"], - ), - ( - "Jag kommer först kl. 13 p.g.a. diverse förseningar", - ["Jag", "kommer", "först", "kl.", "13", "p.g.a.", "diverse", "förseningar"], - ), - ], -) -def test_issue805(sv_tokenizer, text, expected_tokens): - tokens = sv_tokenizer(text) - token_list = [token.text for token in tokens if not token.is_space] - assert expected_tokens == token_list - - -def test_issue850(): - """The variable-length pattern matches the succeeding token. Check we - handle the ambiguity correctly.""" - vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) - matcher = Matcher(vocab) - pattern = [{"LOWER": "bob"}, {"OP": "*"}, {"LOWER": "frank"}] - matcher.add("FarAway", [pattern]) - doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) - match = matcher(doc) - assert len(match) == 1 - ent_id, start, end = match[0] - assert start == 0 - assert end == 4 - - -def test_issue850_basic(): - """Test Matcher matches with '*' operator and Boolean flag""" - vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()}) - matcher = Matcher(vocab) - pattern = [{"LOWER": "bob"}, {"OP": "*", "LOWER": "and"}, {"LOWER": "frank"}] - matcher.add("FarAway", [pattern]) - doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"]) - match = matcher(doc) - assert len(match) == 1 - ent_id, start, end = match[0] - assert start == 0 - assert end == 4 - - -@pytest.mark.skip( - reason="French exception list is not enabled in the default tokenizer anymore" -) -@pytest.mark.parametrize( - "text", ["au-delàs", "pair-programmâmes", "terra-formées", "σ-compacts"] -) -def test_issue852(fr_tokenizer, text): - """Test that French tokenizer exceptions are imported correctly.""" - tokens = fr_tokenizer(text) - assert len(tokens) == 1 - - -@pytest.mark.parametrize( - "text", ["aaabbb@ccc.com\nThank you!", "aaabbb@ccc.com \nThank you!"] -) -def test_issue859(en_tokenizer, text): - """Test that no extra space is added in doc.text method.""" - doc = en_tokenizer(text) - assert doc.text == text - - -@pytest.mark.parametrize("text", ["Datum:2014-06-02\nDokument:76467"]) -def test_issue886(en_tokenizer, text): - """Test that token.idx matches the original text index for texts with newlines.""" - doc = en_tokenizer(text) - for token in doc: - assert len(token.text) == len(token.text_with_ws) - assert text[token.idx] == token.text[0] - - -@pytest.mark.parametrize("text", ["want/need"]) -def test_issue891(en_tokenizer, text): - """Test that / infixes are split correctly.""" - tokens = en_tokenizer(text) - assert len(tokens) == 3 - assert tokens[1].text == "/" - - -@pytest.mark.skip(reason="Old vocab-based lemmatization") -@pytest.mark.parametrize( - "text,tag,lemma", - [("anus", "NN", "anus"), ("princess", "NN", "princess"), ("inner", "JJ", "inner")], -) -def test_issue912(en_vocab, text, tag, lemma): - """Test base-forms are preserved.""" - doc = Doc(en_vocab, words=[text]) - doc[0].tag_ = tag - assert doc[0].lemma_ == lemma - - -@pytest.mark.slow -def test_issue957(en_tokenizer): - """Test that spaCy doesn't hang on many punctuation characters. - If this test hangs, check (new) regular expressions for conflicting greedy operators - """ - # Skip test if pytest-timeout is not installed - pytest.importorskip("pytest_timeout") - for punct in [".", ",", "'", '"', ":", "?", "!", ";", "-"]: - string = "0" - for i in range(1, 100): - string += punct + str(i) - doc = en_tokenizer(string) - assert doc - - -def test_issue999(): - """Test that adding entities and resuming training works passably OK. - There are two issues here: - 1) We have to re-add labels. This isn't very nice. - 2) There's no way to set the learning rate for the weight update, so we - end up out-of-scale, causing it to learn too fast. - """ - TRAIN_DATA = [ - ["hey", []], - ["howdy", []], - ["hey there", []], - ["hello", []], - ["hi", []], - ["i'm looking for a place to eat", []], - ["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]], - ["show me chinese restaurants", [(8, 15, "CUISINE")]], - ["show me chines restaurants", [(8, 14, "CUISINE")]], - ] - nlp = English() - ner = nlp.add_pipe("ner") - for _, offsets in TRAIN_DATA: - for start, end, label in offsets: - ner.add_label(label) - nlp.initialize() - for itn in range(20): - random.shuffle(TRAIN_DATA) - for raw_text, entity_offsets in TRAIN_DATA: - example = Example.from_dict( - nlp.make_doc(raw_text), {"entities": entity_offsets} - ) - nlp.update([example]) - - with make_tempdir() as model_dir: - nlp.to_disk(model_dir) - nlp2 = util.load_model_from_path(model_dir) - - for raw_text, entity_offsets in TRAIN_DATA: - doc = nlp2(raw_text) - ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents} - for start, end, label in entity_offsets: - if (start, end) in ents: - assert ents[(start, end)] == label - break - else: - if entity_offsets: - raise Exception(ents) diff --git a/spacy/tests/regression/test_issue1001-1500.py b/spacy/tests/regression/test_issue1001-1500.py deleted file mode 100644 index d6a4600e3..000000000 --- a/spacy/tests/regression/test_issue1001-1500.py +++ /dev/null @@ -1,164 +0,0 @@ -import pytest -import re -from spacy.tokens import Doc -from spacy.vocab import Vocab -from spacy.lang.en import English -from spacy.lang.lex_attrs import LEX_ATTRS -from spacy.matcher import Matcher -from spacy.tokenizer import Tokenizer -from spacy.symbols import ORTH, LEMMA, POS - - -def test_issue1061(): - """Test special-case works after tokenizing. Was caching problem.""" - text = "I like _MATH_ even _MATH_ when _MATH_, except when _MATH_ is _MATH_! but not _MATH_." - tokenizer = English().tokenizer - doc = tokenizer(text) - assert "MATH" in [w.text for w in doc] - assert "_MATH_" not in [w.text for w in doc] - - tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}]) - doc = tokenizer(text) - assert "_MATH_" in [w.text for w in doc] - assert "MATH" not in [w.text for w in doc] - - # For sanity, check it works when pipeline is clean. - tokenizer = English().tokenizer - tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}]) - doc = tokenizer(text) - assert "_MATH_" in [w.text for w in doc] - assert "MATH" not in [w.text for w in doc] - - -@pytest.mark.skip( - reason="Can not be fixed without variable-width look-behind (which we don't want)" -) -def test_issue1235(): - """Test that g is not split of if preceded by a number and a letter""" - nlp = English() - testwords = "e2g 2g 52g" - doc = nlp(testwords) - assert len(doc) == 5 - assert doc[0].text == "e2g" - assert doc[1].text == "2" - assert doc[2].text == "g" - assert doc[3].text == "52" - assert doc[4].text == "g" - - -def test_issue1242(): - nlp = English() - doc = nlp("") - assert len(doc) == 0 - docs = list(nlp.pipe(["", "hello"])) - assert len(docs[0]) == 0 - assert len(docs[1]) == 1 - - -@pytest.mark.skip(reason="v3 no longer supports LEMMA/POS in tokenizer special cases") -def test_issue1250(): - """Test cached special cases.""" - special_case = [{ORTH: "reimbur", LEMMA: "reimburse", POS: "VERB"}] - nlp = English() - nlp.tokenizer.add_special_case("reimbur", special_case) - lemmas = [w.lemma_ for w in nlp("reimbur, reimbur...")] - assert lemmas == ["reimburse", ",", "reimburse", "..."] - lemmas = [w.lemma_ for w in nlp("reimbur, reimbur...")] - assert lemmas == ["reimburse", ",", "reimburse", "..."] - - -def test_issue1257(): - """Test that tokens compare correctly.""" - doc1 = Doc(Vocab(), words=["a", "b", "c"]) - doc2 = Doc(Vocab(), words=["a", "c", "e"]) - assert doc1[0] != doc2[0] - assert not doc1[0] == doc2[0] - - -def test_issue1375(): - """Test that token.nbor() raises IndexError for out-of-bounds access.""" - doc = Doc(Vocab(), words=["0", "1", "2"]) - with pytest.raises(IndexError): - assert doc[0].nbor(-1) - assert doc[1].nbor(-1).text == "0" - with pytest.raises(IndexError): - assert doc[2].nbor(1) - assert doc[1].nbor(1).text == "2" - - -def test_issue1434(): - """Test matches occur when optional element at end of short doc.""" - pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}] - vocab = Vocab(lex_attr_getters=LEX_ATTRS) - hello_world = Doc(vocab, words=["Hello", "World"]) - hello = Doc(vocab, words=["Hello"]) - matcher = Matcher(vocab) - matcher.add("MyMatcher", [pattern]) - matches = matcher(hello_world) - assert matches - matches = matcher(hello) - assert matches - - -@pytest.mark.parametrize( - "string,start,end", - [ - ("a", 0, 1), - ("a b", 0, 2), - ("a c", 0, 1), - ("a b c", 0, 2), - ("a b b c", 0, 3), - ("a b b", 0, 3), - ], -) -def test_issue1450(string, start, end): - """Test matcher works when patterns end with * operator.""" - pattern = [{"ORTH": "a"}, {"ORTH": "b", "OP": "*"}] - matcher = Matcher(Vocab()) - matcher.add("TSTEND", [pattern]) - doc = Doc(Vocab(), words=string.split()) - matches = matcher(doc) - if start is None or end is None: - assert matches == [] - assert matches[-1][1] == start - assert matches[-1][2] == end - - -def test_issue1488(): - prefix_re = re.compile(r"""[\[\("']""") - suffix_re = re.compile(r"""[\]\)"']""") - infix_re = re.compile(r"""[-~\.]""") - simple_url_re = re.compile(r"""^https?://""") - - def my_tokenizer(nlp): - return Tokenizer( - nlp.vocab, - {}, - prefix_search=prefix_re.search, - suffix_search=suffix_re.search, - infix_finditer=infix_re.finditer, - token_match=simple_url_re.match, - ) - - nlp = English() - nlp.tokenizer = my_tokenizer(nlp) - doc = nlp("This is a test.") - for token in doc: - assert token.text - - -def test_issue1494(): - infix_re = re.compile(r"""[^a-z]""") - test_cases = [ - ("token 123test", ["token", "1", "2", "3", "test"]), - ("token 1test", ["token", "1test"]), - ("hello...test", ["hello", ".", ".", ".", "test"]), - ] - - def new_tokenizer(nlp): - return Tokenizer(nlp.vocab, {}, infix_finditer=infix_re.finditer) - - nlp = English() - nlp.tokenizer = new_tokenizer(nlp) - for text, expected in test_cases: - assert [token.text for token in nlp(text)] == expected diff --git a/spacy/tests/regression/test_issue1501-2000.py b/spacy/tests/regression/test_issue1501-2000.py deleted file mode 100644 index f85ec70e1..000000000 --- a/spacy/tests/regression/test_issue1501-2000.py +++ /dev/null @@ -1,351 +0,0 @@ -import pytest -import gc -import numpy -import copy - -from spacy.training import Example -from spacy.lang.en import English -from spacy.lang.en.stop_words import STOP_WORDS -from spacy.lang.lex_attrs import is_stop -from spacy.vectors import Vectors -from spacy.vocab import Vocab -from spacy.language import Language -from spacy.tokens import Doc, Span, Token -from spacy.attrs import HEAD, DEP -from spacy.matcher import Matcher - -from ..util import make_tempdir - - -def test_issue1506(): - def string_generator(): - for _ in range(10001): - yield "It's sentence produced by that bug." - for _ in range(10001): - yield "I erase some hbdsaj lemmas." - for _ in range(10001): - yield "I erase lemmas." - for _ in range(10001): - yield "It's sentence produced by that bug." - for _ in range(10001): - yield "It's sentence produced by that bug." - - nlp = English() - for i, d in enumerate(nlp.pipe(string_generator())): - # We should run cleanup more than one time to actually cleanup data. - # In first run — clean up only mark strings as «not hitted». - if i == 10000 or i == 20000 or i == 30000: - gc.collect() - for t in d: - str(t.lemma_) - - -def test_issue1518(): - """Test vectors.resize() works.""" - vectors = Vectors(shape=(10, 10)) - vectors.add("hello", row=2) - vectors.resize((5, 9)) - - -def test_issue1537(): - """Test that Span.as_doc() doesn't segfault.""" - string = "The sky is blue . The man is pink . The dog is purple ." - doc = Doc(Vocab(), words=string.split()) - doc[0].sent_start = True - for word in doc[1:]: - if word.nbor(-1).text == ".": - word.sent_start = True - else: - word.sent_start = False - sents = list(doc.sents) - sent0 = sents[0].as_doc() - sent1 = sents[1].as_doc() - assert isinstance(sent0, Doc) - assert isinstance(sent1, Doc) - - -# TODO: Currently segfaulting, due to l_edge and r_edge misalignment -# def test_issue1537_model(): -# nlp = load_spacy('en') -# doc = nlp('The sky is blue. The man is pink. The dog is purple.') -# sents = [s.as_doc() for s in doc.sents] -# print(list(sents[0].noun_chunks)) -# print(list(sents[1].noun_chunks)) - - -def test_issue1539(): - """Ensure vectors.resize() doesn't try to modify dictionary during iteration.""" - v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100]) - v.resize((100, 100)) - - -def test_issue1547(): - """Test that entity labels still match after merging tokens.""" - words = ["\n", "worda", ".", "\n", "wordb", "-", "Biosphere", "2", "-", " \n"] - doc = Doc(Vocab(), words=words) - doc.ents = [Span(doc, 6, 8, label=doc.vocab.strings["PRODUCT"])] - with doc.retokenize() as retokenizer: - retokenizer.merge(doc[5:7]) - assert [ent.text for ent in doc.ents] - - -def test_issue1612(en_tokenizer): - doc = en_tokenizer("The black cat purrs.") - span = doc[1:3] - assert span.orth_ == span.text - - -def test_issue1654(): - nlp = Language(Vocab()) - assert not nlp.pipeline - - @Language.component("component") - def component(doc): - return doc - - nlp.add_pipe("component", name="1") - nlp.add_pipe("component", name="2", after="1") - nlp.add_pipe("component", name="3", after="2") - assert nlp.pipe_names == ["1", "2", "3"] - nlp2 = Language(Vocab()) - assert not nlp2.pipeline - nlp2.add_pipe("component", name="3") - nlp2.add_pipe("component", name="2", before="3") - nlp2.add_pipe("component", name="1", before="2") - assert nlp2.pipe_names == ["1", "2", "3"] - - -@pytest.mark.parametrize("text", ["test@example.com", "john.doe@example.co.uk"]) -def test_issue1698(en_tokenizer, text): - doc = en_tokenizer(text) - assert len(doc) == 1 - assert not doc[0].like_url - - -def test_issue1727(): - """Test that models with no pretrained vectors can be deserialized - correctly after vectors are added.""" - nlp = Language(Vocab()) - data = numpy.ones((3, 300), dtype="f") - vectors = Vectors(data=data, keys=["I", "am", "Matt"]) - tagger = nlp.create_pipe("tagger") - tagger.add_label("PRP") - assert tagger.cfg.get("pretrained_dims", 0) == 0 - tagger.vocab.vectors = vectors - with make_tempdir() as path: - tagger.to_disk(path) - tagger = nlp.create_pipe("tagger").from_disk(path) - assert tagger.cfg.get("pretrained_dims", 0) == 0 - - -def test_issue1757(): - """Test comparison against None doesn't cause segfault.""" - doc = Doc(Vocab(), words=["a", "b", "c"]) - assert not doc[0] < None - assert not doc[0] is None - assert doc[0] >= None - assert not doc[:2] < None - assert not doc[:2] is None - assert doc[:2] >= None - assert not doc.vocab["a"] is None - assert not doc.vocab["a"] < None - - -def test_issue1758(en_tokenizer): - """Test that "would've" is handled by the English tokenizer exceptions.""" - tokens = en_tokenizer("would've") - assert len(tokens) == 2 - - -def test_issue1773(en_tokenizer): - """Test that spaces don't receive a POS but no TAG. This is the root cause - of the serialization issue reported in #1773.""" - doc = en_tokenizer("\n") - if doc[0].pos_ == "SPACE": - assert doc[0].tag_ != "" - - -def test_issue1799(): - """Test sentence boundaries are deserialized correctly, even for - non-projective sentences.""" - heads_deps = numpy.asarray( - [ - [1, 397], - [4, 436], - [2, 426], - [1, 402], - [0, 8206900633647566924], - [18446744073709551615, 440], - [18446744073709551614, 442], - ], - dtype="uint64", - ) - doc = Doc(Vocab(), words="Just what I was looking for .".split()) - doc.vocab.strings.add("ROOT") - doc = doc.from_array([HEAD, DEP], heads_deps) - assert len(list(doc.sents)) == 1 - - -def test_issue1807(): - """Test vocab.set_vector also adds the word to the vocab.""" - vocab = Vocab(vectors_name="test_issue1807") - assert "hello" not in vocab - vocab.set_vector("hello", numpy.ones((50,), dtype="f")) - assert "hello" in vocab - - -def test_issue1834(): - """Test that sentence boundaries & parse/tag flags are not lost - during serialization.""" - words = ["This", "is", "a", "first", "sentence", ".", "And", "another", "one"] - doc = Doc(Vocab(), words=words) - doc[6].is_sent_start = True - new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) - assert new_doc[6].sent_start - assert not new_doc.has_annotation("DEP") - assert not new_doc.has_annotation("TAG") - doc = Doc( - Vocab(), - words=words, - tags=["TAG"] * len(words), - heads=[0, 0, 0, 0, 0, 0, 6, 6, 6], - deps=["dep"] * len(words), - ) - new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) - assert new_doc[6].sent_start - assert new_doc.has_annotation("DEP") - assert new_doc.has_annotation("TAG") - - -def test_issue1868(): - """Test Vocab.__contains__ works with int keys.""" - vocab = Vocab() - lex = vocab["hello"] - assert lex.orth in vocab - assert lex.orth_ in vocab - assert "some string" not in vocab - int_id = vocab.strings.add("some string") - assert int_id not in vocab - - -def test_issue1883(): - matcher = Matcher(Vocab()) - matcher.add("pat1", [[{"orth": "hello"}]]) - doc = Doc(matcher.vocab, words=["hello"]) - assert len(matcher(doc)) == 1 - new_matcher = copy.deepcopy(matcher) - new_doc = Doc(new_matcher.vocab, words=["hello"]) - assert len(new_matcher(new_doc)) == 1 - - -@pytest.mark.parametrize("word", ["the"]) -def test_issue1889(word): - assert is_stop(word, STOP_WORDS) == is_stop(word.upper(), STOP_WORDS) - - -@pytest.mark.skip(reason="obsolete with the config refactor of v.3") -def test_issue1915(): - cfg = {"hidden_depth": 2} # should error out - nlp = Language() - ner = nlp.add_pipe("ner") - ner.add_label("answer") - with pytest.raises(ValueError): - nlp.initialize(**cfg) - - -def test_issue1945(): - """Test regression in Matcher introduced in v2.0.6.""" - matcher = Matcher(Vocab()) - matcher.add("MWE", [[{"orth": "a"}, {"orth": "a"}]]) - doc = Doc(matcher.vocab, words=["a", "a", "a"]) - matches = matcher(doc) # we should see two overlapping matches here - assert len(matches) == 2 - assert matches[0][1:] == (0, 2) - assert matches[1][1:] == (1, 3) - - -def test_issue1963(en_tokenizer): - """Test that doc.merge() resizes doc.tensor""" - doc = en_tokenizer("a b c d") - doc.tensor = numpy.ones((len(doc), 128), dtype="f") - with doc.retokenize() as retokenizer: - retokenizer.merge(doc[0:2]) - assert len(doc) == 3 - assert doc.tensor.shape == (3, 128) - - -@pytest.mark.parametrize("label", ["U-JOB-NAME"]) -def test_issue1967(label): - nlp = Language() - config = {} - ner = nlp.create_pipe("ner", config=config) - example = Example.from_dict( - Doc(ner.vocab, words=["word"]), - { - "ids": [0], - "words": ["word"], - "tags": ["tag"], - "heads": [0], - "deps": ["dep"], - "entities": [label], - }, - ) - assert "JOB-NAME" in ner.moves.get_actions(examples=[example])[1] - - -def test_issue1971(en_vocab): - # Possibly related to #2675 and #2671? - matcher = Matcher(en_vocab) - pattern = [ - {"ORTH": "Doe"}, - {"ORTH": "!", "OP": "?"}, - {"_": {"optional": True}, "OP": "?"}, - {"ORTH": "!", "OP": "?"}, - ] - Token.set_extension("optional", default=False) - matcher.add("TEST", [pattern]) - doc = Doc(en_vocab, words=["Hello", "John", "Doe", "!"]) - # We could also assert length 1 here, but this is more conclusive, because - # the real problem here is that it returns a duplicate match for a match_id - # that's not actually in the vocab! - matches = matcher(doc) - assert all([match_id in en_vocab.strings for match_id, start, end in matches]) - - -def test_issue_1971_2(en_vocab): - matcher = Matcher(en_vocab) - pattern1 = [{"ORTH": "EUR", "LOWER": {"IN": ["eur"]}}, {"LIKE_NUM": True}] - pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}] # {"IN": ["EUR"]}}] - doc = Doc(en_vocab, words=["EUR", "10", "is", "10", "EUR"]) - matcher.add("TEST1", [pattern1, pattern2]) - matches = matcher(doc) - assert len(matches) == 2 - - -def test_issue_1971_3(en_vocab): - """Test that pattern matches correctly for multiple extension attributes.""" - Token.set_extension("a", default=1, force=True) - Token.set_extension("b", default=2, force=True) - doc = Doc(en_vocab, words=["hello", "world"]) - matcher = Matcher(en_vocab) - matcher.add("A", [[{"_": {"a": 1}}]]) - matcher.add("B", [[{"_": {"b": 2}}]]) - matches = sorted((en_vocab.strings[m_id], s, e) for m_id, s, e in matcher(doc)) - assert len(matches) == 4 - assert matches == sorted([("A", 0, 1), ("A", 1, 2), ("B", 0, 1), ("B", 1, 2)]) - - -def test_issue_1971_4(en_vocab): - """Test that pattern matches correctly with multiple extension attribute - values on a single token. - """ - Token.set_extension("ext_a", default="str_a", force=True) - Token.set_extension("ext_b", default="str_b", force=True) - matcher = Matcher(en_vocab) - doc = Doc(en_vocab, words=["this", "is", "text"]) - pattern = [{"_": {"ext_a": "str_a", "ext_b": "str_b"}}] * 3 - matcher.add("TEST", [pattern]) - matches = matcher(doc) - # Uncommenting this caused a segmentation fault - assert len(matches) == 1 - assert matches[0] == (en_vocab.strings["TEST"], 0, 3) diff --git a/spacy/tests/regression/test_issue2001-2500.py b/spacy/tests/regression/test_issue2001-2500.py deleted file mode 100644 index 09baab4d8..000000000 --- a/spacy/tests/regression/test_issue2001-2500.py +++ /dev/null @@ -1,142 +0,0 @@ -import pytest -import numpy -from spacy.tokens import Doc -from spacy.matcher import Matcher -from spacy.displacy import render -from spacy.training import iob_to_biluo -from spacy.lang.it import Italian -from spacy.lang.en import English - -from ..util import add_vecs_to_vocab - - -@pytest.mark.skip( - reason="Can not be fixed without iterative looping between prefix/suffix and infix" -) -def test_issue2070(): - """Test that checks that a dot followed by a quote is handled - appropriately. - """ - # Problem: The dot is now properly split off, but the prefix/suffix rules - # are not applied again afterwards. This means that the quote will still be - # attached to the remaining token. - nlp = English() - doc = nlp('First sentence."A quoted sentence" he said ...') - assert len(doc) == 11 - - -def test_issue2179(): - """Test that spurious 'extra_labels' aren't created when initializing NER.""" - nlp = Italian() - ner = nlp.add_pipe("ner") - ner.add_label("CITIZENSHIP") - nlp.initialize() - nlp2 = Italian() - nlp2.add_pipe("ner") - assert len(nlp2.get_pipe("ner").labels) == 0 - model = nlp2.get_pipe("ner").model - model.attrs["resize_output"](model, nlp.get_pipe("ner").moves.n_moves) - nlp2.from_bytes(nlp.to_bytes()) - assert "extra_labels" not in nlp2.get_pipe("ner").cfg - assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",) - - -def test_issue2203(en_vocab): - """Test that lemmas are set correctly in doc.from_array.""" - words = ["I", "'ll", "survive"] - tags = ["PRP", "MD", "VB"] - lemmas = ["-PRON-", "will", "survive"] - tag_ids = [en_vocab.strings.add(tag) for tag in tags] - lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas] - doc = Doc(en_vocab, words=words) - # Work around lemma corruption problem and set lemmas after tags - doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64")) - doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64")) - assert [t.tag_ for t in doc] == tags - assert [t.lemma_ for t in doc] == lemmas - # We need to serialize both tag and lemma, since this is what causes the bug - doc_array = doc.to_array(["TAG", "LEMMA"]) - new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array) - assert [t.tag_ for t in new_doc] == tags - assert [t.lemma_ for t in new_doc] == lemmas - - -def test_issue2219(en_vocab): - vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])] - add_vecs_to_vocab(en_vocab, vectors) - [(word1, vec1), (word2, vec2)] = vectors - doc = Doc(en_vocab, words=[word1, word2]) - assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0]) - - -def test_issue2361(de_vocab): - chars = ("<", ">", "&", """) - words = ["<", ">", "&", '"'] - doc = Doc(de_vocab, words=words, deps=["dep"] * len(words)) - html = render(doc) - for char in chars: - assert char in html - - -def test_issue2385(): - """Test that IOB tags are correctly converted to BILUO tags.""" - # fix bug in labels with a 'b' character - tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER") - assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"] - # maintain support for iob1 format - tags2 = ("I-ORG", "I-ORG", "B-ORG") - assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"] - # maintain support for iob2 format - tags3 = ("B-PERSON", "I-PERSON", "B-PERSON") - assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"] - - -@pytest.mark.parametrize( - "tags", - [ - ("B-ORG", "L-ORG"), - ("B-PERSON", "I-PERSON", "L-PERSON"), - ("U-BRAWLER", "U-BRAWLER"), - ], -) -def test_issue2385_biluo(tags): - """Test that BILUO-compatible tags aren't modified.""" - assert iob_to_biluo(tags) == list(tags) - - -def test_issue2396(en_vocab): - words = ["She", "created", "a", "test", "for", "spacy"] - heads = [1, 1, 3, 1, 3, 4] - deps = ["dep"] * len(heads) - matrix = numpy.array( - [ - [0, 1, 1, 1, 1, 1], - [1, 1, 1, 1, 1, 1], - [1, 1, 2, 3, 3, 3], - [1, 1, 3, 3, 3, 3], - [1, 1, 3, 3, 4, 4], - [1, 1, 3, 3, 4, 5], - ], - dtype=numpy.int32, - ) - doc = Doc(en_vocab, words=words, heads=heads, deps=deps) - span = doc[:] - assert (doc.get_lca_matrix() == matrix).all() - assert (span.get_lca_matrix() == matrix).all() - - -def test_issue2464(en_vocab): - """Test problem with successive ?. This is the same bug, so putting it here.""" - matcher = Matcher(en_vocab) - doc = Doc(en_vocab, words=["a", "b"]) - matcher.add("4", [[{"OP": "?"}, {"OP": "?"}]]) - matches = matcher(doc) - assert len(matches) == 3 - - -def test_issue2482(): - """Test we can serialize and deserialize a blank NER or parser model.""" - nlp = Italian() - nlp.add_pipe("ner") - b = nlp.to_bytes() - Italian().from_bytes(b) diff --git a/spacy/tests/regression/test_issue2501-3000.py b/spacy/tests/regression/test_issue2501-3000.py deleted file mode 100644 index 4952a545d..000000000 --- a/spacy/tests/regression/test_issue2501-3000.py +++ /dev/null @@ -1,223 +0,0 @@ -import pytest -from spacy import displacy -from spacy.training import Example -from spacy.lang.en import English -from spacy.lang.ja import Japanese -from spacy.lang.xx import MultiLanguage -from spacy.language import Language -from spacy.matcher import Matcher -from spacy.tokens import Doc, Span -from spacy.vocab import Vocab -from spacy.compat import pickle -import numpy -import random - - -def test_issue2564(): - """Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe.""" - nlp = Language() - tagger = nlp.add_pipe("tagger") - tagger.add_label("A") - nlp.initialize() - doc = nlp("hello world") - assert doc.has_annotation("TAG") - docs = nlp.pipe(["hello", "world"]) - piped_doc = next(docs) - assert piped_doc.has_annotation("TAG") - - -def test_issue2569(en_tokenizer): - """Test that operator + is greedy.""" - doc = en_tokenizer("It is May 15, 1993.") - doc.ents = [Span(doc, 2, 6, label=doc.vocab.strings["DATE"])] - matcher = Matcher(doc.vocab) - matcher.add("RULE", [[{"ENT_TYPE": "DATE", "OP": "+"}]]) - matched = [doc[start:end] for _, start, end in matcher(doc)] - matched = sorted(matched, key=len, reverse=True) - assert len(matched) == 10 - assert len(matched[0]) == 4 - assert matched[0].text == "May 15, 1993" - - -@pytest.mark.parametrize( - "text", - [ - "ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume", - "oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:", - ], -) -def test_issue2626_2835(en_tokenizer, text): - """Check that sentence doesn't cause an infinite loop in the tokenizer.""" - doc = en_tokenizer(text) - assert doc - - -def test_issue2656(en_tokenizer): - """Test that tokenizer correctly splits off punctuation after numbers with - decimal points. - """ - doc = en_tokenizer("I went for 40.3, and got home by 10.0.") - assert len(doc) == 11 - assert doc[0].text == "I" - assert doc[1].text == "went" - assert doc[2].text == "for" - assert doc[3].text == "40.3" - assert doc[4].text == "," - assert doc[5].text == "and" - assert doc[6].text == "got" - assert doc[7].text == "home" - assert doc[8].text == "by" - assert doc[9].text == "10.0" - assert doc[10].text == "." - - -def test_issue2671(): - """Ensure the correct entity ID is returned for matches with quantifiers. - See also #2675 - """ - nlp = English() - matcher = Matcher(nlp.vocab) - pattern_id = "test_pattern" - pattern = [ - {"LOWER": "high"}, - {"IS_PUNCT": True, "OP": "?"}, - {"LOWER": "adrenaline"}, - ] - matcher.add(pattern_id, [pattern]) - doc1 = nlp("This is a high-adrenaline situation.") - doc2 = nlp("This is a high adrenaline situation.") - matches1 = matcher(doc1) - for match_id, start, end in matches1: - assert nlp.vocab.strings[match_id] == pattern_id - matches2 = matcher(doc2) - for match_id, start, end in matches2: - assert nlp.vocab.strings[match_id] == pattern_id - - -def test_issue2728(en_vocab): - """Test that displaCy ENT visualizer escapes HTML correctly.""" - doc = Doc(en_vocab, words=["test", "", "test"]) - doc.ents = [Span(doc, 0, 1, label="TEST")] - html = displacy.render(doc, style="ent") - assert "<RELEASE>" in html - doc.ents = [Span(doc, 1, 2, label="TEST")] - html = displacy.render(doc, style="ent") - assert "<RELEASE>" in html - - -def test_issue2754(en_tokenizer): - """Test that words like 'a' and 'a.m.' don't get exceptional norm values.""" - a = en_tokenizer("a") - assert a[0].norm_ == "a" - am = en_tokenizer("am") - assert am[0].norm_ == "am" - - -def test_issue2772(en_vocab): - """Test that deprojectivization doesn't mess up sentence boundaries.""" - # fmt: off - words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."] - # fmt: on - # A tree with a non-projective (i.e. crossing) arc - # The arcs (0, 4) and (2, 9) cross. - heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9] - deps = ["dep"] * len(heads) - doc = Doc(en_vocab, words=words, heads=heads, deps=deps) - assert doc[1].is_sent_start is False - - -@pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"]) -@pytest.mark.parametrize("lang_cls", [English, MultiLanguage]) -def test_issue2782(text, lang_cls): - """Check that like_num handles + and - before number.""" - nlp = lang_cls() - doc = nlp(text) - assert len(doc) == 1 - assert doc[0].like_num - - -def test_issue2800(): - """Test issue that arises when too many labels are added to NER model. - Used to cause segfault. - """ - nlp = English() - train_data = [] - train_data.extend( - [Example.from_dict(nlp.make_doc("One sentence"), {"entities": []})] - ) - entity_types = [str(i) for i in range(1000)] - ner = nlp.add_pipe("ner") - for entity_type in list(entity_types): - ner.add_label(entity_type) - optimizer = nlp.initialize() - for i in range(20): - losses = {} - random.shuffle(train_data) - for example in train_data: - nlp.update([example], sgd=optimizer, losses=losses, drop=0.5) - - -def test_issue2822(it_tokenizer): - """Test that the abbreviation of poco is kept as one word.""" - doc = it_tokenizer("Vuoi un po' di zucchero?") - assert len(doc) == 6 - assert doc[0].text == "Vuoi" - assert doc[1].text == "un" - assert doc[2].text == "po'" - assert doc[3].text == "di" - assert doc[4].text == "zucchero" - assert doc[5].text == "?" - - -def test_issue2833(en_vocab): - """Test that a custom error is raised if a token or span is pickled.""" - doc = Doc(en_vocab, words=["Hello", "world"]) - with pytest.raises(NotImplementedError): - pickle.dumps(doc[0]) - with pytest.raises(NotImplementedError): - pickle.dumps(doc[0:2]) - - -def test_issue2871(): - """Test that vectors recover the correct key for spaCy reserved words.""" - words = ["dog", "cat", "SUFFIX"] - vocab = Vocab(vectors_name="test_issue2871") - vocab.vectors.resize(shape=(3, 10)) - vector_data = numpy.zeros((3, 10), dtype="f") - for word in words: - _ = vocab[word] # noqa: F841 - vocab.set_vector(word, vector_data[0]) - vocab.vectors.name = "dummy_vectors" - assert vocab["dog"].rank == 0 - assert vocab["cat"].rank == 1 - assert vocab["SUFFIX"].rank == 2 - assert vocab.vectors.find(key="dog") == 0 - assert vocab.vectors.find(key="cat") == 1 - assert vocab.vectors.find(key="SUFFIX") == 2 - - -def test_issue2901(): - """Test that `nlp` doesn't fail.""" - try: - nlp = Japanese() - except ImportError: - pytest.skip() - - doc = nlp("pythonが大好きです") - assert doc - - -def test_issue2926(fr_tokenizer): - """Test that the tokenizer correctly splits tokens separated by a slash (/) - ending in a digit. - """ - doc = fr_tokenizer("Learn html5/css3/javascript/jquery") - assert len(doc) == 8 - assert doc[0].text == "Learn" - assert doc[1].text == "html5" - assert doc[2].text == "/" - assert doc[3].text == "css3" - assert doc[4].text == "/" - assert doc[5].text == "javascript" - assert doc[6].text == "/" - assert doc[7].text == "jquery" diff --git a/spacy/tests/regression/test_issue3001-3500.py b/spacy/tests/regression/test_issue3001-3500.py deleted file mode 100644 index e123d2df9..000000000 --- a/spacy/tests/regression/test_issue3001-3500.py +++ /dev/null @@ -1,255 +0,0 @@ -import pytest -from spacy import registry -from spacy.lang.en import English -from spacy.lang.de import German -from spacy.pipeline.ner import DEFAULT_NER_MODEL -from spacy.pipeline import EntityRuler, EntityRecognizer -from spacy.matcher import Matcher, PhraseMatcher -from spacy.tokens import Doc -from spacy.vocab import Vocab -from spacy.attrs import ENT_IOB, ENT_TYPE -from spacy.compat import pickle -from spacy import displacy -from spacy.vectors import Vectors -import numpy - - -def test_issue3002(): - """Test that the tokenizer doesn't hang on a long list of dots""" - nlp = German() - doc = nlp( - "880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl" - ) - assert len(doc) == 5 - - -def test_issue3009(en_vocab): - """Test problem with matcher quantifiers""" - patterns = [ - [{"ORTH": "has"}, {"LOWER": "to"}, {"LOWER": "do"}, {"TAG": "IN"}], - [ - {"ORTH": "has"}, - {"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"}, - {"LOWER": "to"}, - {"LOWER": "do"}, - {"TAG": "IN"}, - ], - [ - {"ORTH": "has"}, - {"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"}, - {"LOWER": "to"}, - {"LOWER": "do"}, - {"TAG": "IN"}, - ], - ] - words = ["also", "has", "to", "do", "with"] - tags = ["RB", "VBZ", "TO", "VB", "IN"] - pos = ["ADV", "VERB", "ADP", "VERB", "ADP"] - doc = Doc(en_vocab, words=words, tags=tags, pos=pos) - matcher = Matcher(en_vocab) - for i, pattern in enumerate(patterns): - matcher.add(str(i), [pattern]) - matches = matcher(doc) - assert matches - - -def test_issue3012(en_vocab): - """Test that the is_tagged attribute doesn't get overwritten when we from_array - without tag information.""" - words = ["This", "is", "10", "%", "."] - tags = ["DT", "VBZ", "CD", "NN", "."] - pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"] - ents = ["O", "O", "B-PERCENT", "I-PERCENT", "O"] - doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents) - assert doc.has_annotation("TAG") - expected = ("10", "NUM", "CD", "PERCENT") - assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected - header = [ENT_IOB, ENT_TYPE] - ent_array = doc.to_array(header) - doc.from_array(header, ent_array) - assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected - # Serializing then deserializing - doc_bytes = doc.to_bytes() - doc2 = Doc(en_vocab).from_bytes(doc_bytes) - assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected - - -def test_issue3199(): - """Test that Span.noun_chunks works correctly if no noun chunks iterator - is available. To make this test future-proof, we're constructing a Doc - with a new Vocab here and a parse tree to make sure the noun chunks run. - """ - words = ["This", "is", "a", "sentence"] - doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words)) - with pytest.raises(NotImplementedError): - list(doc[0:3].noun_chunks) - - -def test_issue3209(): - """Test issue that occurred in spaCy nightly where NER labels were being - mapped to classes incorrectly after loading the model, when the labels - were added using ner.add_label(). - """ - nlp = English() - ner = nlp.add_pipe("ner") - ner.add_label("ANIMAL") - nlp.initialize() - move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"] - assert ner.move_names == move_names - nlp2 = English() - ner2 = nlp2.add_pipe("ner") - model = ner2.model - model.attrs["resize_output"](model, ner.moves.n_moves) - nlp2.from_bytes(nlp.to_bytes()) - assert ner2.move_names == move_names - - -def test_issue3248_1(): - """Test that the PhraseMatcher correctly reports its number of rules, not - total number of patterns.""" - nlp = English() - matcher = PhraseMatcher(nlp.vocab) - matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) - matcher.add("TEST2", [nlp("d")]) - assert len(matcher) == 2 - - -def test_issue3248_2(): - """Test that the PhraseMatcher can be pickled correctly.""" - nlp = English() - matcher = PhraseMatcher(nlp.vocab) - matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) - matcher.add("TEST2", [nlp("d")]) - data = pickle.dumps(matcher) - new_matcher = pickle.loads(data) - assert len(new_matcher) == len(matcher) - - -def test_issue3277(es_tokenizer): - """Test that hyphens are split correctly as prefixes.""" - doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.") - assert len(doc) == 14 - assert doc[0].text == "\u2014" - assert doc[5].text == "\u2013" - assert doc[9].text == "\u2013" - - -def test_issue3288(en_vocab): - """Test that retokenization works correctly via displaCy when punctuation - is merged onto the preceeding token and tensor is resized.""" - words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"] - heads = [1, 1, 1, 4, 4, 6, 4, 4] - deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"] - doc = Doc(en_vocab, words=words, heads=heads, deps=deps) - doc.tensor = numpy.zeros((len(words), 96), dtype="float32") - displacy.render(doc) - - -def test_issue3289(): - """Test that Language.to_bytes handles serializing a pipeline component - with an uninitialized model.""" - nlp = English() - nlp.add_pipe("textcat") - bytes_data = nlp.to_bytes() - new_nlp = English() - new_nlp.add_pipe("textcat") - new_nlp.from_bytes(bytes_data) - - -def test_issue3328(en_vocab): - doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"]) - matcher = Matcher(en_vocab) - patterns = [ - [{"LOWER": {"IN": ["hello", "how"]}}], - [{"LOWER": {"IN": ["you", "doing"]}}], - ] - matcher.add("TEST", patterns) - matches = matcher(doc) - assert len(matches) == 4 - matched_texts = [doc[start:end].text for _, start, end in matches] - assert matched_texts == ["Hello", "how", "you", "doing"] - - -def test_issue3331(en_vocab): - """Test that duplicate patterns for different rules result in multiple - matches, one per rule. - """ - matcher = PhraseMatcher(en_vocab) - matcher.add("A", [Doc(en_vocab, words=["Barack", "Obama"])]) - matcher.add("B", [Doc(en_vocab, words=["Barack", "Obama"])]) - doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"]) - matches = matcher(doc) - assert len(matches) == 2 - match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]] - assert sorted(match_ids) == ["A", "B"] - - -def test_issue3345(): - """Test case where preset entity crosses sentence boundary.""" - nlp = English() - doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"]) - doc[4].is_sent_start = True - ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}]) - cfg = {"model": DEFAULT_NER_MODEL} - model = registry.resolve(cfg, validate=True)["model"] - ner = EntityRecognizer(doc.vocab, model) - # Add the OUT action. I wouldn't have thought this would be necessary... - ner.moves.add_action(5, "") - ner.add_label("GPE") - doc = ruler(doc) - # Get into the state just before "New" - state = ner.moves.init_batch([doc])[0] - ner.moves.apply_transition(state, "O") - ner.moves.apply_transition(state, "O") - ner.moves.apply_transition(state, "O") - # Check that B-GPE is valid. - assert ner.moves.is_valid(state, "B-GPE") - - -def test_issue3412(): - data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f") - vectors = Vectors(data=data, keys=["A", "B", "C"]) - keys, best_rows, scores = vectors.most_similar( - numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f") - ) - assert best_rows[0] == 2 - - -@pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot") -def test_issue3449(): - nlp = English() - nlp.add_pipe("sentencizer") - text1 = "He gave the ball to I. Do you want to go to the movies with I?" - text2 = "He gave the ball to I. Do you want to go to the movies with I?" - text3 = "He gave the ball to I.\nDo you want to go to the movies with I?" - t1 = nlp(text1) - t2 = nlp(text2) - t3 = nlp(text3) - assert t1[5].text == "I" - assert t2[5].text == "I" - assert t3[5].text == "I" - - -def test_issue3456(): - # this crashed because of a padding error in layer.ops.unflatten in thinc - nlp = English() - tagger = nlp.add_pipe("tagger") - tagger.add_label("A") - nlp.initialize() - list(nlp.pipe(["hi", ""])) - - -def test_issue3468(): - """Test that sentence boundaries are set correctly so Doc.has_annotation("SENT_START") can - be restored after serialization.""" - nlp = English() - nlp.add_pipe("sentencizer") - doc = nlp("Hello world") - assert doc[0].is_sent_start - assert doc.has_annotation("SENT_START") - assert len(list(doc.sents)) == 1 - doc_bytes = doc.to_bytes() - new_doc = Doc(nlp.vocab).from_bytes(doc_bytes) - assert new_doc[0].is_sent_start - assert new_doc.has_annotation("SENT_START") - assert len(list(new_doc.sents)) == 1 diff --git a/spacy/tests/regression/test_issue3501-4000.py b/spacy/tests/regression/test_issue3501-4000.py deleted file mode 100644 index 71c3768dd..000000000 --- a/spacy/tests/regression/test_issue3501-4000.py +++ /dev/null @@ -1,472 +0,0 @@ -import pytest -from spacy.language import Language -from spacy.vocab import Vocab -from spacy.pipeline import EntityRuler, DependencyParser -from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL -from spacy import displacy, load -from spacy.displacy import parse_deps -from spacy.tokens import Doc, Token -from spacy.matcher import Matcher, PhraseMatcher -from spacy.errors import MatchPatternError -from spacy.util import minibatch -from spacy.training import Example -from spacy.lang.hi import Hindi -from spacy.lang.es import Spanish -from spacy.lang.en import English -from spacy.attrs import IS_ALPHA -from spacy import registry -from thinc.api import compounding -import spacy -import srsly -import numpy - -from ..util import make_tempdir - - -@pytest.mark.parametrize("word", ["don't", "don’t", "I'd", "I’d"]) -def test_issue3521(en_tokenizer, word): - tok = en_tokenizer(word)[1] - # 'not' and 'would' should be stopwords, also in their abbreviated forms - assert tok.is_stop - - -def test_issue_3526_1(en_vocab): - patterns = [ - {"label": "HELLO", "pattern": "hello world"}, - {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, - {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, - {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, - {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, - ] - nlp = Language(vocab=en_vocab) - ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) - ruler_bytes = ruler.to_bytes() - assert len(ruler) == len(patterns) - assert len(ruler.labels) == 4 - assert ruler.overwrite - new_ruler = EntityRuler(nlp) - new_ruler = new_ruler.from_bytes(ruler_bytes) - assert len(new_ruler) == len(ruler) - assert len(new_ruler.labels) == 4 - assert new_ruler.overwrite == ruler.overwrite - assert new_ruler.ent_id_sep == ruler.ent_id_sep - - -def test_issue_3526_2(en_vocab): - patterns = [ - {"label": "HELLO", "pattern": "hello world"}, - {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, - {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, - {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, - {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, - ] - nlp = Language(vocab=en_vocab) - ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) - bytes_old_style = srsly.msgpack_dumps(ruler.patterns) - new_ruler = EntityRuler(nlp) - new_ruler = new_ruler.from_bytes(bytes_old_style) - assert len(new_ruler) == len(ruler) - for pattern in ruler.patterns: - assert pattern in new_ruler.patterns - assert new_ruler.overwrite is not ruler.overwrite - - -def test_issue_3526_3(en_vocab): - patterns = [ - {"label": "HELLO", "pattern": "hello world"}, - {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, - {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, - {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, - {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, - ] - nlp = Language(vocab=en_vocab) - ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) - with make_tempdir() as tmpdir: - out_file = tmpdir / "entity_ruler" - srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns) - new_ruler = EntityRuler(nlp).from_disk(out_file) - for pattern in ruler.patterns: - assert pattern in new_ruler.patterns - assert len(new_ruler) == len(ruler) - assert new_ruler.overwrite is not ruler.overwrite - - -def test_issue_3526_4(en_vocab): - nlp = Language(vocab=en_vocab) - patterns = [{"label": "ORG", "pattern": "Apple"}] - config = {"overwrite_ents": True} - ruler = nlp.add_pipe("entity_ruler", config=config) - ruler.add_patterns(patterns) - with make_tempdir() as tmpdir: - nlp.to_disk(tmpdir) - ruler = nlp.get_pipe("entity_ruler") - assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}] - assert ruler.overwrite is True - nlp2 = load(tmpdir) - new_ruler = nlp2.get_pipe("entity_ruler") - assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}] - assert new_ruler.overwrite is True - - -def test_issue3531(): - """Test that displaCy renderer doesn't require "settings" key.""" - example_dep = { - "words": [ - {"text": "But", "tag": "CCONJ"}, - {"text": "Google", "tag": "PROPN"}, - {"text": "is", "tag": "VERB"}, - {"text": "starting", "tag": "VERB"}, - {"text": "from", "tag": "ADP"}, - {"text": "behind.", "tag": "ADV"}, - ], - "arcs": [ - {"start": 0, "end": 3, "label": "cc", "dir": "left"}, - {"start": 1, "end": 3, "label": "nsubj", "dir": "left"}, - {"start": 2, "end": 3, "label": "aux", "dir": "left"}, - {"start": 3, "end": 4, "label": "prep", "dir": "right"}, - {"start": 4, "end": 5, "label": "pcomp", "dir": "right"}, - ], - } - example_ent = { - "text": "But Google is starting from behind.", - "ents": [{"start": 4, "end": 10, "label": "ORG"}], - } - dep_html = displacy.render(example_dep, style="dep", manual=True) - assert dep_html - ent_html = displacy.render(example_ent, style="ent", manual=True) - assert ent_html - - -def test_issue3540(en_vocab): - words = ["I", "live", "in", "NewYork", "right", "now"] - tensor = numpy.asarray( - [[1.0, 1.1], [2.0, 2.1], [3.0, 3.1], [4.0, 4.1], [5.0, 5.1], [6.0, 6.1]], - dtype="f", - ) - doc = Doc(en_vocab, words=words) - doc.tensor = tensor - gold_text = ["I", "live", "in", "NewYork", "right", "now"] - assert [token.text for token in doc] == gold_text - gold_lemma = ["I", "live", "in", "NewYork", "right", "now"] - for i, lemma in enumerate(gold_lemma): - doc[i].lemma_ = lemma - assert [token.lemma_ for token in doc] == gold_lemma - vectors_1 = [token.vector for token in doc] - assert len(vectors_1) == len(doc) - - with doc.retokenize() as retokenizer: - heads = [(doc[3], 1), doc[2]] - attrs = { - "POS": ["PROPN", "PROPN"], - "LEMMA": ["New", "York"], - "DEP": ["pobj", "compound"], - } - retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs) - - gold_text = ["I", "live", "in", "New", "York", "right", "now"] - assert [token.text for token in doc] == gold_text - gold_lemma = ["I", "live", "in", "New", "York", "right", "now"] - assert [token.lemma_ for token in doc] == gold_lemma - vectors_2 = [token.vector for token in doc] - assert len(vectors_2) == len(doc) - assert vectors_1[0].tolist() == vectors_2[0].tolist() - assert vectors_1[1].tolist() == vectors_2[1].tolist() - assert vectors_1[2].tolist() == vectors_2[2].tolist() - assert vectors_1[4].tolist() == vectors_2[5].tolist() - assert vectors_1[5].tolist() == vectors_2[6].tolist() - - -def test_issue3549(en_vocab): - """Test that match pattern validation doesn't raise on empty errors.""" - matcher = Matcher(en_vocab, validate=True) - pattern = [{"LOWER": "hello"}, {"LOWER": "world"}] - matcher.add("GOOD", [pattern]) - with pytest.raises(MatchPatternError): - matcher.add("BAD", [[{"X": "Y"}]]) - - -@pytest.mark.skip("Matching currently only works on strings and integers") -def test_issue3555(en_vocab): - """Test that custom extensions with default None don't break matcher.""" - Token.set_extension("issue3555", default=None) - matcher = Matcher(en_vocab) - pattern = [{"ORTH": "have"}, {"_": {"issue3555": True}}] - matcher.add("TEST", [pattern]) - doc = Doc(en_vocab, words=["have", "apple"]) - matcher(doc) - - -def test_issue3611(): - """Test whether adding n-grams in the textcat works even when n > token length of some docs""" - unique_classes = ["offensive", "inoffensive"] - x_train = [ - "This is an offensive text", - "This is the second offensive text", - "inoff", - ] - y_train = ["offensive", "offensive", "inoffensive"] - nlp = spacy.blank("en") - # preparing the data - train_data = [] - for text, train_instance in zip(x_train, y_train): - cat_dict = {label: label == train_instance for label in unique_classes} - train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) - # add a text categorizer component - model = { - "@architectures": "spacy.TextCatBOW.v1", - "exclusive_classes": True, - "ngram_size": 2, - "no_output_layer": False, - } - textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) - for label in unique_classes: - textcat.add_label(label) - # training the network - with nlp.select_pipes(enable="textcat"): - optimizer = nlp.initialize() - for i in range(3): - losses = {} - batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) - - for batch in batches: - nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) - - -def test_issue3625(): - """Test that default punctuation rules applies to hindi unicode characters""" - nlp = Hindi() - doc = nlp("hi. how हुए. होटल, होटल") - expected = ["hi", ".", "how", "हुए", ".", "होटल", ",", "होटल"] - assert [token.text for token in doc] == expected - - -def test_issue3803(): - """Test that spanish num-like tokens have True for like_num attribute.""" - nlp = Spanish() - text = "2 dos 1000 mil 12 doce" - doc = nlp(text) - - assert [t.like_num for t in doc] == [True, True, True, True, True, True] - - -def _parser_example(parser): - doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) - gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]} - return Example.from_dict(doc, gold) - - -def test_issue3830_no_subtok(): - """Test that the parser doesn't have subtok label if not learn_tokens""" - config = { - "learn_tokens": False, - } - model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] - parser = DependencyParser(Vocab(), model, **config) - parser.add_label("nsubj") - assert "subtok" not in parser.labels - parser.initialize(lambda: [_parser_example(parser)]) - assert "subtok" not in parser.labels - - -def test_issue3830_with_subtok(): - """Test that the parser does have subtok label if learn_tokens=True.""" - config = { - "learn_tokens": True, - } - model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"] - parser = DependencyParser(Vocab(), model, **config) - parser.add_label("nsubj") - assert "subtok" not in parser.labels - parser.initialize(lambda: [_parser_example(parser)]) - assert "subtok" in parser.labels - - -def test_issue3839(en_vocab): - """Test that match IDs returned by the matcher are correct, are in the string""" - doc = Doc(en_vocab, words=["terrific", "group", "of", "people"]) - matcher = Matcher(en_vocab) - match_id = "PATTERN" - pattern1 = [{"LOWER": "terrific"}, {"OP": "?"}, {"LOWER": "group"}] - pattern2 = [{"LOWER": "terrific"}, {"OP": "?"}, {"OP": "?"}, {"LOWER": "group"}] - matcher.add(match_id, [pattern1]) - matches = matcher(doc) - assert matches[0][0] == en_vocab.strings[match_id] - matcher = Matcher(en_vocab) - matcher.add(match_id, [pattern2]) - matches = matcher(doc) - assert matches[0][0] == en_vocab.strings[match_id] - - -@pytest.mark.parametrize( - "sentence", - [ - "The story was to the effect that a young American student recently called on Professor Christlieb with a letter of introduction.", - "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's #1.", - "The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale's number one", - "Indeed, making the one who remains do all the work has installed him into a position of such insolent tyranny, it will take a month at least to reduce him to his proper proportions.", - "It was a missed assignment, but it shouldn't have resulted in a turnover ...", - ], -) -def test_issue3869(sentence): - """Test that the Doc's count_by function works consistently""" - nlp = English() - doc = nlp(sentence) - count = 0 - for token in doc: - count += token.is_alpha - assert count == doc.count_by(IS_ALPHA).get(1, 0) - - -def test_issue3879(en_vocab): - doc = Doc(en_vocab, words=["This", "is", "a", "test", "."]) - assert len(doc) == 5 - pattern = [{"ORTH": "This", "OP": "?"}, {"OP": "?"}, {"ORTH": "test"}] - matcher = Matcher(en_vocab) - matcher.add("TEST", [pattern]) - assert len(matcher(doc)) == 2 # fails because of a FP match 'is a test' - - -def test_issue3880(): - """Test that `nlp.pipe()` works when an empty string ends the batch. - - Fixed in v7.0.5 of Thinc. - """ - texts = ["hello", "world", "", ""] - nlp = English() - nlp.add_pipe("parser").add_label("dep") - nlp.add_pipe("ner").add_label("PERSON") - nlp.add_pipe("tagger").add_label("NN") - nlp.initialize() - for doc in nlp.pipe(texts): - pass - - -def test_issue3882(en_vocab): - """Test that displaCy doesn't serialize the doc.user_data when making a - copy of the Doc. - """ - doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"]) - doc.user_data["test"] = set() - parse_deps(doc) - - -def test_issue3951(en_vocab): - """Test that combinations of optional rules are matched correctly.""" - matcher = Matcher(en_vocab) - pattern = [ - {"LOWER": "hello"}, - {"LOWER": "this", "OP": "?"}, - {"OP": "?"}, - {"LOWER": "world"}, - ] - matcher.add("TEST", [pattern]) - doc = Doc(en_vocab, words=["Hello", "my", "new", "world"]) - matches = matcher(doc) - assert len(matches) == 0 - - -def test_issue3959(): - """Ensure that a modified pos attribute is serialized correctly.""" - nlp = English() - doc = nlp( - "displaCy uses JavaScript, SVG and CSS to show you how computers understand language" - ) - assert doc[0].pos_ == "" - doc[0].pos_ = "NOUN" - assert doc[0].pos_ == "NOUN" - # usually this is already True when starting from proper models instead of blank English - with make_tempdir() as tmp_dir: - file_path = tmp_dir / "my_doc" - doc.to_disk(file_path) - doc2 = nlp("") - doc2.from_disk(file_path) - assert doc2[0].pos_ == "NOUN" - - -def test_issue3962(en_vocab): - """Ensure that as_doc does not result in out-of-bound access of tokens. - This is achieved by setting the head to itself if it would lie out of the span otherwise.""" - # fmt: off - words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."] - heads = [1, 7, 1, 2, 7, 7, 7, 7, 9, 7, 7] - deps = ["nsubj", "ccomp", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] - # fmt: on - doc = Doc(en_vocab, words=words, heads=heads, deps=deps) - span2 = doc[1:5] # "jests at scars ," - doc2 = span2.as_doc() - doc2_json = doc2.to_json() - assert doc2_json - # head set to itself, being the new artificial root - assert doc2[0].head.text == "jests" - assert doc2[0].dep_ == "dep" - assert doc2[1].head.text == "jests" - assert doc2[1].dep_ == "prep" - assert doc2[2].head.text == "at" - assert doc2[2].dep_ == "pobj" - assert doc2[3].head.text == "jests" # head set to the new artificial root - assert doc2[3].dep_ == "dep" - # We should still have 1 sentence - assert len(list(doc2.sents)) == 1 - span3 = doc[6:9] # "never felt a" - doc3 = span3.as_doc() - doc3_json = doc3.to_json() - assert doc3_json - assert doc3[0].head.text == "felt" - assert doc3[0].dep_ == "neg" - assert doc3[1].head.text == "felt" - assert doc3[1].dep_ == "ROOT" - assert doc3[2].head.text == "felt" # head set to ancestor - assert doc3[2].dep_ == "dep" - # We should still have 1 sentence as "a" can be attached to "felt" instead of "wound" - assert len(list(doc3.sents)) == 1 - - -def test_issue3962_long(en_vocab): - """Ensure that as_doc does not result in out-of-bound access of tokens. - This is achieved by setting the head to itself if it would lie out of the span otherwise.""" - # fmt: off - words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."] - heads = [1, 1, 1, 2, 1, 7, 7, 7, 9, 7, 7] - deps = ["nsubj", "ROOT", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"] - # fmt: on - two_sent_doc = Doc(en_vocab, words=words, heads=heads, deps=deps) - span2 = two_sent_doc[1:7] # "jests at scars. They never" - doc2 = span2.as_doc() - doc2_json = doc2.to_json() - assert doc2_json - # head set to itself, being the new artificial root (in sentence 1) - assert doc2[0].head.text == "jests" - assert doc2[0].dep_ == "ROOT" - assert doc2[1].head.text == "jests" - assert doc2[1].dep_ == "prep" - assert doc2[2].head.text == "at" - assert doc2[2].dep_ == "pobj" - assert doc2[3].head.text == "jests" - assert doc2[3].dep_ == "punct" - # head set to itself, being the new artificial root (in sentence 2) - assert doc2[4].head.text == "They" - assert doc2[4].dep_ == "dep" - # head set to the new artificial head (in sentence 2) - assert doc2[4].head.text == "They" - assert doc2[4].dep_ == "dep" - # We should still have 2 sentences - sents = list(doc2.sents) - assert len(sents) == 2 - assert sents[0].text == "jests at scars ." - assert sents[1].text == "They never" - - -def test_issue3972(en_vocab): - """Test that the PhraseMatcher returns duplicates for duplicate match IDs.""" - matcher = PhraseMatcher(en_vocab) - matcher.add("A", [Doc(en_vocab, words=["New", "York"])]) - matcher.add("B", [Doc(en_vocab, words=["New", "York"])]) - doc = Doc(en_vocab, words=["I", "live", "in", "New", "York"]) - matches = matcher(doc) - - assert len(matches) == 2 - - # We should have a match for each of the two rules - found_ids = [en_vocab.strings[ent_id] for (ent_id, _, _) in matches] - assert "A" in found_ids - assert "B" in found_ids diff --git a/spacy/tests/regression/test_issue4001-4500.py b/spacy/tests/regression/test_issue4001-4500.py index 1cdb6e90b..e69de29bb 100644 --- a/spacy/tests/regression/test_issue4001-4500.py +++ b/spacy/tests/regression/test_issue4001-4500.py @@ -1,433 +0,0 @@ -import pytest -from spacy.pipeline import TrainablePipe -from spacy.matcher import PhraseMatcher, Matcher -from spacy.tokens import Doc, Span, DocBin -from spacy.training import Example, Corpus -from spacy.training.converters import json_to_docs -from spacy.vocab import Vocab -from spacy.lang.en import English -from spacy.util import minibatch, ensure_path, load_model -from spacy.util import compile_prefix_regex, compile_suffix_regex, compile_infix_regex -from spacy.tokenizer import Tokenizer -from spacy.lang.el import Greek -from spacy.language import Language -import spacy -from thinc.api import compounding - -from ..util import make_tempdir - - -def test_issue4002(en_vocab): - """Test that the PhraseMatcher can match on overwritten NORM attributes.""" - matcher = PhraseMatcher(en_vocab, attr="NORM") - pattern1 = Doc(en_vocab, words=["c", "d"]) - assert [t.norm_ for t in pattern1] == ["c", "d"] - matcher.add("TEST", [pattern1]) - doc = Doc(en_vocab, words=["a", "b", "c", "d"]) - assert [t.norm_ for t in doc] == ["a", "b", "c", "d"] - matches = matcher(doc) - assert len(matches) == 1 - matcher = PhraseMatcher(en_vocab, attr="NORM") - pattern2 = Doc(en_vocab, words=["1", "2"]) - pattern2[0].norm_ = "c" - pattern2[1].norm_ = "d" - assert [t.norm_ for t in pattern2] == ["c", "d"] - matcher.add("TEST", [pattern2]) - matches = matcher(doc) - assert len(matches) == 1 - - -def test_issue4030(): - """Test whether textcat works fine with empty doc""" - unique_classes = ["offensive", "inoffensive"] - x_train = [ - "This is an offensive text", - "This is the second offensive text", - "inoff", - ] - y_train = ["offensive", "offensive", "inoffensive"] - nlp = spacy.blank("en") - # preparing the data - train_data = [] - for text, train_instance in zip(x_train, y_train): - cat_dict = {label: label == train_instance for label in unique_classes} - train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) - # add a text categorizer component - model = { - "@architectures": "spacy.TextCatBOW.v1", - "exclusive_classes": True, - "ngram_size": 2, - "no_output_layer": False, - } - textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) - for label in unique_classes: - textcat.add_label(label) - # training the network - with nlp.select_pipes(enable="textcat"): - optimizer = nlp.initialize() - for i in range(3): - losses = {} - batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) - - for batch in batches: - nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) - # processing of an empty doc should result in 0.0 for all categories - doc = nlp("") - assert doc.cats["offensive"] == 0.0 - assert doc.cats["inoffensive"] == 0.0 - - -def test_issue4042(): - """Test that serialization of an EntityRuler before NER works fine.""" - nlp = English() - # add ner pipe - ner = nlp.add_pipe("ner") - ner.add_label("SOME_LABEL") - nlp.initialize() - # Add entity ruler - patterns = [ - {"label": "MY_ORG", "pattern": "Apple"}, - {"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}, - ] - # works fine with "after" - ruler = nlp.add_pipe("entity_ruler", before="ner") - ruler.add_patterns(patterns) - doc1 = nlp("What do you think about Apple ?") - assert doc1.ents[0].label_ == "MY_ORG" - - with make_tempdir() as d: - output_dir = ensure_path(d) - if not output_dir.exists(): - output_dir.mkdir() - nlp.to_disk(output_dir) - nlp2 = load_model(output_dir) - doc2 = nlp2("What do you think about Apple ?") - assert doc2.ents[0].label_ == "MY_ORG" - - -def test_issue4042_bug2(): - """ - Test that serialization of an NER works fine when new labels were added. - This is the second bug of two bugs underlying the issue 4042. - """ - nlp1 = English() - # add ner pipe - ner1 = nlp1.add_pipe("ner") - ner1.add_label("SOME_LABEL") - nlp1.initialize() - # add a new label to the doc - doc1 = nlp1("What do you think about Apple ?") - assert len(ner1.labels) == 1 - assert "SOME_LABEL" in ner1.labels - apple_ent = Span(doc1, 5, 6, label="MY_ORG") - doc1.ents = list(doc1.ents) + [apple_ent] - # Add the label explicitly. Previously we didn't require this. - ner1.add_label("MY_ORG") - ner1(doc1) - assert len(ner1.labels) == 2 - assert "SOME_LABEL" in ner1.labels - assert "MY_ORG" in ner1.labels - with make_tempdir() as d: - # assert IO goes fine - output_dir = ensure_path(d) - if not output_dir.exists(): - output_dir.mkdir() - ner1.to_disk(output_dir) - config = {} - ner2 = nlp1.create_pipe("ner", config=config) - ner2.from_disk(output_dir) - assert len(ner2.labels) == 2 - - -def test_issue4054(en_vocab): - """Test that a new blank model can be made with a vocab from file, - and that serialization does not drop the language at any point.""" - nlp1 = English() - vocab1 = nlp1.vocab - with make_tempdir() as d: - vocab_dir = ensure_path(d / "vocab") - if not vocab_dir.exists(): - vocab_dir.mkdir() - vocab1.to_disk(vocab_dir) - vocab2 = Vocab().from_disk(vocab_dir) - nlp2 = spacy.blank("en", vocab=vocab2) - nlp_dir = ensure_path(d / "nlp") - if not nlp_dir.exists(): - nlp_dir.mkdir() - nlp2.to_disk(nlp_dir) - nlp3 = load_model(nlp_dir) - assert nlp3.lang == "en" - - -def test_issue4120(en_vocab): - """Test that matches without a final {OP: ?} token are returned.""" - matcher = Matcher(en_vocab) - matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}]]) - doc1 = Doc(en_vocab, words=["a"]) - assert len(matcher(doc1)) == 1 # works - doc2 = Doc(en_vocab, words=["a", "b", "c"]) - assert len(matcher(doc2)) == 2 # fixed - matcher = Matcher(en_vocab) - matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b"}]]) - doc3 = Doc(en_vocab, words=["a", "b", "b", "c"]) - assert len(matcher(doc3)) == 2 # works - matcher = Matcher(en_vocab) - matcher.add("TEST", [[{"ORTH": "a"}, {"OP": "?"}, {"ORTH": "b", "OP": "?"}]]) - doc4 = Doc(en_vocab, words=["a", "b", "b", "c"]) - assert len(matcher(doc4)) == 3 # fixed - - -def test_issue4133(en_vocab): - nlp = English() - vocab_bytes = nlp.vocab.to_bytes() - words = ["Apple", "is", "looking", "at", "buying", "a", "startup"] - pos = ["NOUN", "VERB", "ADP", "VERB", "PROPN", "NOUN", "ADP"] - doc = Doc(en_vocab, words=words) - for i, token in enumerate(doc): - token.pos_ = pos[i] - # usually this is already True when starting from proper models instead of blank English - doc_bytes = doc.to_bytes() - vocab = Vocab() - vocab = vocab.from_bytes(vocab_bytes) - doc = Doc(vocab).from_bytes(doc_bytes) - actual = [] - for token in doc: - actual.append(token.pos_) - assert actual == pos - - -def test_issue4190(): - def customize_tokenizer(nlp): - prefix_re = compile_prefix_regex(nlp.Defaults.prefixes) - suffix_re = compile_suffix_regex(nlp.Defaults.suffixes) - infix_re = compile_infix_regex(nlp.Defaults.infixes) - # Remove all exceptions where a single letter is followed by a period (e.g. 'h.') - exceptions = { - k: v - for k, v in dict(nlp.Defaults.tokenizer_exceptions).items() - if not (len(k) == 2 and k[1] == ".") - } - new_tokenizer = Tokenizer( - nlp.vocab, - exceptions, - prefix_search=prefix_re.search, - suffix_search=suffix_re.search, - infix_finditer=infix_re.finditer, - token_match=nlp.tokenizer.token_match, - ) - nlp.tokenizer = new_tokenizer - - test_string = "Test c." - # Load default language - nlp_1 = English() - doc_1a = nlp_1(test_string) - result_1a = [token.text for token in doc_1a] # noqa: F841 - # Modify tokenizer - customize_tokenizer(nlp_1) - doc_1b = nlp_1(test_string) - result_1b = [token.text for token in doc_1b] - # Save and Reload - with make_tempdir() as model_dir: - nlp_1.to_disk(model_dir) - nlp_2 = load_model(model_dir) - # This should be the modified tokenizer - doc_2 = nlp_2(test_string) - result_2 = [token.text for token in doc_2] - assert result_1b == result_2 - - -def test_issue4267(): - """Test that running an entity_ruler after ner gives consistent results""" - nlp = English() - ner = nlp.add_pipe("ner") - ner.add_label("PEOPLE") - nlp.initialize() - assert "ner" in nlp.pipe_names - # assert that we have correct IOB annotations - doc1 = nlp("hi") - assert doc1.has_annotation("ENT_IOB") - for token in doc1: - assert token.ent_iob == 2 - # add entity ruler and run again - patterns = [{"label": "SOFTWARE", "pattern": "spacy"}] - ruler = nlp.add_pipe("entity_ruler") - ruler.add_patterns(patterns) - assert "entity_ruler" in nlp.pipe_names - assert "ner" in nlp.pipe_names - # assert that we still have correct IOB annotations - doc2 = nlp("hi") - assert doc2.has_annotation("ENT_IOB") - for token in doc2: - assert token.ent_iob == 2 - - -@pytest.mark.skip(reason="lemmatizer lookups no longer in vocab") -def test_issue4272(): - """Test that lookup table can be accessed from Token.lemma if no POS tags - are available.""" - nlp = Greek() - doc = nlp("Χθες") - assert doc[0].lemma_ - - -def test_multiple_predictions(): - class DummyPipe(TrainablePipe): - def __init__(self): - self.model = "dummy_model" - - def predict(self, docs): - return ([1, 2, 3], [4, 5, 6]) - - def set_annotations(self, docs, scores): - return docs - - nlp = Language() - doc = nlp.make_doc("foo") - dummy_pipe = DummyPipe() - dummy_pipe(doc) - - -@pytest.mark.xfail(reason="no beam parser yet") -def test_issue4313(): - """This should not crash or exit with some strange error code""" - beam_width = 16 - beam_density = 0.0001 - nlp = English() - config = { - "beam_width": beam_width, - "beam_density": beam_density, - } - ner = nlp.add_pipe("beam_ner", config=config) - ner.add_label("SOME_LABEL") - nlp.initialize() - # add a new label to the doc - doc = nlp("What do you think about Apple ?") - assert len(ner.labels) == 1 - assert "SOME_LABEL" in ner.labels - apple_ent = Span(doc, 5, 6, label="MY_ORG") - doc.ents = list(doc.ents) + [apple_ent] - - # ensure the beam_parse still works with the new label - docs = [doc] - ner.beam_parse(docs, drop=0.0, beam_width=beam_width, beam_density=beam_density) - assert len(ner.labels) == 2 - assert "MY_ORG" in ner.labels - - -def test_issue4348(): - """Test that training the tagger with empty data, doesn't throw errors""" - nlp = English() - example = Example.from_dict(nlp.make_doc(""), {"tags": []}) - TRAIN_DATA = [example, example] - tagger = nlp.add_pipe("tagger") - tagger.add_label("A") - optimizer = nlp.initialize() - for i in range(5): - losses = {} - batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) - for batch in batches: - nlp.update(batch, sgd=optimizer, losses=losses) - - -def test_issue4367(): - """Test that docbin init goes well""" - DocBin() - DocBin(attrs=["LEMMA"]) - DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"]) - - -def test_issue4373(): - """Test that PhraseMatcher.vocab can be accessed (like Matcher.vocab).""" - matcher = Matcher(Vocab()) - assert isinstance(matcher.vocab, Vocab) - matcher = PhraseMatcher(Vocab()) - assert isinstance(matcher.vocab, Vocab) - - -def test_issue4402(): - json_data = { - "id": 0, - "paragraphs": [ - { - "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.", - "sentences": [ - { - "tokens": [ - {"id": 0, "orth": "How", "ner": "O"}, - {"id": 1, "orth": "should", "ner": "O"}, - {"id": 2, "orth": "I", "ner": "O"}, - {"id": 3, "orth": "cook", "ner": "O"}, - {"id": 4, "orth": "bacon", "ner": "O"}, - {"id": 5, "orth": "in", "ner": "O"}, - {"id": 6, "orth": "an", "ner": "O"}, - {"id": 7, "orth": "oven", "ner": "O"}, - {"id": 8, "orth": "?", "ner": "O"}, - ], - "brackets": [], - }, - { - "tokens": [ - {"id": 9, "orth": "\n", "ner": "O"}, - {"id": 10, "orth": "I", "ner": "O"}, - {"id": 11, "orth": "'ve", "ner": "O"}, - {"id": 12, "orth": "heard", "ner": "O"}, - {"id": 13, "orth": "of", "ner": "O"}, - {"id": 14, "orth": "people", "ner": "O"}, - {"id": 15, "orth": "cooking", "ner": "O"}, - {"id": 16, "orth": "bacon", "ner": "O"}, - {"id": 17, "orth": "in", "ner": "O"}, - {"id": 18, "orth": "an", "ner": "O"}, - {"id": 19, "orth": "oven", "ner": "O"}, - {"id": 20, "orth": ".", "ner": "O"}, - ], - "brackets": [], - }, - ], - "cats": [ - {"label": "baking", "value": 1.0}, - {"label": "not_baking", "value": 0.0}, - ], - }, - { - "raw": "What is the difference between white and brown eggs?\n", - "sentences": [ - { - "tokens": [ - {"id": 0, "orth": "What", "ner": "O"}, - {"id": 1, "orth": "is", "ner": "O"}, - {"id": 2, "orth": "the", "ner": "O"}, - {"id": 3, "orth": "difference", "ner": "O"}, - {"id": 4, "orth": "between", "ner": "O"}, - {"id": 5, "orth": "white", "ner": "O"}, - {"id": 6, "orth": "and", "ner": "O"}, - {"id": 7, "orth": "brown", "ner": "O"}, - {"id": 8, "orth": "eggs", "ner": "O"}, - {"id": 9, "orth": "?", "ner": "O"}, - ], - "brackets": [], - }, - {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []}, - ], - "cats": [ - {"label": "baking", "value": 0.0}, - {"label": "not_baking", "value": 1.0}, - ], - }, - ], - } - nlp = English() - attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"] - with make_tempdir() as tmpdir: - output_file = tmpdir / "test4402.spacy" - docs = json_to_docs([json_data]) - data = DocBin(docs=docs, attrs=attrs).to_bytes() - with output_file.open("wb") as file_: - file_.write(data) - reader = Corpus(output_file) - train_data = list(reader(nlp)) - assert len(train_data) == 2 - - split_train_data = [] - for eg in train_data: - split_train_data.extend(eg.split_sents()) - assert len(split_train_data) == 4 diff --git a/spacy/tests/regression/test_issue4501-5000.py b/spacy/tests/regression/test_issue4501-5000.py deleted file mode 100644 index effd67306..000000000 --- a/spacy/tests/regression/test_issue4501-5000.py +++ /dev/null @@ -1,255 +0,0 @@ -import pytest -from spacy.tokens import Doc, Span, DocBin -from spacy.training import Example -from spacy.training.converters.conllu_to_docs import conllu_to_docs -from spacy.lang.en import English -from spacy.kb import KnowledgeBase -from spacy.vocab import Vocab -from spacy.language import Language -from spacy.util import ensure_path, load_model_from_path -import numpy -import pickle -from thinc.api import NumpyOps, get_current_ops - -from ..util import make_tempdir - - -def test_issue4528(en_vocab): - """Test that user_data is correctly serialized in DocBin.""" - doc = Doc(en_vocab, words=["hello", "world"]) - doc.user_data["foo"] = "bar" - # This is how extension attribute values are stored in the user data - doc.user_data[("._.", "foo", None, None)] = "bar" - doc_bin = DocBin(store_user_data=True) - doc_bin.add(doc) - doc_bin_bytes = doc_bin.to_bytes() - new_doc_bin = DocBin(store_user_data=True).from_bytes(doc_bin_bytes) - new_doc = list(new_doc_bin.get_docs(en_vocab))[0] - assert new_doc.user_data["foo"] == "bar" - assert new_doc.user_data[("._.", "foo", None, None)] == "bar" - - -@pytest.mark.parametrize( - "text,words", [("A'B C", ["A", "'", "B", "C"]), ("A-B", ["A-B"])] -) -def test_gold_misaligned(en_tokenizer, text, words): - doc = en_tokenizer(text) - Example.from_dict(doc, {"words": words}) - - -def test_issue4651_with_phrase_matcher_attr(): - """Test that the EntityRuler PhraseMatcher is deserialized correctly using - the method from_disk when the EntityRuler argument phrase_matcher_attr is - specified. - """ - text = "Spacy is a python library for nlp" - nlp = English() - patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}] - ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) - ruler.add_patterns(patterns) - doc = nlp(text) - res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents] - nlp_reloaded = English() - with make_tempdir() as d: - file_path = d / "entityruler" - ruler.to_disk(file_path) - nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path) - doc_reloaded = nlp_reloaded(text) - res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents] - assert res == res_reloaded - - -def test_issue4651_without_phrase_matcher_attr(): - """Test that the EntityRuler PhraseMatcher is deserialized correctly using - the method from_disk when the EntityRuler argument phrase_matcher_attr is - not specified. - """ - text = "Spacy is a python library for nlp" - nlp = English() - patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}] - ruler = nlp.add_pipe("entity_ruler") - ruler.add_patterns(patterns) - doc = nlp(text) - res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents] - nlp_reloaded = English() - with make_tempdir() as d: - file_path = d / "entityruler" - ruler.to_disk(file_path) - nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path) - doc_reloaded = nlp_reloaded(text) - res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents] - assert res == res_reloaded - - -def test_issue4665(): - """ - conllu_to_docs should not raise an exception if the HEAD column contains an - underscore - """ - input_data = """ -1 [ _ PUNCT -LRB- _ _ punct _ _ -2 This _ DET DT _ _ det _ _ -3 killing _ NOUN NN _ _ nsubj _ _ -4 of _ ADP IN _ _ case _ _ -5 a _ DET DT _ _ det _ _ -6 respected _ ADJ JJ _ _ amod _ _ -7 cleric _ NOUN NN _ _ nmod _ _ -8 will _ AUX MD _ _ aux _ _ -9 be _ AUX VB _ _ aux _ _ -10 causing _ VERB VBG _ _ root _ _ -11 us _ PRON PRP _ _ iobj _ _ -12 trouble _ NOUN NN _ _ dobj _ _ -13 for _ ADP IN _ _ case _ _ -14 years _ NOUN NNS _ _ nmod _ _ -15 to _ PART TO _ _ mark _ _ -16 come _ VERB VB _ _ acl _ _ -17 . _ PUNCT . _ _ punct _ _ -18 ] _ PUNCT -RRB- _ _ punct _ _ -""" - conllu_to_docs(input_data) - - -def test_issue4674(): - """Test that setting entities with overlapping identifiers does not mess up IO""" - nlp = English() - kb = KnowledgeBase(nlp.vocab, entity_vector_length=3) - vector1 = [0.9, 1.1, 1.01] - vector2 = [1.8, 2.25, 2.01] - with pytest.warns(UserWarning): - kb.set_entities( - entity_list=["Q1", "Q1"], - freq_list=[32, 111], - vector_list=[vector1, vector2], - ) - assert kb.get_size_entities() == 1 - # dumping to file & loading back in - with make_tempdir() as d: - dir_path = ensure_path(d) - if not dir_path.exists(): - dir_path.mkdir() - file_path = dir_path / "kb" - kb.to_disk(str(file_path)) - kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3) - kb2.from_disk(str(file_path)) - assert kb2.get_size_entities() == 1 - - -@pytest.mark.skip(reason="API change: disable just disables, new exclude arg") -def test_issue4707(): - """Tests that disabled component names are also excluded from nlp.from_disk - by default when loading a model. - """ - nlp = English() - nlp.add_pipe("sentencizer") - nlp.add_pipe("entity_ruler") - assert nlp.pipe_names == ["sentencizer", "entity_ruler"] - exclude = ["tokenizer", "sentencizer"] - with make_tempdir() as tmpdir: - nlp.to_disk(tmpdir, exclude=exclude) - new_nlp = load_model_from_path(tmpdir, disable=exclude) - assert "sentencizer" not in new_nlp.pipe_names - assert "entity_ruler" in new_nlp.pipe_names - - -def test_issue4725_1(): - """Ensure the pickling of the NER goes well""" - vocab = Vocab(vectors_name="test_vocab_add_vector") - nlp = English(vocab=vocab) - config = { - "update_with_oracle_cut_size": 111, - } - ner = nlp.create_pipe("ner", config=config) - with make_tempdir() as tmp_path: - with (tmp_path / "ner.pkl").open("wb") as file_: - pickle.dump(ner, file_) - assert ner.cfg["update_with_oracle_cut_size"] == 111 - - with (tmp_path / "ner.pkl").open("rb") as file_: - ner2 = pickle.load(file_) - assert ner2.cfg["update_with_oracle_cut_size"] == 111 - - -def test_issue4725_2(): - if isinstance(get_current_ops, NumpyOps): - # ensures that this runs correctly and doesn't hang or crash because of the global vectors - # if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows), - # or because of issues with pickling the NER (cf test_issue4725_1) - vocab = Vocab(vectors_name="test_vocab_add_vector") - data = numpy.ndarray((5, 3), dtype="f") - data[0] = 1.0 - data[1] = 2.0 - vocab.set_vector("cat", data[0]) - vocab.set_vector("dog", data[1]) - nlp = English(vocab=vocab) - nlp.add_pipe("ner") - nlp.initialize() - docs = ["Kurt is in London."] * 10 - for _ in nlp.pipe(docs, batch_size=2, n_process=2): - pass - - -def test_issue4849(): - nlp = English() - patterns = [ - {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"}, - {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"}, - ] - ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) - ruler.add_patterns(patterns) - text = """ - The left is starting to take aim at Democratic front-runner Joe Biden. - Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy." - """ - # USING 1 PROCESS - count_ents = 0 - for doc in nlp.pipe([text], n_process=1): - count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) - assert count_ents == 2 - # USING 2 PROCESSES - if isinstance(get_current_ops, NumpyOps): - count_ents = 0 - for doc in nlp.pipe([text], n_process=2): - count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) - assert count_ents == 2 - - -@Language.factory("my_pipe") -class CustomPipe: - def __init__(self, nlp, name="my_pipe"): - self.name = name - Span.set_extension("my_ext", getter=self._get_my_ext) - Doc.set_extension("my_ext", default=None) - - def __call__(self, doc): - gathered_ext = [] - for sent in doc.sents: - sent_ext = self._get_my_ext(sent) - sent._.set("my_ext", sent_ext) - gathered_ext.append(sent_ext) - - doc._.set("my_ext", "\n".join(gathered_ext)) - return doc - - @staticmethod - def _get_my_ext(span): - return str(span.end) - - -def test_issue4903(): - """Ensure that this runs correctly and doesn't hang or crash on Windows / - macOS.""" - nlp = English() - nlp.add_pipe("sentencizer") - nlp.add_pipe("my_pipe", after="sentencizer") - text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."] - if isinstance(get_current_ops(), NumpyOps): - docs = list(nlp.pipe(text, n_process=2)) - assert docs[0].text == "I like bananas." - assert docs[1].text == "Do you like them?" - assert docs[2].text == "No, I prefer wasabi." - - -def test_issue4924(): - nlp = Language() - example = Example.from_dict(nlp.make_doc(""), {}) - nlp.evaluate([example]) diff --git a/spacy/tests/regression/test_issue5001-5500.py b/spacy/tests/regression/test_issue5001-5500.py deleted file mode 100644 index bc9bcb982..000000000 --- a/spacy/tests/regression/test_issue5001-5500.py +++ /dev/null @@ -1,143 +0,0 @@ -import numpy -from spacy.tokens import Doc, DocBin -from spacy.attrs import DEP, POS, TAG -from spacy.lang.en import English -from spacy.language import Language -from spacy.lang.en.syntax_iterators import noun_chunks -from spacy.vocab import Vocab -import spacy -from thinc.api import get_current_ops -import pytest - -from ...util import make_tempdir - - -def test_issue5048(en_vocab): - words = ["This", "is", "a", "sentence"] - pos_s = ["DET", "VERB", "DET", "NOUN"] - spaces = [" ", " ", " ", ""] - deps_s = ["dep", "adj", "nn", "atm"] - tags_s = ["DT", "VBZ", "DT", "NN"] - strings = en_vocab.strings - for w in words: - strings.add(w) - deps = [strings.add(d) for d in deps_s] - pos = [strings.add(p) for p in pos_s] - tags = [strings.add(t) for t in tags_s] - attrs = [POS, DEP, TAG] - array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64") - doc = Doc(en_vocab, words=words, spaces=spaces) - doc.from_array(attrs, array) - v1 = [(token.text, token.pos_, token.tag_) for token in doc] - doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s) - v2 = [(token.text, token.pos_, token.tag_) for token in doc2] - assert v1 == v2 - - -def test_issue5082(): - # Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens - nlp = English() - vocab = nlp.vocab - array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32) - array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32) - array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32) - array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32) - array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32) - vocab.set_vector("I", array1) - vocab.set_vector("like", array2) - vocab.set_vector("David", array3) - vocab.set_vector("Bowie", array4) - text = "I like David Bowie" - patterns = [ - {"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]} - ] - ruler = nlp.add_pipe("entity_ruler") - ruler.add_patterns(patterns) - parsed_vectors_1 = [t.vector for t in nlp(text)] - assert len(parsed_vectors_1) == 4 - ops = get_current_ops() - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[0]), array1) - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[1]), array2) - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[2]), array3) - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[3]), array4) - nlp.add_pipe("merge_entities") - parsed_vectors_2 = [t.vector for t in nlp(text)] - assert len(parsed_vectors_2) == 3 - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[0]), array1) - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[1]), array2) - numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[2]), array34) - - -def test_issue5137(): - factory_name = "test_issue5137" - pipe_name = "my_component" - - @Language.factory(factory_name) - class MyComponent: - def __init__(self, nlp, name=pipe_name, categories="all_categories"): - self.nlp = nlp - self.categories = categories - self.name = name - - def __call__(self, doc): - pass - - def to_disk(self, path, **kwargs): - pass - - def from_disk(self, path, **cfg): - pass - - nlp = English() - my_component = nlp.add_pipe(factory_name, name=pipe_name) - assert my_component.categories == "all_categories" - with make_tempdir() as tmpdir: - nlp.to_disk(tmpdir) - overrides = {"components": {pipe_name: {"categories": "my_categories"}}} - nlp2 = spacy.load(tmpdir, config=overrides) - assert nlp2.get_pipe(pipe_name).categories == "my_categories" - - -def test_issue5141(en_vocab): - """Ensure an empty DocBin does not crash on serialization""" - doc_bin = DocBin(attrs=["DEP", "HEAD"]) - assert list(doc_bin.get_docs(en_vocab)) == [] - doc_bin_bytes = doc_bin.to_bytes() - doc_bin_2 = DocBin().from_bytes(doc_bin_bytes) - assert list(doc_bin_2.get_docs(en_vocab)) == [] - - -def test_issue5152(): - # Test that the comparison between a Span and a Token, goes well - # There was a bug when the number of tokens in the span equaled the number of characters in the token (!) - nlp = English() - text = nlp("Talk about being boring!") - text_var = nlp("Talk of being boring!") - y = nlp("Let") - span = text[0:3] # Talk about being - span_2 = text[0:3] # Talk about being - span_3 = text_var[0:3] # Talk of being - token = y[0] # Let - with pytest.warns(UserWarning): - assert span.similarity(token) == 0.0 - assert span.similarity(span_2) == 1.0 - with pytest.warns(UserWarning): - assert span_2.similarity(span_3) < 1.0 - - -def test_issue5458(): - # Test that the noun chuncker does not generate overlapping spans - # fmt: off - words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."] - vocab = Vocab(strings=words) - deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"] - pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"] - heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0] - # fmt: on - en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps) - en_doc.noun_chunks_iterator = noun_chunks - - # if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans" - nlp = English() - merge_nps = nlp.create_pipe("merge_noun_chunks") - merge_nps(en_doc) diff --git a/spacy/tests/regression/test_issue5501-6000.py b/spacy/tests/regression/test_issue5501-6000.py deleted file mode 100644 index 355ffffeb..000000000 --- a/spacy/tests/regression/test_issue5501-6000.py +++ /dev/null @@ -1,92 +0,0 @@ -import pytest -from numpy.testing import assert_almost_equal -from thinc.api import Config, fix_random_seed, get_current_ops - -from spacy.lang.en import English -from spacy.pipeline.textcat import single_label_default_config, single_label_bow_config -from spacy.pipeline.textcat import single_label_cnn_config -from spacy.pipeline.textcat_multilabel import multi_label_default_config -from spacy.pipeline.textcat_multilabel import multi_label_bow_config -from spacy.pipeline.textcat_multilabel import multi_label_cnn_config -from spacy.tokens import Span -from spacy import displacy -from spacy.pipeline import merge_entities -from spacy.training import Example - - -@pytest.mark.parametrize( - "textcat_config", - [ - single_label_default_config, - single_label_bow_config, - single_label_cnn_config, - multi_label_default_config, - multi_label_bow_config, - multi_label_cnn_config, - ], -) -def test_issue5551(textcat_config): - """Test that after fixing the random seed, the results of the pipeline are truly identical""" - component = "textcat" - - pipe_cfg = Config().from_str(textcat_config) - results = [] - for i in range(3): - fix_random_seed(0) - nlp = English() - text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g." - annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}} - pipe = nlp.add_pipe(component, config=pipe_cfg, last=True) - for label in set(annots["cats"]): - pipe.add_label(label) - # Train - nlp.initialize() - doc = nlp.make_doc(text) - nlp.update([Example.from_dict(doc, annots)]) - # Store the result of each iteration - result = pipe.model.predict([doc]) - results.append(result[0]) - # All results should be the same because of the fixed seed - assert len(results) == 3 - ops = get_current_ops() - assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5) - assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5) - - -def test_issue5838(): - # Displacy's EntityRenderer break line - # not working after last entity - sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n" - nlp = English() - doc = nlp(sample_text) - doc.ents = [Span(doc, 7, 8, label="test")] - html = displacy.render(doc, style="ent") - found = html.count("
") - assert found == 4 - - -def test_issue5918(): - # Test edge case when merging entities. - nlp = English() - ruler = nlp.add_pipe("entity_ruler") - patterns = [ - {"label": "ORG", "pattern": "Digicon Inc"}, - {"label": "ORG", "pattern": "Rotan Mosle Inc's"}, - {"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"}, - ] - ruler.add_patterns(patterns) - - text = """ - Digicon Inc said it has completed the previously-announced disposition - of its computer systems division to an investment group led by - Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate. - """ - doc = nlp(text) - assert len(doc.ents) == 3 - # make it so that the third span's head is within the entity (ent_iob=I) - # bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents. - # TODO: test for logging here - # with pytest.warns(UserWarning): - # doc[29].head = doc[33] - doc = merge_entities(doc) - assert len(doc.ents) == 3 diff --git a/spacy/tests/regression/test_issue6001-6500.py b/spacy/tests/regression/test_issue6001-6500.py deleted file mode 100644 index 470b2f388..000000000 --- a/spacy/tests/regression/test_issue6001-6500.py +++ /dev/null @@ -1,28 +0,0 @@ -from spacy.util import filter_spans -from pydantic import ValidationError -from spacy.schemas import TokenPattern, TokenPatternSchema -import pytest - - -def test_issue6207(en_tokenizer): - doc = en_tokenizer("zero one two three four five six") - - # Make spans - s1 = doc[:4] - s2 = doc[3:6] # overlaps with s1 - s3 = doc[5:7] # overlaps with s2, not s1 - - result = filter_spans((s1, s2, s3)) - assert s1 in result - assert s2 not in result - assert s3 in result - - -def test_issue6258(): - """Test that the non-empty constraint pattern field is respected""" - # These one is valid - TokenPatternSchema(pattern=[TokenPattern()]) - # But an empty pattern list should fail to validate - # based on the schema's constraint - with pytest.raises(ValidationError): - TokenPatternSchema(pattern=[]) diff --git a/spacy/tests/regression/test_issue6501-7000.py b/spacy/tests/regression/test_issue6501-7000.py deleted file mode 100644 index f57e4085c..000000000 --- a/spacy/tests/regression/test_issue6501-7000.py +++ /dev/null @@ -1,230 +0,0 @@ -import pytest -from spacy.lang.en import English -import numpy as np -import spacy -from spacy.tokens import Doc -from spacy.matcher import PhraseMatcher -from spacy.tokens import DocBin -from spacy.util import load_config_from_str -from spacy.training import Example -from spacy.training.initialize import init_nlp -import pickle - -from ..util import make_tempdir - - -def test_issue6730(en_vocab): - """Ensure that the KB does not accept empty strings, but otherwise IO works fine.""" - from spacy.kb import KnowledgeBase - - kb = KnowledgeBase(en_vocab, entity_vector_length=3) - kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3]) - - with pytest.raises(ValueError): - kb.add_alias(alias="", entities=["1"], probabilities=[0.4]) - assert kb.contains_alias("") is False - - kb.add_alias(alias="x", entities=["1"], probabilities=[0.2]) - kb.add_alias(alias="y", entities=["1"], probabilities=[0.1]) - - with make_tempdir() as tmp_dir: - kb.to_disk(tmp_dir) - kb.from_disk(tmp_dir) - assert kb.get_size_aliases() == 2 - assert set(kb.get_alias_strings()) == {"x", "y"} - - -def test_issue6755(en_tokenizer): - doc = en_tokenizer("This is a magnificent sentence.") - span = doc[:0] - assert span.text_with_ws == "" - assert span.text == "" - - -@pytest.mark.parametrize( - "sentence, start_idx,end_idx,label", - [("Welcome to Mumbai, my friend", 11, 17, "GPE")], -) -def test_issue6815_1(sentence, start_idx, end_idx, label): - nlp = English() - doc = nlp(sentence) - span = doc[:].char_span(start_idx, end_idx, label=label) - assert span.label_ == label - - -@pytest.mark.parametrize( - "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)] -) -def test_issue6815_2(sentence, start_idx, end_idx, kb_id): - nlp = English() - doc = nlp(sentence) - span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id) - assert span.kb_id == kb_id - - -@pytest.mark.parametrize( - "sentence, start_idx,end_idx,vector", - [("Welcome to Mumbai, my friend", 11, 17, np.array([0.1, 0.2, 0.3]))], -) -def test_issue6815_3(sentence, start_idx, end_idx, vector): - nlp = English() - doc = nlp(sentence) - span = doc[:].char_span(start_idx, end_idx, vector=vector) - assert (span.vector == vector).all() - - -def test_issue6839(en_vocab): - """Ensure that PhraseMatcher accepts Span as input""" - # fmt: off - words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."] - # fmt: on - doc = Doc(en_vocab, words=words) - span = doc[:8] - pattern = Doc(en_vocab, words=["Spans", "and", "Docs"]) - matcher = PhraseMatcher(en_vocab) - matcher.add("SPACY", [pattern]) - matches = matcher(span) - assert matches - - -CONFIG_ISSUE_6908 = """ -[paths] -train = "TRAIN_PLACEHOLDER" -raw = null -init_tok2vec = null -vectors = null - -[system] -seed = 0 -gpu_allocator = null - -[nlp] -lang = "en" -pipeline = ["textcat"] -tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} -disabled = [] -before_creation = null -after_creation = null -after_pipeline_creation = null -batch_size = 1000 - -[components] - -[components.textcat] -factory = "TEXTCAT_PLACEHOLDER" - -[corpora] - -[corpora.train] -@readers = "spacy.Corpus.v1" -path = ${paths:train} - -[corpora.dev] -@readers = "spacy.Corpus.v1" -path = ${paths:train} - - -[training] -train_corpus = "corpora.train" -dev_corpus = "corpora.dev" -seed = ${system.seed} -gpu_allocator = ${system.gpu_allocator} -frozen_components = [] -before_to_disk = null - -[pretraining] - -[initialize] -vectors = ${paths.vectors} -init_tok2vec = ${paths.init_tok2vec} -vocab_data = null -lookups = null -before_init = null -after_init = null - -[initialize.components] - -[initialize.components.textcat] -labels = ['label1', 'label2'] - -[initialize.tokenizer] -""" - - -@pytest.mark.parametrize( - "component_name", - ["textcat", "textcat_multilabel"], -) -def test_issue6908(component_name): - """Test intializing textcat with labels in a list""" - - def create_data(out_file): - nlp = spacy.blank("en") - doc = nlp.make_doc("Some text") - doc.cats = {"label1": 0, "label2": 1} - out_data = DocBin(docs=[doc]).to_bytes() - with out_file.open("wb") as file_: - file_.write(out_data) - - with make_tempdir() as tmp_path: - train_path = tmp_path / "train.spacy" - create_data(train_path) - config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name) - config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix()) - config = load_config_from_str(config_str) - init_nlp(config) - - -CONFIG_ISSUE_6950 = """ -[nlp] -lang = "en" -pipeline = ["tok2vec", "tagger"] - -[components] - -[components.tok2vec] -factory = "tok2vec" - -[components.tok2vec.model] -@architectures = "spacy.Tok2Vec.v1" - -[components.tok2vec.model.embed] -@architectures = "spacy.MultiHashEmbed.v1" -width = ${components.tok2vec.model.encode:width} -attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] -rows = [5000,2500,2500,2500] -include_static_vectors = false - -[components.tok2vec.model.encode] -@architectures = "spacy.MaxoutWindowEncoder.v1" -width = 96 -depth = 4 -window_size = 1 -maxout_pieces = 3 - -[components.ner] -factory = "ner" - -[components.tagger] -factory = "tagger" - -[components.tagger.model] -@architectures = "spacy.Tagger.v1" -nO = null - -[components.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} -upstream = "*" -""" - - -def test_issue6950(): - """Test that the nlp object with initialized tok2vec with listeners pickles - correctly (and doesn't have lambdas). - """ - nlp = English.from_config(load_config_from_str(CONFIG_ISSUE_6950)) - nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})]) - pickle.dumps(nlp) - nlp("hello") - pickle.dumps(nlp) diff --git a/spacy/tests/regression/test_issue7001-8000.py b/spacy/tests/regression/test_issue7001-8000.py deleted file mode 100644 index 5bb7cc08e..000000000 --- a/spacy/tests/regression/test_issue7001-8000.py +++ /dev/null @@ -1,281 +0,0 @@ -from spacy.cli.evaluate import print_textcats_auc_per_cat, print_prf_per_type -from spacy.lang.en import English -from spacy.training import Example -from spacy.tokens.doc import Doc -from spacy.vocab import Vocab -from spacy.kb import KnowledgeBase -from spacy.pipeline._parser_internals.arc_eager import ArcEager -from spacy.util import load_config_from_str, load_config -from spacy.cli.init_config import fill_config -from thinc.api import Config -from wasabi import msg - -from ..util import make_tempdir - - -def test_issue7019(): - scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None} - print_textcats_auc_per_cat(msg, scores) - scores = { - "LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932}, - "LABEL_B": {"p": None, "r": None, "f": None}, - } - print_prf_per_type(msg, scores, name="foo", type="bar") - - -CONFIG_7029 = """ -[nlp] -lang = "en" -pipeline = ["tok2vec", "tagger"] - -[components] - -[components.tok2vec] -factory = "tok2vec" - -[components.tok2vec.model] -@architectures = "spacy.Tok2Vec.v1" - -[components.tok2vec.model.embed] -@architectures = "spacy.MultiHashEmbed.v1" -width = ${components.tok2vec.model.encode:width} -attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] -rows = [5000,2500,2500,2500] -include_static_vectors = false - -[components.tok2vec.model.encode] -@architectures = "spacy.MaxoutWindowEncoder.v1" -width = 96 -depth = 4 -window_size = 1 -maxout_pieces = 3 - -[components.tagger] -factory = "tagger" - -[components.tagger.model] -@architectures = "spacy.Tagger.v1" -nO = null - -[components.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} -upstream = "*" -""" - - -def test_issue7029(): - """Test that an empty document doesn't mess up an entire batch.""" - TRAIN_DATA = [ - ("I like green eggs", {"tags": ["N", "V", "J", "N"]}), - ("Eat blue ham", {"tags": ["V", "J", "N"]}), - ] - nlp = English.from_config(load_config_from_str(CONFIG_7029)) - train_examples = [] - for t in TRAIN_DATA: - train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) - optimizer = nlp.initialize(get_examples=lambda: train_examples) - for i in range(50): - losses = {} - nlp.update(train_examples, sgd=optimizer, losses=losses) - texts = ["first", "second", "third", "fourth", "and", "then", "some", ""] - docs1 = list(nlp.pipe(texts, batch_size=1)) - docs2 = list(nlp.pipe(texts, batch_size=4)) - assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]] - - -def test_issue7055(): - """Test that fill-config doesn't turn sourced components into factories.""" - source_cfg = { - "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]}, - "components": { - "tok2vec": {"factory": "tok2vec"}, - "tagger": {"factory": "tagger"}, - }, - } - source_nlp = English.from_config(source_cfg) - with make_tempdir() as dir_path: - # We need to create a loadable source pipeline - source_path = dir_path / "test_model" - source_nlp.to_disk(source_path) - base_cfg = { - "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]}, - "components": { - "tok2vec": {"source": str(source_path)}, - "tagger": {"source": str(source_path)}, - "ner": {"factory": "ner"}, - }, - } - base_cfg = Config(base_cfg) - base_path = dir_path / "base.cfg" - base_cfg.to_disk(base_path) - output_path = dir_path / "config.cfg" - fill_config(output_path, base_path, silent=True) - filled_cfg = load_config(output_path) - assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path) - assert filled_cfg["components"]["tagger"]["source"] == str(source_path) - assert filled_cfg["components"]["ner"]["factory"] == "ner" - assert "model" in filled_cfg["components"]["ner"] - - -def test_issue7056(): - """Test that the Unshift transition works properly, and doesn't cause - sentence segmentation errors.""" - vocab = Vocab() - ae = ArcEager( - vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"]) - ) - doc = Doc(vocab, words="Severe pain , after trauma".split()) - state = ae.init_batch([doc])[0] - ae.apply_transition(state, "S") - ae.apply_transition(state, "L-amod") - ae.apply_transition(state, "S") - ae.apply_transition(state, "S") - ae.apply_transition(state, "S") - ae.apply_transition(state, "R-pobj") - ae.apply_transition(state, "D") - ae.apply_transition(state, "D") - ae.apply_transition(state, "D") - assert not state.eol() - - -def test_partial_links(): - # Test that having some entities on the doc without gold links, doesn't crash - TRAIN_DATA = [ - ( - "Russ Cochran his reprints include EC Comics.", - { - "links": {(0, 12): {"Q2146908": 1.0}}, - "entities": [(0, 12, "PERSON")], - "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0], - }, - ) - ] - nlp = English() - vector_length = 3 - train_examples = [] - for text, annotation in TRAIN_DATA: - doc = nlp(text) - train_examples.append(Example.from_dict(doc, annotation)) - - def create_kb(vocab): - # create artificial KB - mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) - mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) - mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9]) - return mykb - - # Create and train the Entity Linker - entity_linker = nlp.add_pipe("entity_linker", last=True) - entity_linker.set_kb(create_kb) - optimizer = nlp.initialize(get_examples=lambda: train_examples) - for i in range(2): - losses = {} - nlp.update(train_examples, sgd=optimizer, losses=losses) - - # adding additional components that are required for the entity_linker - nlp.add_pipe("sentencizer", first=True) - patterns = [ - {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}, - {"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}, - ] - ruler = nlp.add_pipe("entity_ruler", before="entity_linker") - ruler.add_patterns(patterns) - - # this will run the pipeline on the examples and shouldn't crash - results = nlp.evaluate(train_examples) - assert "PERSON" in results["ents_per_type"] - assert "PERSON" in results["nel_f_per_type"] - assert "ORG" in results["ents_per_type"] - assert "ORG" not in results["nel_f_per_type"] - - -def test_issue7065(): - text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival." - nlp = English() - nlp.add_pipe("sentencizer") - ruler = nlp.add_pipe("entity_ruler") - patterns = [ - { - "label": "THING", - "pattern": [ - {"LOWER": "symphony"}, - {"LOWER": "no"}, - {"LOWER": "."}, - {"LOWER": "8"}, - ], - } - ] - ruler.add_patterns(patterns) - - doc = nlp(text) - sentences = [s for s in doc.sents] - assert len(sentences) == 2 - sent0 = sentences[0] - ent = doc.ents[0] - assert ent.start < sent0.end < ent.end - assert sentences.index(ent.sent) == 0 - - -def test_issue7065_b(): - # Test that the NEL doesn't crash when an entity crosses a sentence boundary - nlp = English() - vector_length = 3 - nlp.add_pipe("sentencizer") - text = "Mahler 's Symphony No. 8 was beautiful." - entities = [(0, 6, "PERSON"), (10, 24, "WORK")] - links = { - (0, 6): {"Q7304": 1.0, "Q270853": 0.0}, - (10, 24): {"Q7304": 0.0, "Q270853": 1.0}, - } - sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0] - doc = nlp(text) - example = Example.from_dict( - doc, {"entities": entities, "links": links, "sent_starts": sent_starts} - ) - train_examples = [example] - - def create_kb(vocab): - # create artificial KB - mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) - mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7]) - mykb.add_alias( - alias="No. 8", - entities=["Q270853"], - probabilities=[1.0], - ) - mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3]) - mykb.add_alias( - alias="Mahler", - entities=["Q7304"], - probabilities=[1.0], - ) - return mykb - - # Create the Entity Linker component and add it to the pipeline - entity_linker = nlp.add_pipe("entity_linker", last=True) - entity_linker.set_kb(create_kb) - # train the NEL pipe - optimizer = nlp.initialize(get_examples=lambda: train_examples) - for i in range(2): - losses = {} - nlp.update(train_examples, sgd=optimizer, losses=losses) - - # Add a custom rule-based component to mimick NER - patterns = [ - {"label": "PERSON", "pattern": [{"LOWER": "mahler"}]}, - { - "label": "WORK", - "pattern": [ - {"LOWER": "symphony"}, - {"LOWER": "no"}, - {"LOWER": "."}, - {"LOWER": "8"}, - ], - }, - ] - ruler = nlp.add_pipe("entity_ruler", before="entity_linker") - ruler.add_patterns(patterns) - # test the trained model - this should not throw E148 - doc = nlp(text) - assert doc diff --git a/spacy/tests/regression/test_issue7716.py b/spacy/tests/regression/test_issue7716.py deleted file mode 100644 index 811952792..000000000 --- a/spacy/tests/regression/test_issue7716.py +++ /dev/null @@ -1,54 +0,0 @@ -import pytest -from thinc.api import Adam -from spacy.attrs import NORM -from spacy.vocab import Vocab -from spacy import registry -from spacy.training import Example -from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL -from spacy.tokens import Doc -from spacy.pipeline import DependencyParser - - -@pytest.fixture -def vocab(): - return Vocab(lex_attr_getters={NORM: lambda s: s}) - - -def _parser_example(parser): - doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) - gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]} - return Example.from_dict(doc, gold) - - -@pytest.fixture -def parser(vocab): - vocab.strings.add("ROOT") - cfg = {"model": DEFAULT_PARSER_MODEL} - model = registry.resolve(cfg, validate=True)["model"] - parser = DependencyParser(vocab, model) - parser.cfg["token_vector_width"] = 4 - parser.cfg["hidden_width"] = 32 - # parser.add_label('right') - parser.add_label("left") - parser.initialize(lambda: [_parser_example(parser)]) - sgd = Adam(0.001) - - for i in range(10): - losses = {} - doc = Doc(vocab, words=["a", "b", "c", "d"]) - example = Example.from_dict( - doc, {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]} - ) - parser.update([example], sgd=sgd, losses=losses) - return parser - - -@pytest.mark.xfail(reason="Not fixed yet") -def test_partial_annotation(parser): - doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) - doc[2].is_sent_start = False - # Note that if the following line is used, then doc[2].is_sent_start == False - # doc[3].is_sent_start = False - - doc = parser(doc) - assert doc[2].is_sent_start == False diff --git a/spacy/tests/regression/test_issue8168.py b/spacy/tests/regression/test_issue8168.py deleted file mode 100644 index e3f3b5cfa..000000000 --- a/spacy/tests/regression/test_issue8168.py +++ /dev/null @@ -1,24 +0,0 @@ -import pytest -from spacy.lang.en import English - - -@pytest.mark.issue(8168) -def test_issue8168(): - nlp = English() - ruler = nlp.add_pipe("entity_ruler") - patterns = [ - {"label": "ORG", "pattern": "Apple"}, - { - "label": "GPE", - "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}], - "id": "san-francisco", - }, - { - "label": "GPE", - "pattern": [{"LOWER": "san"}, {"LOWER": "fran"}], - "id": "san-francisco", - }, - ] - ruler.add_patterns(patterns) - - assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")} diff --git a/spacy/tests/regression/test_issue8190.py b/spacy/tests/regression/test_issue8190.py deleted file mode 100644 index 6ddbe53e0..000000000 --- a/spacy/tests/regression/test_issue8190.py +++ /dev/null @@ -1,21 +0,0 @@ -import spacy -from spacy.lang.en import English -from ..util import make_tempdir - - -def test_issue8190(): - """Test that config overrides are not lost after load is complete.""" - source_cfg = { - "nlp": { - "lang": "en", - }, - "custom": {"key": "value"}, - } - source_nlp = English.from_config(source_cfg) - with make_tempdir() as dir_path: - # We need to create a loadable source pipeline - source_path = dir_path / "test_model" - source_nlp.to_disk(source_path) - nlp = spacy.load(source_path, config={"custom": {"key": "updated_value"}}) - - assert nlp.config["custom"]["key"] == "updated_value" diff --git a/spacy/tests/regression/test_issue8216.py b/spacy/tests/regression/test_issue8216.py deleted file mode 100644 index 00cd6da3b..000000000 --- a/spacy/tests/regression/test_issue8216.py +++ /dev/null @@ -1,33 +0,0 @@ -import pytest - -from spacy import registry -from spacy.language import Language - - -@pytest.fixture -def nlp(): - return Language() - - -@pytest.fixture -@registry.misc("entity_ruler_patterns") -def patterns(): - return [ - {"label": "HELLO", "pattern": "hello world"}, - {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, - {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, - {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, - {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, - {"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"}, - ] - - -def test_entity_ruler_fix8216(nlp, patterns): - """Test that patterns don't get added excessively.""" - ruler = nlp.add_pipe("entity_ruler", config={"validate": True}) - ruler.add_patterns(patterns) - pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) - assert pattern_count > 0 - ruler.add_patterns([]) - after_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) - assert after_count == pattern_count diff --git a/spacy/tests/serialize/test_serialize_config.py b/spacy/tests/serialize/test_serialize_config.py index b259fc8fb..f7b75c759 100644 --- a/spacy/tests/serialize/test_serialize_config.py +++ b/spacy/tests/serialize/test_serialize_config.py @@ -1,20 +1,17 @@ import pytest -from thinc.api import Config, ConfigValidationError -import spacy -from spacy.lang.en import English -from spacy.lang.de import German -from spacy.language import Language, DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH -from spacy.util import ( - registry, - load_model_from_config, - load_config, - load_config_from_str, -) -from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model -from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder -from spacy.schemas import ConfigSchema, ConfigSchemaPretrain from catalogue import RegistryError +from thinc.api import Config, ConfigValidationError +import spacy +from spacy.lang.de import German +from spacy.lang.en import English +from spacy.language import DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH +from spacy.language import Language +from spacy.ml.models import MaxoutWindowEncoder, MultiHashEmbed +from spacy.ml.models import build_tb_parser_model, build_Tok2Vec_model +from spacy.schemas import ConfigSchema, ConfigSchemaPretrain +from spacy.util import load_config, load_config_from_str +from spacy.util import load_model_from_config, registry from ..util import make_tempdir @@ -164,6 +161,25 @@ def my_parser(): return parser +@pytest.mark.issue(8190) +def test_issue8190(): + """Test that config overrides are not lost after load is complete.""" + source_cfg = { + "nlp": { + "lang": "en", + }, + "custom": {"key": "value"}, + } + source_nlp = English.from_config(source_cfg) + with make_tempdir() as dir_path: + # We need to create a loadable source pipeline + source_path = dir_path / "test_model" + source_nlp.to_disk(source_path) + nlp = spacy.load(source_path, config={"custom": {"key": "updated_value"}}) + + assert nlp.config["custom"]["key"] == "updated_value" + + def test_create_nlp_from_config(): config = Config().from_str(nlp_config_string) with pytest.raises(ConfigValidationError): diff --git a/spacy/tests/serialize/test_serialize_doc.py b/spacy/tests/serialize/test_serialize_doc.py index 23afaf26c..15bf67bfd 100644 --- a/spacy/tests/serialize/test_serialize_doc.py +++ b/spacy/tests/serialize/test_serialize_doc.py @@ -1,13 +1,168 @@ -import pytest -from spacy.tokens.underscore import Underscore +import copy +import pickle -import spacy +import numpy +import pytest + +from spacy.attrs import DEP, HEAD from spacy.lang.en import English -from spacy.tokens import Doc, DocBin +from spacy.language import Language +from spacy.matcher import Matcher, PhraseMatcher +from spacy.tokens import Doc +from spacy.vectors import Vectors +from spacy.vocab import Vocab from ..util import make_tempdir +@pytest.mark.issue(1727) +def test_issue1727(): + """Test that models with no pretrained vectors can be deserialized + correctly after vectors are added.""" + nlp = Language(Vocab()) + data = numpy.ones((3, 300), dtype="f") + vectors = Vectors(data=data, keys=["I", "am", "Matt"]) + tagger = nlp.create_pipe("tagger") + tagger.add_label("PRP") + assert tagger.cfg.get("pretrained_dims", 0) == 0 + tagger.vocab.vectors = vectors + with make_tempdir() as path: + tagger.to_disk(path) + tagger = nlp.create_pipe("tagger").from_disk(path) + assert tagger.cfg.get("pretrained_dims", 0) == 0 + + +@pytest.mark.issue(1799) +def test_issue1799(): + """Test sentence boundaries are deserialized correctly, even for + non-projective sentences.""" + heads_deps = numpy.asarray( + [ + [1, 397], + [4, 436], + [2, 426], + [1, 402], + [0, 8206900633647566924], + [18446744073709551615, 440], + [18446744073709551614, 442], + ], + dtype="uint64", + ) + doc = Doc(Vocab(), words="Just what I was looking for .".split()) + doc.vocab.strings.add("ROOT") + doc = doc.from_array([HEAD, DEP], heads_deps) + assert len(list(doc.sents)) == 1 + + +@pytest.mark.issue(1834) +def test_issue1834(): + """Test that sentence boundaries & parse/tag flags are not lost + during serialization.""" + words = ["This", "is", "a", "first", "sentence", ".", "And", "another", "one"] + doc = Doc(Vocab(), words=words) + doc[6].is_sent_start = True + new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) + assert new_doc[6].sent_start + assert not new_doc.has_annotation("DEP") + assert not new_doc.has_annotation("TAG") + doc = Doc( + Vocab(), + words=words, + tags=["TAG"] * len(words), + heads=[0, 0, 0, 0, 0, 0, 6, 6, 6], + deps=["dep"] * len(words), + ) + new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes()) + assert new_doc[6].sent_start + assert new_doc.has_annotation("DEP") + assert new_doc.has_annotation("TAG") + + +@pytest.mark.issue(1883) +def test_issue1883(): + matcher = Matcher(Vocab()) + matcher.add("pat1", [[{"orth": "hello"}]]) + doc = Doc(matcher.vocab, words=["hello"]) + assert len(matcher(doc)) == 1 + new_matcher = copy.deepcopy(matcher) + new_doc = Doc(new_matcher.vocab, words=["hello"]) + assert len(new_matcher(new_doc)) == 1 + + +@pytest.mark.issue(2564) +def test_issue2564(): + """Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe.""" + nlp = Language() + tagger = nlp.add_pipe("tagger") + tagger.add_label("A") + nlp.initialize() + doc = nlp("hello world") + assert doc.has_annotation("TAG") + docs = nlp.pipe(["hello", "world"]) + piped_doc = next(docs) + assert piped_doc.has_annotation("TAG") + + +@pytest.mark.issue(3248) +def test_issue3248_2(): + """Test that the PhraseMatcher can be pickled correctly.""" + nlp = English() + matcher = PhraseMatcher(nlp.vocab) + matcher.add("TEST1", [nlp("a"), nlp("b"), nlp("c")]) + matcher.add("TEST2", [nlp("d")]) + data = pickle.dumps(matcher) + new_matcher = pickle.loads(data) + assert len(new_matcher) == len(matcher) + + +@pytest.mark.issue(3289) +def test_issue3289(): + """Test that Language.to_bytes handles serializing a pipeline component + with an uninitialized model.""" + nlp = English() + nlp.add_pipe("textcat") + bytes_data = nlp.to_bytes() + new_nlp = English() + new_nlp.add_pipe("textcat") + new_nlp.from_bytes(bytes_data) + + +@pytest.mark.issue(3468) +def test_issue3468(): + """Test that sentence boundaries are set correctly so Doc.has_annotation("SENT_START") can + be restored after serialization.""" + nlp = English() + nlp.add_pipe("sentencizer") + doc = nlp("Hello world") + assert doc[0].is_sent_start + assert doc.has_annotation("SENT_START") + assert len(list(doc.sents)) == 1 + doc_bytes = doc.to_bytes() + new_doc = Doc(nlp.vocab).from_bytes(doc_bytes) + assert new_doc[0].is_sent_start + assert new_doc.has_annotation("SENT_START") + assert len(list(new_doc.sents)) == 1 + + +@pytest.mark.issue(3959) +def test_issue3959(): + """Ensure that a modified pos attribute is serialized correctly.""" + nlp = English() + doc = nlp( + "displaCy uses JavaScript, SVG and CSS to show you how computers understand language" + ) + assert doc[0].pos_ == "" + doc[0].pos_ = "NOUN" + assert doc[0].pos_ == "NOUN" + # usually this is already True when starting from proper models instead of blank English + with make_tempdir() as tmp_dir: + file_path = tmp_dir / "my_doc" + doc.to_disk(file_path) + doc2 = nlp("") + doc2.from_disk(file_path) + assert doc2[0].pos_ == "NOUN" + + def test_serialize_empty_doc(en_vocab): doc = Doc(en_vocab) data = doc.to_bytes() @@ -61,69 +216,3 @@ def test_serialize_doc_span_groups(en_vocab): doc.spans["content"] = [doc[0:2]] new_doc = Doc(en_vocab).from_bytes(doc.to_bytes()) assert len(new_doc.spans["content"]) == 1 - - -def test_serialize_doc_bin(): - doc_bin = DocBin( - attrs=["LEMMA", "ENT_IOB", "ENT_TYPE", "NORM", "ENT_ID"], store_user_data=True - ) - texts = ["Some text", "Lots of texts...", "..."] - cats = {"A": 0.5} - nlp = English() - for doc in nlp.pipe(texts): - doc.cats = cats - doc.spans["start"] = [doc[0:2]] - doc[0].norm_ = "UNUSUAL_TOKEN_NORM" - doc[0].ent_id_ = "UNUSUAL_TOKEN_ENT_ID" - doc_bin.add(doc) - bytes_data = doc_bin.to_bytes() - - # Deserialize later, e.g. in a new process - nlp = spacy.blank("en") - doc_bin = DocBin().from_bytes(bytes_data) - reloaded_docs = list(doc_bin.get_docs(nlp.vocab)) - for i, doc in enumerate(reloaded_docs): - assert doc.text == texts[i] - assert doc.cats == cats - assert len(doc.spans) == 1 - assert doc[0].norm_ == "UNUSUAL_TOKEN_NORM" - assert doc[0].ent_id_ == "UNUSUAL_TOKEN_ENT_ID" - - -def test_serialize_doc_bin_unknown_spaces(en_vocab): - doc1 = Doc(en_vocab, words=["that", "'s"]) - assert doc1.has_unknown_spaces - assert doc1.text == "that 's " - doc2 = Doc(en_vocab, words=["that", "'s"], spaces=[False, False]) - assert not doc2.has_unknown_spaces - assert doc2.text == "that's" - - doc_bin = DocBin().from_bytes(DocBin(docs=[doc1, doc2]).to_bytes()) - re_doc1, re_doc2 = doc_bin.get_docs(en_vocab) - assert re_doc1.has_unknown_spaces - assert re_doc1.text == "that 's " - assert not re_doc2.has_unknown_spaces - assert re_doc2.text == "that's" - - -@pytest.mark.parametrize( - "writer_flag,reader_flag,reader_value", - [ - (True, True, "bar"), - (True, False, "bar"), - (False, True, "nothing"), - (False, False, "nothing"), - ], -) -def test_serialize_custom_extension(en_vocab, writer_flag, reader_flag, reader_value): - """Test that custom extensions are correctly serialized in DocBin.""" - Doc.set_extension("foo", default="nothing") - doc = Doc(en_vocab, words=["hello", "world"]) - doc._.foo = "bar" - doc_bin_1 = DocBin(store_user_data=writer_flag) - doc_bin_1.add(doc) - doc_bin_bytes = doc_bin_1.to_bytes() - doc_bin_2 = DocBin(store_user_data=reader_flag).from_bytes(doc_bin_bytes) - doc_2 = list(doc_bin_2.get_docs(en_vocab))[0] - assert doc_2._.foo == reader_value - Underscore.doc_extensions = {} diff --git a/spacy/tests/serialize/test_serialize_docbin.py b/spacy/tests/serialize/test_serialize_docbin.py new file mode 100644 index 000000000..9f8e5e06b --- /dev/null +++ b/spacy/tests/serialize/test_serialize_docbin.py @@ -0,0 +1,106 @@ +import pytest + +import spacy +from spacy.lang.en import English +from spacy.tokens import Doc, DocBin +from spacy.tokens.underscore import Underscore + + +@pytest.mark.issue(4367) +def test_issue4367(): + """Test that docbin init goes well""" + DocBin() + DocBin(attrs=["LEMMA"]) + DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"]) + + +@pytest.mark.issue(4528) +def test_issue4528(en_vocab): + """Test that user_data is correctly serialized in DocBin.""" + doc = Doc(en_vocab, words=["hello", "world"]) + doc.user_data["foo"] = "bar" + # This is how extension attribute values are stored in the user data + doc.user_data[("._.", "foo", None, None)] = "bar" + doc_bin = DocBin(store_user_data=True) + doc_bin.add(doc) + doc_bin_bytes = doc_bin.to_bytes() + new_doc_bin = DocBin(store_user_data=True).from_bytes(doc_bin_bytes) + new_doc = list(new_doc_bin.get_docs(en_vocab))[0] + assert new_doc.user_data["foo"] == "bar" + assert new_doc.user_data[("._.", "foo", None, None)] == "bar" + + +@pytest.mark.issue(5141) +def test_issue5141(en_vocab): + """Ensure an empty DocBin does not crash on serialization""" + doc_bin = DocBin(attrs=["DEP", "HEAD"]) + assert list(doc_bin.get_docs(en_vocab)) == [] + doc_bin_bytes = doc_bin.to_bytes() + doc_bin_2 = DocBin().from_bytes(doc_bin_bytes) + assert list(doc_bin_2.get_docs(en_vocab)) == [] + + +def test_serialize_doc_bin(): + doc_bin = DocBin( + attrs=["LEMMA", "ENT_IOB", "ENT_TYPE", "NORM", "ENT_ID"], store_user_data=True + ) + texts = ["Some text", "Lots of texts...", "..."] + cats = {"A": 0.5} + nlp = English() + for doc in nlp.pipe(texts): + doc.cats = cats + doc.spans["start"] = [doc[0:2]] + doc[0].norm_ = "UNUSUAL_TOKEN_NORM" + doc[0].ent_id_ = "UNUSUAL_TOKEN_ENT_ID" + doc_bin.add(doc) + bytes_data = doc_bin.to_bytes() + + # Deserialize later, e.g. in a new process + nlp = spacy.blank("en") + doc_bin = DocBin().from_bytes(bytes_data) + reloaded_docs = list(doc_bin.get_docs(nlp.vocab)) + for i, doc in enumerate(reloaded_docs): + assert doc.text == texts[i] + assert doc.cats == cats + assert len(doc.spans) == 1 + assert doc[0].norm_ == "UNUSUAL_TOKEN_NORM" + assert doc[0].ent_id_ == "UNUSUAL_TOKEN_ENT_ID" + + +def test_serialize_doc_bin_unknown_spaces(en_vocab): + doc1 = Doc(en_vocab, words=["that", "'s"]) + assert doc1.has_unknown_spaces + assert doc1.text == "that 's " + doc2 = Doc(en_vocab, words=["that", "'s"], spaces=[False, False]) + assert not doc2.has_unknown_spaces + assert doc2.text == "that's" + + doc_bin = DocBin().from_bytes(DocBin(docs=[doc1, doc2]).to_bytes()) + re_doc1, re_doc2 = doc_bin.get_docs(en_vocab) + assert re_doc1.has_unknown_spaces + assert re_doc1.text == "that 's " + assert not re_doc2.has_unknown_spaces + assert re_doc2.text == "that's" + + +@pytest.mark.parametrize( + "writer_flag,reader_flag,reader_value", + [ + (True, True, "bar"), + (True, False, "bar"), + (False, True, "nothing"), + (False, False, "nothing"), + ], +) +def test_serialize_custom_extension(en_vocab, writer_flag, reader_flag, reader_value): + """Test that custom extensions are correctly serialized in DocBin.""" + Doc.set_extension("foo", default="nothing") + doc = Doc(en_vocab, words=["hello", "world"]) + doc._.foo = "bar" + doc_bin_1 = DocBin(store_user_data=writer_flag) + doc_bin_1.add(doc) + doc_bin_bytes = doc_bin_1.to_bytes() + doc_bin_2 = DocBin(store_user_data=reader_flag).from_bytes(doc_bin_bytes) + doc_2 = list(doc_bin_2.get_docs(en_vocab))[0] + assert doc_2._.foo == reader_value + Underscore.doc_extensions = {} diff --git a/spacy/tests/serialize/test_serialize_language.py b/spacy/tests/serialize/test_serialize_language.py index 05529f9d1..6e7fa0e4e 100644 --- a/spacy/tests/serialize/test_serialize_language.py +++ b/spacy/tests/serialize/test_serialize_language.py @@ -1,8 +1,14 @@ -import pytest import re +import pickle + +import pytest from spacy.language import Language +from spacy.lang.it import Italian +from spacy.lang.en import English from spacy.tokenizer import Tokenizer +from spacy.training import Example +from spacy.util import load_config_from_str from ..util import make_tempdir @@ -21,6 +27,71 @@ def meta_data(): } +@pytest.mark.issue(2482) +def test_issue2482(): + """Test we can serialize and deserialize a blank NER or parser model.""" + nlp = Italian() + nlp.add_pipe("ner") + b = nlp.to_bytes() + Italian().from_bytes(b) + + +CONFIG_ISSUE_6950 = """ +[nlp] +lang = "en" +pipeline = ["tok2vec", "tagger"] + +[components] + +[components.tok2vec] +factory = "tok2vec" + +[components.tok2vec.model] +@architectures = "spacy.Tok2Vec.v1" + +[components.tok2vec.model.embed] +@architectures = "spacy.MultiHashEmbed.v1" +width = ${components.tok2vec.model.encode:width} +attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] +rows = [5000,2500,2500,2500] +include_static_vectors = false + +[components.tok2vec.model.encode] +@architectures = "spacy.MaxoutWindowEncoder.v1" +width = 96 +depth = 4 +window_size = 1 +maxout_pieces = 3 + +[components.ner] +factory = "ner" + +[components.tagger] +factory = "tagger" + +[components.tagger.model] +@architectures = "spacy.Tagger.v1" +nO = null + +[components.tagger.model.tok2vec] +@architectures = "spacy.Tok2VecListener.v1" +width = ${components.tok2vec.model.encode:width} +upstream = "*" +""" + + +@pytest.mark.issue(6950) +def test_issue6950(): + """Test that the nlp object with initialized tok2vec with listeners pickles + correctly (and doesn't have lambdas). + """ + nlp = English.from_config(load_config_from_str(CONFIG_ISSUE_6950)) + nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})]) + pickle.dumps(nlp) + nlp("hello") + pickle.dumps(nlp) + + def test_serialize_language_meta_disk(meta_data): language = Language(meta=meta_data) with make_tempdir() as d: diff --git a/spacy/tests/serialize/test_serialize_pipeline.py b/spacy/tests/serialize/test_serialize_pipeline.py index 05871a524..9fcf18e2d 100644 --- a/spacy/tests/serialize/test_serialize_pipeline.py +++ b/spacy/tests/serialize/test_serialize_pipeline.py @@ -1,18 +1,25 @@ +import pickle + import pytest -from spacy import registry, Vocab, load -from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer -from spacy.pipeline import TextCategorizer, SentenceRecognizer, TrainablePipe +import srsly +from thinc.api import Linear + +import spacy +from spacy import Vocab, load, registry +from spacy.lang.en import English +from spacy.language import Language +from spacy.pipeline import DependencyParser, EntityRecognizer, EntityRuler +from spacy.pipeline import SentenceRecognizer, Tagger, TextCategorizer +from spacy.pipeline import TrainablePipe from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL +from spacy.pipeline.senter import DEFAULT_SENTER_MODEL from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL -from spacy.pipeline.senter import DEFAULT_SENTER_MODEL -from spacy.lang.en import English -from thinc.api import Linear -import spacy +from spacy.util import ensure_path, load_model +from spacy.tokens import Span from ..util import make_tempdir - test_parsers = [DependencyParser, EntityRecognizer] @@ -58,6 +65,181 @@ def taggers(en_vocab): return tagger1, tagger2 +@pytest.mark.issue(3456) +def test_issue3456(): + # this crashed because of a padding error in layer.ops.unflatten in thinc + nlp = English() + tagger = nlp.add_pipe("tagger") + tagger.add_label("A") + nlp.initialize() + list(nlp.pipe(["hi", ""])) + + +@pytest.mark.issue(3526) +def test_issue_3526_1(en_vocab): + patterns = [ + {"label": "HELLO", "pattern": "hello world"}, + {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, + {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, + {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, + {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, + ] + nlp = Language(vocab=en_vocab) + ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) + ruler_bytes = ruler.to_bytes() + assert len(ruler) == len(patterns) + assert len(ruler.labels) == 4 + assert ruler.overwrite + new_ruler = EntityRuler(nlp) + new_ruler = new_ruler.from_bytes(ruler_bytes) + assert len(new_ruler) == len(ruler) + assert len(new_ruler.labels) == 4 + assert new_ruler.overwrite == ruler.overwrite + assert new_ruler.ent_id_sep == ruler.ent_id_sep + + +@pytest.mark.issue(3526) +def test_issue_3526_2(en_vocab): + patterns = [ + {"label": "HELLO", "pattern": "hello world"}, + {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, + {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, + {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, + {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, + ] + nlp = Language(vocab=en_vocab) + ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) + bytes_old_style = srsly.msgpack_dumps(ruler.patterns) + new_ruler = EntityRuler(nlp) + new_ruler = new_ruler.from_bytes(bytes_old_style) + assert len(new_ruler) == len(ruler) + for pattern in ruler.patterns: + assert pattern in new_ruler.patterns + assert new_ruler.overwrite is not ruler.overwrite + + +@pytest.mark.issue(3526) +def test_issue_3526_3(en_vocab): + patterns = [ + {"label": "HELLO", "pattern": "hello world"}, + {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, + {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]}, + {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, + {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"}, + ] + nlp = Language(vocab=en_vocab) + ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) + with make_tempdir() as tmpdir: + out_file = tmpdir / "entity_ruler" + srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns) + new_ruler = EntityRuler(nlp).from_disk(out_file) + for pattern in ruler.patterns: + assert pattern in new_ruler.patterns + assert len(new_ruler) == len(ruler) + assert new_ruler.overwrite is not ruler.overwrite + + +@pytest.mark.issue(3526) +def test_issue_3526_4(en_vocab): + nlp = Language(vocab=en_vocab) + patterns = [{"label": "ORG", "pattern": "Apple"}] + config = {"overwrite_ents": True} + ruler = nlp.add_pipe("entity_ruler", config=config) + ruler.add_patterns(patterns) + with make_tempdir() as tmpdir: + nlp.to_disk(tmpdir) + ruler = nlp.get_pipe("entity_ruler") + assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}] + assert ruler.overwrite is True + nlp2 = load(tmpdir) + new_ruler = nlp2.get_pipe("entity_ruler") + assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}] + assert new_ruler.overwrite is True + + +@pytest.mark.issue(4042) +def test_issue4042(): + """Test that serialization of an EntityRuler before NER works fine.""" + nlp = English() + # add ner pipe + ner = nlp.add_pipe("ner") + ner.add_label("SOME_LABEL") + nlp.initialize() + # Add entity ruler + patterns = [ + {"label": "MY_ORG", "pattern": "Apple"}, + {"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}, + ] + # works fine with "after" + ruler = nlp.add_pipe("entity_ruler", before="ner") + ruler.add_patterns(patterns) + doc1 = nlp("What do you think about Apple ?") + assert doc1.ents[0].label_ == "MY_ORG" + + with make_tempdir() as d: + output_dir = ensure_path(d) + if not output_dir.exists(): + output_dir.mkdir() + nlp.to_disk(output_dir) + nlp2 = load_model(output_dir) + doc2 = nlp2("What do you think about Apple ?") + assert doc2.ents[0].label_ == "MY_ORG" + + +@pytest.mark.issue(4042) +def test_issue4042_bug2(): + """ + Test that serialization of an NER works fine when new labels were added. + This is the second bug of two bugs underlying the issue 4042. + """ + nlp1 = English() + # add ner pipe + ner1 = nlp1.add_pipe("ner") + ner1.add_label("SOME_LABEL") + nlp1.initialize() + # add a new label to the doc + doc1 = nlp1("What do you think about Apple ?") + assert len(ner1.labels) == 1 + assert "SOME_LABEL" in ner1.labels + apple_ent = Span(doc1, 5, 6, label="MY_ORG") + doc1.ents = list(doc1.ents) + [apple_ent] + # Add the label explicitly. Previously we didn't require this. + ner1.add_label("MY_ORG") + ner1(doc1) + assert len(ner1.labels) == 2 + assert "SOME_LABEL" in ner1.labels + assert "MY_ORG" in ner1.labels + with make_tempdir() as d: + # assert IO goes fine + output_dir = ensure_path(d) + if not output_dir.exists(): + output_dir.mkdir() + ner1.to_disk(output_dir) + config = {} + ner2 = nlp1.create_pipe("ner", config=config) + ner2.from_disk(output_dir) + assert len(ner2.labels) == 2 + + +@pytest.mark.issue(4725) +def test_issue4725_1(): + """Ensure the pickling of the NER goes well""" + vocab = Vocab(vectors_name="test_vocab_add_vector") + nlp = English(vocab=vocab) + config = { + "update_with_oracle_cut_size": 111, + } + ner = nlp.create_pipe("ner", config=config) + with make_tempdir() as tmp_path: + with (tmp_path / "ner.pkl").open("wb") as file_: + pickle.dump(ner, file_) + assert ner.cfg["update_with_oracle_cut_size"] == 111 + + with (tmp_path / "ner.pkl").open("rb") as file_: + ner2 = pickle.load(file_) + assert ner2.cfg["update_with_oracle_cut_size"] == 111 + + @pytest.mark.parametrize("Parser", test_parsers) def test_serialize_parser_roundtrip_bytes(en_vocab, Parser): cfg = {"model": DEFAULT_PARSER_MODEL} @@ -162,6 +344,7 @@ def test_serialize_tagger_strings(en_vocab, de_vocab, taggers): assert label in tagger2.vocab.strings +@pytest.mark.issue(1105) def test_serialize_textcat_empty(en_vocab): # See issue #1105 cfg = {"model": DEFAULT_SINGLE_TEXTCAT_MODEL} diff --git a/spacy/tests/serialize/test_serialize_tokenizer.py b/spacy/tests/serialize/test_serialize_tokenizer.py index a9450cd04..e271f7707 100644 --- a/spacy/tests/serialize/test_serialize_tokenizer.py +++ b/spacy/tests/serialize/test_serialize_tokenizer.py @@ -1,9 +1,16 @@ -import pytest +import pickle import re -from spacy.util import get_lang_class -from spacy.tokenizer import Tokenizer -from ..util import make_tempdir, assert_packed_msg_equal +import pytest + +from spacy.attrs import ENT_IOB, ENT_TYPE +from spacy.lang.en import English +from spacy.tokenizer import Tokenizer +from spacy.tokens import Doc +from spacy.util import compile_infix_regex, compile_prefix_regex +from spacy.util import compile_suffix_regex, get_lang_class, load_model + +from ..util import assert_packed_msg_equal, make_tempdir def load_tokenizer(b): @@ -12,6 +19,79 @@ def load_tokenizer(b): return tok +@pytest.mark.issue(2833) +def test_issue2833(en_vocab): + """Test that a custom error is raised if a token or span is pickled.""" + doc = Doc(en_vocab, words=["Hello", "world"]) + with pytest.raises(NotImplementedError): + pickle.dumps(doc[0]) + with pytest.raises(NotImplementedError): + pickle.dumps(doc[0:2]) + + +@pytest.mark.issue(3012) +def test_issue3012(en_vocab): + """Test that the is_tagged attribute doesn't get overwritten when we from_array + without tag information.""" + words = ["This", "is", "10", "%", "."] + tags = ["DT", "VBZ", "CD", "NN", "."] + pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"] + ents = ["O", "O", "B-PERCENT", "I-PERCENT", "O"] + doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents) + assert doc.has_annotation("TAG") + expected = ("10", "NUM", "CD", "PERCENT") + assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected + header = [ENT_IOB, ENT_TYPE] + ent_array = doc.to_array(header) + doc.from_array(header, ent_array) + assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected + # Serializing then deserializing + doc_bytes = doc.to_bytes() + doc2 = Doc(en_vocab).from_bytes(doc_bytes) + assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected + + +@pytest.mark.issue(4190) +def test_issue4190(): + def customize_tokenizer(nlp): + prefix_re = compile_prefix_regex(nlp.Defaults.prefixes) + suffix_re = compile_suffix_regex(nlp.Defaults.suffixes) + infix_re = compile_infix_regex(nlp.Defaults.infixes) + # Remove all exceptions where a single letter is followed by a period (e.g. 'h.') + exceptions = { + k: v + for k, v in dict(nlp.Defaults.tokenizer_exceptions).items() + if not (len(k) == 2 and k[1] == ".") + } + new_tokenizer = Tokenizer( + nlp.vocab, + exceptions, + prefix_search=prefix_re.search, + suffix_search=suffix_re.search, + infix_finditer=infix_re.finditer, + token_match=nlp.tokenizer.token_match, + ) + nlp.tokenizer = new_tokenizer + + test_string = "Test c." + # Load default language + nlp_1 = English() + doc_1a = nlp_1(test_string) + result_1a = [token.text for token in doc_1a] # noqa: F841 + # Modify tokenizer + customize_tokenizer(nlp_1) + doc_1b = nlp_1(test_string) + result_1b = [token.text for token in doc_1b] + # Save and Reload + with make_tempdir() as model_dir: + nlp_1.to_disk(model_dir) + nlp_2 = load_model(model_dir) + # This should be the modified tokenizer + doc_2 = nlp_2(test_string) + result_2 = [token.text for token in doc_2] + assert result_1b == result_2 + + def test_serialize_custom_tokenizer(en_vocab, en_tokenizer): """Test that custom tokenizer with not all functions defined or empty properties can be serialized and deserialized correctly (see #2494, diff --git a/spacy/tests/serialize/test_serialize_vocab_strings.py b/spacy/tests/serialize/test_serialize_vocab_strings.py index 3fe9363bf..fd80c3d8e 100644 --- a/spacy/tests/serialize/test_serialize_vocab_strings.py +++ b/spacy/tests/serialize/test_serialize_vocab_strings.py @@ -1,15 +1,71 @@ -import pytest import pickle -from spacy.vocab import Vocab + +import pytest +from thinc.api import get_current_ops + +import spacy +from spacy.lang.en import English from spacy.strings import StringStore +from spacy.tokens import Doc +from spacy.util import ensure_path, load_model +from spacy.vectors import Vectors +from spacy.vocab import Vocab from ..util import make_tempdir - test_strings = [([], []), (["rats", "are", "cute"], ["i", "like", "rats"])] test_strings_attrs = [(["rats", "are", "cute"], "Hello")] +@pytest.mark.issue(599) +def test_issue599(en_vocab): + doc = Doc(en_vocab) + doc2 = Doc(doc.vocab) + doc2.from_bytes(doc.to_bytes()) + assert doc2.has_annotation("DEP") + + +@pytest.mark.issue(4054) +def test_issue4054(en_vocab): + """Test that a new blank model can be made with a vocab from file, + and that serialization does not drop the language at any point.""" + nlp1 = English() + vocab1 = nlp1.vocab + with make_tempdir() as d: + vocab_dir = ensure_path(d / "vocab") + if not vocab_dir.exists(): + vocab_dir.mkdir() + vocab1.to_disk(vocab_dir) + vocab2 = Vocab().from_disk(vocab_dir) + nlp2 = spacy.blank("en", vocab=vocab2) + nlp_dir = ensure_path(d / "nlp") + if not nlp_dir.exists(): + nlp_dir.mkdir() + nlp2.to_disk(nlp_dir) + nlp3 = load_model(nlp_dir) + assert nlp3.lang == "en" + + +@pytest.mark.issue(4133) +def test_issue4133(en_vocab): + nlp = English() + vocab_bytes = nlp.vocab.to_bytes() + words = ["Apple", "is", "looking", "at", "buying", "a", "startup"] + pos = ["NOUN", "VERB", "ADP", "VERB", "PROPN", "NOUN", "ADP"] + doc = Doc(en_vocab, words=words) + for i, token in enumerate(doc): + token.pos_ = pos[i] + # usually this is already True when starting from proper models instead of blank English + doc_bytes = doc.to_bytes() + vocab = Vocab() + vocab = vocab.from_bytes(vocab_bytes) + doc = Doc(vocab).from_bytes(doc_bytes) + actual = [] + for token in doc: + actual.append(token.pos_) + assert actual == pos + + @pytest.mark.parametrize("text", ["rat"]) def test_serialize_vocab(en_vocab, text): text_hash = en_vocab.strings.add(text) @@ -129,7 +185,11 @@ def test_serialize_stringstore_roundtrip_disk(strings1, strings2): @pytest.mark.parametrize("strings,lex_attr", test_strings_attrs) def test_pickle_vocab(strings, lex_attr): vocab = Vocab(strings=strings) + ops = get_current_ops() + vectors = Vectors(data=ops.xp.zeros((10, 10)), mode="floret", hash_count=1) + vocab.vectors = vectors vocab[strings[0]].norm_ = lex_attr vocab_pickled = pickle.dumps(vocab) vocab_unpickled = pickle.loads(vocab_pickled) assert vocab.to_bytes() == vocab_unpickled.to_bytes() + assert vocab_unpickled.vectors.mode == "floret" diff --git a/spacy/tests/test_cli.py b/spacy/tests/test_cli.py index 72bbe04e5..253469909 100644 --- a/spacy/tests/test_cli.py +++ b/spacy/tests/test_cli.py @@ -1,27 +1,105 @@ -import pytest -from click import NoSuchOption -from spacy.training import docs_to_json, offsets_to_biluo_tags -from spacy.training.converters import iob_to_docs, conll_ner_to_docs, conllu_to_docs -from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate -from spacy.lang.nl import Dutch -from spacy.util import ENV_VARS, load_model_from_config -from spacy.cli import info -from spacy.cli.init_config import init_config, RECOMMENDATIONS -from spacy.cli._util import validate_project_commands, parse_config_overrides -from spacy.cli._util import load_project_config, substitute_project_variables -from spacy.cli._util import is_subpath_of -from spacy.cli._util import string_to_list -from spacy import about -from spacy.util import get_minor_version -from spacy.cli.validate import get_model_pkgs -from spacy.cli.download import get_compatibility, get_version -from spacy.cli.package import get_third_party_dependencies -from thinc.api import ConfigValidationError, Config -import srsly import os -from .util import make_tempdir +import pytest +import srsly +from click import NoSuchOption +from packaging.specifiers import SpecifierSet +from thinc.api import Config, ConfigValidationError + +from spacy import about +from spacy.cli import info +from spacy.cli._util import is_subpath_of, load_project_config +from spacy.cli._util import parse_config_overrides, string_to_list +from spacy.cli._util import substitute_project_variables +from spacy.cli._util import validate_project_commands +from spacy.cli.debug_data import _get_labels_from_model +from spacy.cli.debug_data import _get_labels_from_spancat +from spacy.cli.download import get_compatibility, get_version +from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config +from spacy.cli.package import get_third_party_dependencies +from spacy.cli.validate import get_model_pkgs +from spacy.lang.en import English +from spacy.lang.nl import Dutch +from spacy.language import Language +from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate +from spacy.training import Example, docs_to_json, offsets_to_biluo_tags +from spacy.training.converters import conll_ner_to_docs, conllu_to_docs +from spacy.training.converters import iob_to_docs +from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config + from ..cli.init_pipeline import _init_labels +from .util import make_tempdir + + +@pytest.mark.issue(4665) +def test_issue4665(): + """ + conllu_to_docs should not raise an exception if the HEAD column contains an + underscore + """ + input_data = """ +1 [ _ PUNCT -LRB- _ _ punct _ _ +2 This _ DET DT _ _ det _ _ +3 killing _ NOUN NN _ _ nsubj _ _ +4 of _ ADP IN _ _ case _ _ +5 a _ DET DT _ _ det _ _ +6 respected _ ADJ JJ _ _ amod _ _ +7 cleric _ NOUN NN _ _ nmod _ _ +8 will _ AUX MD _ _ aux _ _ +9 be _ AUX VB _ _ aux _ _ +10 causing _ VERB VBG _ _ root _ _ +11 us _ PRON PRP _ _ iobj _ _ +12 trouble _ NOUN NN _ _ dobj _ _ +13 for _ ADP IN _ _ case _ _ +14 years _ NOUN NNS _ _ nmod _ _ +15 to _ PART TO _ _ mark _ _ +16 come _ VERB VB _ _ acl _ _ +17 . _ PUNCT . _ _ punct _ _ +18 ] _ PUNCT -RRB- _ _ punct _ _ +""" + conllu_to_docs(input_data) + + +@pytest.mark.issue(4924) +def test_issue4924(): + nlp = Language() + example = Example.from_dict(nlp.make_doc(""), {}) + nlp.evaluate([example]) + + +@pytest.mark.issue(7055) +def test_issue7055(): + """Test that fill-config doesn't turn sourced components into factories.""" + source_cfg = { + "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]}, + "components": { + "tok2vec": {"factory": "tok2vec"}, + "tagger": {"factory": "tagger"}, + }, + } + source_nlp = English.from_config(source_cfg) + with make_tempdir() as dir_path: + # We need to create a loadable source pipeline + source_path = dir_path / "test_model" + source_nlp.to_disk(source_path) + base_cfg = { + "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]}, + "components": { + "tok2vec": {"source": str(source_path)}, + "tagger": {"source": str(source_path)}, + "ner": {"factory": "ner"}, + }, + } + base_cfg = Config(base_cfg) + base_path = dir_path / "base.cfg" + base_cfg.to_disk(base_path) + output_path = dir_path / "config.cfg" + fill_config(output_path, base_path, silent=True) + filled_cfg = load_config(output_path) + assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path) + assert filled_cfg["components"]["tagger"]["source"] == str(source_path) + assert filled_cfg["components"]["ner"]["factory"] == "ner" + assert "model" in filled_cfg["components"]["ner"] def test_cli_info(): @@ -492,18 +570,24 @@ def test_string_to_list_intify(value): def test_download_compatibility(): - model_name = "en_core_web_sm" - compatibility = get_compatibility() - version = get_version(model_name, compatibility) - assert get_minor_version(about.__version__) == get_minor_version(version) + spec = SpecifierSet("==" + about.__version__) + spec.prereleases = False + if about.__version__ in spec: + model_name = "en_core_web_sm" + compatibility = get_compatibility() + version = get_version(model_name, compatibility) + assert get_minor_version(about.__version__) == get_minor_version(version) def test_validate_compatibility_table(): - model_pkgs, compat = get_model_pkgs() - spacy_version = get_minor_version(about.__version__) - current_compat = compat.get(spacy_version, {}) - assert len(current_compat) > 0 - assert "en_core_web_sm" in current_compat + spec = SpecifierSet("==" + about.__version__) + spec.prereleases = False + if about.__version__ in spec: + model_pkgs, compat = get_model_pkgs() + spacy_version = get_minor_version(about.__version__) + current_compat = compat.get(spacy_version, {}) + assert len(current_compat) > 0 + assert "en_core_web_sm" in current_compat @pytest.mark.parametrize("component_name", ["ner", "textcat", "spancat", "tagger"]) @@ -558,7 +642,16 @@ def test_get_third_party_dependencies(): } }, ) - get_third_party_dependencies(nlp.config) == [] + assert get_third_party_dependencies(nlp.config) == [] + + # Test with lang-specific factory + @Dutch.factory("third_party_test") + def test_factory(nlp, name): + return lambda x: x + + nlp.add_pipe("third_party_test") + # Before #9674 this would throw an exception + get_third_party_dependencies(nlp.config) @pytest.mark.parametrize( @@ -574,3 +667,28 @@ def test_get_third_party_dependencies(): ) def test_is_subpath_of(parent, child, expected): assert is_subpath_of(parent, child) == expected + + +@pytest.mark.slow +@pytest.mark.parametrize( + "factory_name,pipe_name", + [ + ("ner", "ner"), + ("ner", "my_ner"), + ("spancat", "spancat"), + ("spancat", "my_spancat"), + ], +) +def test_get_labels_from_model(factory_name, pipe_name): + labels = ("A", "B") + + nlp = English() + pipe = nlp.add_pipe(factory_name, name=pipe_name) + for label in labels: + pipe.add_label(label) + nlp.initialize() + assert nlp.get_pipe(pipe_name).labels == labels + if factory_name == "spancat": + assert _get_labels_from_spancat(nlp)[pipe.key] == set(labels) + else: + assert _get_labels_from_model(nlp, factory_name) == set(labels) diff --git a/spacy/tests/test_displacy.py b/spacy/tests/test_displacy.py index 040dd657f..392c95e42 100644 --- a/spacy/tests/test_displacy.py +++ b/spacy/tests/test_displacy.py @@ -1,8 +1,99 @@ +import numpy import pytest + from spacy import displacy from spacy.displacy.render import DependencyRenderer, EntityRenderer -from spacy.tokens import Span, Doc +from spacy.lang.en import English from spacy.lang.fa import Persian +from spacy.tokens import Span, Doc + + +@pytest.mark.issue(2361) +def test_issue2361(de_vocab): + """Test if < is escaped when rendering""" + chars = ("<", ">", "&", """) + words = ["<", ">", "&", '"'] + doc = Doc(de_vocab, words=words, deps=["dep"] * len(words)) + html = displacy.render(doc) + for char in chars: + assert char in html + + +@pytest.mark.issue(2728) +def test_issue2728(en_vocab): + """Test that displaCy ENT visualizer escapes HTML correctly.""" + doc = Doc(en_vocab, words=["test", "", "test"]) + doc.ents = [Span(doc, 0, 1, label="TEST")] + html = displacy.render(doc, style="ent") + assert "<RELEASE>" in html + doc.ents = [Span(doc, 1, 2, label="TEST")] + html = displacy.render(doc, style="ent") + assert "<RELEASE>" in html + + +@pytest.mark.issue(3288) +def test_issue3288(en_vocab): + """Test that retokenization works correctly via displaCy when punctuation + is merged onto the preceeding token and tensor is resized.""" + words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"] + heads = [1, 1, 1, 4, 4, 6, 4, 4] + deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"] + doc = Doc(en_vocab, words=words, heads=heads, deps=deps) + doc.tensor = numpy.zeros((len(words), 96), dtype="float32") + displacy.render(doc) + + +@pytest.mark.issue(3531) +def test_issue3531(): + """Test that displaCy renderer doesn't require "settings" key.""" + example_dep = { + "words": [ + {"text": "But", "tag": "CCONJ"}, + {"text": "Google", "tag": "PROPN"}, + {"text": "is", "tag": "VERB"}, + {"text": "starting", "tag": "VERB"}, + {"text": "from", "tag": "ADP"}, + {"text": "behind.", "tag": "ADV"}, + ], + "arcs": [ + {"start": 0, "end": 3, "label": "cc", "dir": "left"}, + {"start": 1, "end": 3, "label": "nsubj", "dir": "left"}, + {"start": 2, "end": 3, "label": "aux", "dir": "left"}, + {"start": 3, "end": 4, "label": "prep", "dir": "right"}, + {"start": 4, "end": 5, "label": "pcomp", "dir": "right"}, + ], + } + example_ent = { + "text": "But Google is starting from behind.", + "ents": [{"start": 4, "end": 10, "label": "ORG"}], + } + dep_html = displacy.render(example_dep, style="dep", manual=True) + assert dep_html + ent_html = displacy.render(example_ent, style="ent", manual=True) + assert ent_html + + +@pytest.mark.issue(3882) +def test_issue3882(en_vocab): + """Test that displaCy doesn't serialize the doc.user_data when making a + copy of the Doc. + """ + doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"]) + doc.user_data["test"] = set() + displacy.parse_deps(doc) + + +@pytest.mark.issue(5838) +def test_issue5838(): + # Displacy's EntityRenderer break line + # not working after last entity + sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n" + nlp = English() + doc = nlp(sample_text) + doc.ents = [Span(doc, 7, 8, label="test")] + html = displacy.render(doc, style="ent") + found = html.count("
") + assert found == 4 def test_displacy_parse_ents(en_vocab): @@ -12,7 +103,38 @@ def test_displacy_parse_ents(en_vocab): ents = displacy.parse_ents(doc) assert isinstance(ents, dict) assert ents["text"] == "But Google is starting from behind " - assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}] + assert ents["ents"] == [ + {"start": 4, "end": 10, "label": "ORG", "kb_id": "", "kb_url": "#"} + ] + + doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")] + ents = displacy.parse_ents(doc) + assert isinstance(ents, dict) + assert ents["text"] == "But Google is starting from behind " + assert ents["ents"] == [ + {"start": 4, "end": 10, "label": "ORG", "kb_id": "Q95", "kb_url": "#"} + ] + + +def test_displacy_parse_ents_with_kb_id_options(en_vocab): + """Test that named entities with kb_id on a Doc are converted into displaCy's format.""" + doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"]) + doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")] + + ents = displacy.parse_ents( + doc, {"kb_url_template": "https://www.wikidata.org/wiki/{}"} + ) + assert isinstance(ents, dict) + assert ents["text"] == "But Google is starting from behind " + assert ents["ents"] == [ + { + "start": 4, + "end": 10, + "label": "ORG", + "kb_id": "Q95", + "kb_url": "https://www.wikidata.org/wiki/Q95", + } + ] def test_displacy_parse_deps(en_vocab): diff --git a/spacy/tests/test_errors.py b/spacy/tests/test_errors.py index e79abc6ab..a845a52c9 100644 --- a/spacy/tests/test_errors.py +++ b/spacy/tests/test_errors.py @@ -2,11 +2,10 @@ from inspect import isclass import pytest -from spacy.errors import add_codes +from spacy.errors import ErrorsWithCodes -@add_codes -class Errors: +class Errors(metaclass=ErrorsWithCodes): E001 = "error description" diff --git a/spacy/tests/test_language.py b/spacy/tests/test_language.py index 8dbb6fd75..c5fdc8eb0 100644 --- a/spacy/tests/test_language.py +++ b/spacy/tests/test_language.py @@ -8,7 +8,7 @@ from spacy.vocab import Vocab from spacy.training import Example from spacy.lang.en import English from spacy.lang.de import German -from spacy.util import registry, ignore_error, raise_error +from spacy.util import registry, ignore_error, raise_error, find_matching_language import spacy from thinc.api import CupyOps, NumpyOps, get_current_ops @@ -255,6 +255,38 @@ def test_language_pipe_error_handler_custom(en_vocab, n_process): assert [doc.text for doc in docs] == ["TEXT 111", "TEXT 333", "TEXT 666"] +@pytest.mark.parametrize("n_process", [1, 2]) +def test_language_pipe_error_handler_input_as_tuples(en_vocab, n_process): + """Test the error handling of nlp.pipe with input as tuples""" + Language.component("my_evil_component", func=evil_component) + ops = get_current_ops() + if isinstance(ops, NumpyOps) or n_process < 2: + nlp = English() + nlp.add_pipe("my_evil_component") + texts = [ + ("TEXT 111", 111), + ("TEXT 222", 222), + ("TEXT 333", 333), + ("TEXT 342", 342), + ("TEXT 666", 666), + ] + with pytest.raises(ValueError): + list(nlp.pipe(texts, as_tuples=True)) + nlp.set_error_handler(warn_error) + logger = logging.getLogger("spacy") + with mock.patch.object(logger, "warning") as mock_warning: + tuples = list(nlp.pipe(texts, as_tuples=True, n_process=n_process)) + # HACK/TODO? the warnings in child processes don't seem to be + # detected by the mock logger + if n_process == 1: + mock_warning.assert_called() + assert mock_warning.call_count == 2 + assert len(tuples) + mock_warning.call_count == len(texts) + assert (tuples[0][0].text, tuples[0][1]) == ("TEXT 111", 111) + assert (tuples[1][0].text, tuples[1][1]) == ("TEXT 333", 333) + assert (tuples[2][0].text, tuples[2][1]) == ("TEXT 666", 666) + + @pytest.mark.parametrize("n_process", [1, 2]) def test_language_pipe_error_handler_pipe(en_vocab, n_process): """Test the error handling of a component's pipe method""" @@ -512,6 +544,55 @@ def test_spacy_blank(): assert nlp.meta["name"] == "my_custom_model" +@pytest.mark.parametrize( + "lang,target", + [ + ("en", "en"), + ("fra", "fr"), + ("fre", "fr"), + ("iw", "he"), + ("mo", "ro"), + ("mul", "xx"), + ("no", "nb"), + ("pt-BR", "pt"), + ("xx", "xx"), + ("zh-Hans", "zh"), + ("zh-Hant", None), + ("zxx", None), + ], +) +def test_language_matching(lang, target): + """ + Test that we can look up languages by equivalent or nearly-equivalent + language codes. + """ + assert find_matching_language(lang) == target + + +@pytest.mark.parametrize( + "lang,target", + [ + ("en", "en"), + ("fra", "fr"), + ("fre", "fr"), + ("iw", "he"), + ("mo", "ro"), + ("mul", "xx"), + ("no", "nb"), + ("pt-BR", "pt"), + ("xx", "xx"), + ("zh-Hans", "zh"), + ], +) +def test_blank_languages(lang, target): + """ + Test that we can get spacy.blank in various languages, including codes + that are defined to be equivalent or that match by CLDR language matching. + """ + nlp = spacy.blank(lang) + assert nlp.lang == target + + @pytest.mark.parametrize("value", [False, None, ["x", "y"], Language, Vocab]) def test_language_init_invalid_vocab(value): err_fragment = "invalid value" @@ -540,6 +621,32 @@ def test_language_source_and_vectors(nlp2): assert nlp.vocab.vectors.to_bytes() == vectors_bytes +@pytest.mark.parametrize("n_process", [1, 2]) +def test_pass_doc_to_pipeline(nlp, n_process): + texts = ["cats", "dogs", "guinea pigs"] + docs = [nlp.make_doc(text) for text in texts] + assert not any(len(doc.cats) for doc in docs) + doc = nlp(docs[0]) + assert doc.text == texts[0] + assert len(doc.cats) > 0 + if isinstance(get_current_ops(), NumpyOps) or n_process < 2: + docs = nlp.pipe(docs, n_process=n_process) + assert [doc.text for doc in docs] == texts + assert all(len(doc.cats) for doc in docs) + + +def test_invalid_arg_to_pipeline(nlp): + str_list = ["This is a text.", "This is another."] + with pytest.raises(ValueError): + nlp(str_list) # type: ignore + assert len(list(nlp.pipe(str_list))) == 2 + int_list = [1, 2, 3] + with pytest.raises(ValueError): + list(nlp.pipe(int_list)) # type: ignore + with pytest.raises(ValueError): + nlp(int_list) # type: ignore + + @pytest.mark.skipif( not isinstance(get_current_ops(), CupyOps), reason="test requires GPU" ) diff --git a/spacy/tests/test_misc.py b/spacy/tests/test_misc.py index 4ce63ede0..0f804b42a 100644 --- a/spacy/tests/test_misc.py +++ b/spacy/tests/test_misc.py @@ -12,7 +12,8 @@ from spacy.training.batchers import minibatch_by_words from spacy.lang.en import English from spacy.lang.nl import Dutch from spacy.language import DEFAULT_CONFIG_PATH -from spacy.schemas import ConfigSchemaTraining +from spacy.schemas import ConfigSchemaTraining, TokenPattern, TokenPatternSchema +from pydantic import ValidationError from thinc.api import get_current_ops, NumpyOps, CupyOps @@ -30,6 +31,32 @@ def is_admin(): return admin +@pytest.mark.issue(6207) +def test_issue6207(en_tokenizer): + doc = en_tokenizer("zero one two three four five six") + + # Make spans + s1 = doc[:4] + s2 = doc[3:6] # overlaps with s1 + s3 = doc[5:7] # overlaps with s2, not s1 + + result = util.filter_spans((s1, s2, s3)) + assert s1 in result + assert s2 not in result + assert s3 in result + + +@pytest.mark.issue(6258) +def test_issue6258(): + """Test that the non-empty constraint pattern field is respected""" + # These one is valid + TokenPatternSchema(pattern=[TokenPattern()]) + # But an empty pattern list should fail to validate + # based on the schema's constraint + with pytest.raises(ValidationError): + TokenPatternSchema(pattern=[]) + + @pytest.mark.parametrize("text", ["hello/world", "hello world"]) def test_util_ensure_path_succeeds(text): path = util.ensure_path(text) @@ -137,6 +164,12 @@ def test_load_model_blank_shortcut(): nlp = util.load_model("blank:en") assert nlp.lang == "en" assert nlp.pipeline == [] + + # ImportError for loading an unsupported language + with pytest.raises(ImportError): + util.load_model("blank:zxx") + + # ImportError for requesting an invalid language code that isn't registered with pytest.raises(ImportError): util.load_model("blank:fjsfijsdof") diff --git a/spacy/tests/test_scorer.py b/spacy/tests/test_scorer.py index 16cc97f6d..6e15fa2de 100644 --- a/spacy/tests/test_scorer.py +++ b/spacy/tests/test_scorer.py @@ -249,6 +249,7 @@ def test_tag_score(tagged_doc): assert results["tag_acc"] == 1.0 assert results["pos_acc"] == 1.0 assert results["morph_acc"] == 1.0 + assert results["morph_micro_f"] == 1.0 assert results["morph_per_feat"]["NounType"]["f"] == 1.0 # Gold annotation is modified @@ -272,6 +273,7 @@ def test_tag_score(tagged_doc): assert results["tag_acc"] == 0.9 assert results["pos_acc"] == 0.9 assert results["morph_acc"] == approx(0.8) + assert results["morph_micro_f"] == approx(0.8461538) assert results["morph_per_feat"]["NounType"]["f"] == 1.0 assert results["morph_per_feat"]["Poss"]["f"] == 0.0 assert results["morph_per_feat"]["Number"]["f"] == approx(0.72727272) diff --git a/spacy/tests/tokenizer/test_exceptions.py b/spacy/tests/tokenizer/test_exceptions.py index 9a98e049e..85716377a 100644 --- a/spacy/tests/tokenizer/test_exceptions.py +++ b/spacy/tests/tokenizer/test_exceptions.py @@ -45,3 +45,9 @@ def test_tokenizer_handles_emoji(tokenizer, text, length): if sys.maxunicode >= 1114111: tokens = tokenizer(text) assert len(tokens) == length + + +def test_tokenizer_degree(tokenizer): + for u in "cfkCFK": + assert [t.text for t in tokenizer(f"°{u}.")] == ["°", f"{u}", "."] + assert [t[1] for t in tokenizer.explain(f"°{u}.")] == ["°", f"{u}", "."] diff --git a/spacy/tests/tokenizer/test_tokenizer.py b/spacy/tests/tokenizer/test_tokenizer.py index 7d0c16745..c2aeffcb5 100644 --- a/spacy/tests/tokenizer/test_tokenizer.py +++ b/spacy/tests/tokenizer/test_tokenizer.py @@ -1,9 +1,283 @@ -import pytest import re -from spacy.vocab import Vocab -from spacy.tokenizer import Tokenizer -from spacy.util import ensure_path + +import numpy +import pytest + from spacy.lang.en import English +from spacy.lang.de import German +from spacy.tokenizer import Tokenizer +from spacy.tokens import Doc +from spacy.training import Example +from spacy.util import compile_prefix_regex, compile_suffix_regex, ensure_path +from spacy.vocab import Vocab +from spacy.symbols import ORTH + + +@pytest.mark.issue(743) +def test_issue743(): + doc = Doc(Vocab(), ["hello", "world"]) + token = doc[0] + s = set([token]) + items = list(s) + assert items[0] is token + + +@pytest.mark.issue(801) +@pytest.mark.skip( + reason="Can not be fixed unless with variable-width lookbehinds, cf. PR #3218" +) +@pytest.mark.parametrize( + "text,tokens", + [ + ('"deserve,"--and', ['"', "deserve", ',"--', "and"]), + ("exception;--exclusive", ["exception", ";--", "exclusive"]), + ("day.--Is", ["day", ".--", "Is"]), + ("refinement:--just", ["refinement", ":--", "just"]), + ("memories?--To", ["memories", "?--", "To"]), + ("Useful.=--Therefore", ["Useful", ".=--", "Therefore"]), + ("=Hope.=--Pandora", ["=", "Hope", ".=--", "Pandora"]), + ], +) +def test_issue801(en_tokenizer, text, tokens): + """Test that special characters + hyphens are split correctly.""" + doc = en_tokenizer(text) + assert len(doc) == len(tokens) + assert [t.text for t in doc] == tokens + + +@pytest.mark.issue(1061) +def test_issue1061(): + """Test special-case works after tokenizing. Was caching problem.""" + text = "I like _MATH_ even _MATH_ when _MATH_, except when _MATH_ is _MATH_! but not _MATH_." + tokenizer = English().tokenizer + doc = tokenizer(text) + assert "MATH" in [w.text for w in doc] + assert "_MATH_" not in [w.text for w in doc] + + tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}]) + doc = tokenizer(text) + assert "_MATH_" in [w.text for w in doc] + assert "MATH" not in [w.text for w in doc] + + # For sanity, check it works when pipeline is clean. + tokenizer = English().tokenizer + tokenizer.add_special_case("_MATH_", [{ORTH: "_MATH_"}]) + doc = tokenizer(text) + assert "_MATH_" in [w.text for w in doc] + assert "MATH" not in [w.text for w in doc] + + +@pytest.mark.issue(1963) +def test_issue1963(en_tokenizer): + """Test that doc.merge() resizes doc.tensor""" + doc = en_tokenizer("a b c d") + doc.tensor = numpy.ones((len(doc), 128), dtype="f") + with doc.retokenize() as retokenizer: + retokenizer.merge(doc[0:2]) + assert len(doc) == 3 + assert doc.tensor.shape == (3, 128) + + +@pytest.mark.skip( + reason="Can not be fixed without variable-width look-behind (which we don't want)" +) +@pytest.mark.issue(1235) +def test_issue1235(): + """Test that g is not split of if preceded by a number and a letter""" + nlp = English() + testwords = "e2g 2g 52g" + doc = nlp(testwords) + assert len(doc) == 5 + assert doc[0].text == "e2g" + assert doc[1].text == "2" + assert doc[2].text == "g" + assert doc[3].text == "52" + assert doc[4].text == "g" + + +@pytest.mark.issue(1242) +def test_issue1242(): + nlp = English() + doc = nlp("") + assert len(doc) == 0 + docs = list(nlp.pipe(["", "hello"])) + assert len(docs[0]) == 0 + assert len(docs[1]) == 1 + + +@pytest.mark.issue(1257) +def test_issue1257(): + """Test that tokens compare correctly.""" + doc1 = Doc(Vocab(), words=["a", "b", "c"]) + doc2 = Doc(Vocab(), words=["a", "c", "e"]) + assert doc1[0] != doc2[0] + assert not doc1[0] == doc2[0] + + +@pytest.mark.issue(1375) +def test_issue1375(): + """Test that token.nbor() raises IndexError for out-of-bounds access.""" + doc = Doc(Vocab(), words=["0", "1", "2"]) + with pytest.raises(IndexError): + assert doc[0].nbor(-1) + assert doc[1].nbor(-1).text == "0" + with pytest.raises(IndexError): + assert doc[2].nbor(1) + assert doc[1].nbor(1).text == "2" + + +@pytest.mark.issue(1488) +def test_issue1488(): + """Test that tokenizer can parse DOT inside non-whitespace separators""" + prefix_re = re.compile(r"""[\[\("']""") + suffix_re = re.compile(r"""[\]\)"']""") + infix_re = re.compile(r"""[-~\.]""") + simple_url_re = re.compile(r"""^https?://""") + + def my_tokenizer(nlp): + return Tokenizer( + nlp.vocab, + {}, + prefix_search=prefix_re.search, + suffix_search=suffix_re.search, + infix_finditer=infix_re.finditer, + token_match=simple_url_re.match, + ) + + nlp = English() + nlp.tokenizer = my_tokenizer(nlp) + doc = nlp("This is a test.") + for token in doc: + assert token.text + + +@pytest.mark.issue(1494) +def test_issue1494(): + """Test if infix_finditer works correctly""" + infix_re = re.compile(r"""[^a-z]""") + test_cases = [ + ("token 123test", ["token", "1", "2", "3", "test"]), + ("token 1test", ["token", "1test"]), + ("hello...test", ["hello", ".", ".", ".", "test"]), + ] + + def new_tokenizer(nlp): + return Tokenizer(nlp.vocab, {}, infix_finditer=infix_re.finditer) + + nlp = English() + nlp.tokenizer = new_tokenizer(nlp) + for text, expected in test_cases: + assert [token.text for token in nlp(text)] == expected + + +@pytest.mark.skip( + reason="Can not be fixed without iterative looping between prefix/suffix and infix" +) +@pytest.mark.issue(2070) +def test_issue2070(): + """Test that checks that a dot followed by a quote is handled + appropriately. + """ + # Problem: The dot is now properly split off, but the prefix/suffix rules + # are not applied again afterwards. This means that the quote will still be + # attached to the remaining token. + nlp = English() + doc = nlp('First sentence."A quoted sentence" he said ...') + assert len(doc) == 11 + + +@pytest.mark.issue(2926) +def test_issue2926(fr_tokenizer): + """Test that the tokenizer correctly splits tokens separated by a slash (/) + ending in a digit. + """ + doc = fr_tokenizer("Learn html5/css3/javascript/jquery") + assert len(doc) == 8 + assert doc[0].text == "Learn" + assert doc[1].text == "html5" + assert doc[2].text == "/" + assert doc[3].text == "css3" + assert doc[4].text == "/" + assert doc[5].text == "javascript" + assert doc[6].text == "/" + assert doc[7].text == "jquery" + + +@pytest.mark.parametrize( + "text", + [ + "ABLEItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume TABLE ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume ItemColumn IAcceptance Limits of ErrorIn-Service Limits of ErrorColumn IIColumn IIIColumn IVColumn VComputed VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeUnder Registration of\xa0VolumeOver Registration of\xa0VolumeCubic FeetCubic FeetCubic FeetCubic FeetCubic Feet1Up to 10.0100.0050.0100.005220.0200.0100.0200.010350.0360.0180.0360.0184100.0500.0250.0500.0255Over 100.5% of computed volume0.25% of computed volume0.5% of computed volume0.25% of computed volume", + "oow.jspsearch.eventoracleopenworldsearch.technologyoraclesolarissearch.technologystoragesearch.technologylinuxsearch.technologyserverssearch.technologyvirtualizationsearch.technologyengineeredsystemspcodewwmkmppscem:", + ], +) +@pytest.mark.issue(2626) +def test_issue2626_2835(en_tokenizer, text): + """Check that sentence doesn't cause an infinite loop in the tokenizer.""" + doc = en_tokenizer(text) + assert doc + + +@pytest.mark.issue(2656) +def test_issue2656(en_tokenizer): + """Test that tokenizer correctly splits off punctuation after numbers with + decimal points. + """ + doc = en_tokenizer("I went for 40.3, and got home by 10.0.") + assert len(doc) == 11 + assert doc[0].text == "I" + assert doc[1].text == "went" + assert doc[2].text == "for" + assert doc[3].text == "40.3" + assert doc[4].text == "," + assert doc[5].text == "and" + assert doc[6].text == "got" + assert doc[7].text == "home" + assert doc[8].text == "by" + assert doc[9].text == "10.0" + assert doc[10].text == "." + + +@pytest.mark.issue(2754) +def test_issue2754(en_tokenizer): + """Test that words like 'a' and 'a.m.' don't get exceptional norm values.""" + a = en_tokenizer("a") + assert a[0].norm_ == "a" + am = en_tokenizer("am") + assert am[0].norm_ == "am" + + +@pytest.mark.issue(3002) +def test_issue3002(): + """Test that the tokenizer doesn't hang on a long list of dots""" + nlp = German() + doc = nlp( + "880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl" + ) + assert len(doc) == 5 + + +@pytest.mark.skip(reason="default suffix rules avoid one upper-case letter before dot") +@pytest.mark.issue(3449) +def test_issue3449(): + nlp = English() + nlp.add_pipe("sentencizer") + text1 = "He gave the ball to I. Do you want to go to the movies with I?" + text2 = "He gave the ball to I. Do you want to go to the movies with I?" + text3 = "He gave the ball to I.\nDo you want to go to the movies with I?" + t1 = nlp(text1) + t2 = nlp(text2) + t3 = nlp(text3) + assert t1[5].text == "I" + assert t2[5].text == "I" + assert t3[5].text == "I" + + +@pytest.mark.parametrize( + "text,words", [("A'B C", ["A", "'", "B", "C"]), ("A-B", ["A-B"])] +) +def test_gold_misaligned(en_tokenizer, text, words): + doc = en_tokenizer(text) + Example.from_dict(doc, {"words": words}) def test_tokenizer_handles_no_word(tokenizer): @@ -212,3 +486,20 @@ def test_tokenizer_flush_specials(en_vocab): assert [t.text for t in tokenizer1("a a.")] == ["a a", "."] tokenizer1.rules = {} assert [t.text for t in tokenizer1("a a.")] == ["a", "a", "."] + + +def test_tokenizer_prefix_suffix_overlap_lookbehind(en_vocab): + # the prefix and suffix matches overlap in the suffix lookbehind + prefixes = ["a(?=.)"] + suffixes = [r"(?<=\w)\.", r"(?<=a)\d+\."] + prefix_re = compile_prefix_regex(prefixes) + suffix_re = compile_suffix_regex(suffixes) + tokenizer = Tokenizer( + en_vocab, + prefix_search=prefix_re.search, + suffix_search=suffix_re.search, + ) + tokens = [t.text for t in tokenizer("a10.")] + assert tokens == ["a", "10", "."] + explain_tokens = [t[1] for t in tokenizer.explain("a10.")] + assert tokens == explain_tokens diff --git a/spacy/tests/training/test_training.py b/spacy/tests/training/test_training.py index cd428be15..0d73300d8 100644 --- a/spacy/tests/training/test_training.py +++ b/spacy/tests/training/test_training.py @@ -1,15 +1,18 @@ +import random + import numpy -from spacy.training import offsets_to_biluo_tags, biluo_tags_to_offsets, Alignment -from spacy.training import biluo_tags_to_spans, iob_to_biluo -from spacy.training import Corpus, docs_to_json, Example -from spacy.training.align import get_alignments -from spacy.training.converters import json_to_docs -from spacy.lang.en import English -from spacy.tokens import Doc, DocBin -from spacy.util import get_words_and_spaces, minibatch -from thinc.api import compounding import pytest import srsly +from spacy.lang.en import English +from spacy.tokens import Doc, DocBin +from spacy.training import Alignment, Corpus, Example, biluo_tags_to_offsets +from spacy.training import biluo_tags_to_spans, docs_to_json, iob_to_biluo +from spacy.training import offsets_to_biluo_tags +from spacy.training.align import get_alignments +from spacy.training.converters import json_to_docs +from spacy.util import get_words_and_spaces, load_model_from_path, minibatch +from spacy.util import load_config_from_str +from thinc.api import compounding from ..util import make_tempdir @@ -68,6 +71,207 @@ def vocab(): return nlp.vocab +@pytest.mark.issue(999) +def test_issue999(): + """Test that adding entities and resuming training works passably OK. + There are two issues here: + 1) We have to re-add labels. This isn't very nice. + 2) There's no way to set the learning rate for the weight update, so we + end up out-of-scale, causing it to learn too fast. + """ + TRAIN_DATA = [ + ["hey", []], + ["howdy", []], + ["hey there", []], + ["hello", []], + ["hi", []], + ["i'm looking for a place to eat", []], + ["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]], + ["show me chinese restaurants", [(8, 15, "CUISINE")]], + ["show me chines restaurants", [(8, 14, "CUISINE")]], + ] + nlp = English() + ner = nlp.add_pipe("ner") + for _, offsets in TRAIN_DATA: + for start, end, label in offsets: + ner.add_label(label) + nlp.initialize() + for itn in range(20): + random.shuffle(TRAIN_DATA) + for raw_text, entity_offsets in TRAIN_DATA: + example = Example.from_dict( + nlp.make_doc(raw_text), {"entities": entity_offsets} + ) + nlp.update([example]) + + with make_tempdir() as model_dir: + nlp.to_disk(model_dir) + nlp2 = load_model_from_path(model_dir) + + for raw_text, entity_offsets in TRAIN_DATA: + doc = nlp2(raw_text) + ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents} + for start, end, label in entity_offsets: + if (start, end) in ents: + assert ents[(start, end)] == label + break + else: + if entity_offsets: + raise Exception(ents) + + +@pytest.mark.issue(4402) +def test_issue4402(): + json_data = { + "id": 0, + "paragraphs": [ + { + "raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.", + "sentences": [ + { + "tokens": [ + {"id": 0, "orth": "How", "ner": "O"}, + {"id": 1, "orth": "should", "ner": "O"}, + {"id": 2, "orth": "I", "ner": "O"}, + {"id": 3, "orth": "cook", "ner": "O"}, + {"id": 4, "orth": "bacon", "ner": "O"}, + {"id": 5, "orth": "in", "ner": "O"}, + {"id": 6, "orth": "an", "ner": "O"}, + {"id": 7, "orth": "oven", "ner": "O"}, + {"id": 8, "orth": "?", "ner": "O"}, + ], + "brackets": [], + }, + { + "tokens": [ + {"id": 9, "orth": "\n", "ner": "O"}, + {"id": 10, "orth": "I", "ner": "O"}, + {"id": 11, "orth": "'ve", "ner": "O"}, + {"id": 12, "orth": "heard", "ner": "O"}, + {"id": 13, "orth": "of", "ner": "O"}, + {"id": 14, "orth": "people", "ner": "O"}, + {"id": 15, "orth": "cooking", "ner": "O"}, + {"id": 16, "orth": "bacon", "ner": "O"}, + {"id": 17, "orth": "in", "ner": "O"}, + {"id": 18, "orth": "an", "ner": "O"}, + {"id": 19, "orth": "oven", "ner": "O"}, + {"id": 20, "orth": ".", "ner": "O"}, + ], + "brackets": [], + }, + ], + "cats": [ + {"label": "baking", "value": 1.0}, + {"label": "not_baking", "value": 0.0}, + ], + }, + { + "raw": "What is the difference between white and brown eggs?\n", + "sentences": [ + { + "tokens": [ + {"id": 0, "orth": "What", "ner": "O"}, + {"id": 1, "orth": "is", "ner": "O"}, + {"id": 2, "orth": "the", "ner": "O"}, + {"id": 3, "orth": "difference", "ner": "O"}, + {"id": 4, "orth": "between", "ner": "O"}, + {"id": 5, "orth": "white", "ner": "O"}, + {"id": 6, "orth": "and", "ner": "O"}, + {"id": 7, "orth": "brown", "ner": "O"}, + {"id": 8, "orth": "eggs", "ner": "O"}, + {"id": 9, "orth": "?", "ner": "O"}, + ], + "brackets": [], + }, + {"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []}, + ], + "cats": [ + {"label": "baking", "value": 0.0}, + {"label": "not_baking", "value": 1.0}, + ], + }, + ], + } + nlp = English() + attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"] + with make_tempdir() as tmpdir: + output_file = tmpdir / "test4402.spacy" + docs = json_to_docs([json_data]) + data = DocBin(docs=docs, attrs=attrs).to_bytes() + with output_file.open("wb") as file_: + file_.write(data) + reader = Corpus(output_file) + train_data = list(reader(nlp)) + assert len(train_data) == 2 + + split_train_data = [] + for eg in train_data: + split_train_data.extend(eg.split_sents()) + assert len(split_train_data) == 4 + + +CONFIG_7029 = """ +[nlp] +lang = "en" +pipeline = ["tok2vec", "tagger"] + +[components] + +[components.tok2vec] +factory = "tok2vec" + +[components.tok2vec.model] +@architectures = "spacy.Tok2Vec.v1" + +[components.tok2vec.model.embed] +@architectures = "spacy.MultiHashEmbed.v1" +width = ${components.tok2vec.model.encode:width} +attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] +rows = [5000,2500,2500,2500] +include_static_vectors = false + +[components.tok2vec.model.encode] +@architectures = "spacy.MaxoutWindowEncoder.v1" +width = 96 +depth = 4 +window_size = 1 +maxout_pieces = 3 + +[components.tagger] +factory = "tagger" + +[components.tagger.model] +@architectures = "spacy.Tagger.v1" +nO = null + +[components.tagger.model.tok2vec] +@architectures = "spacy.Tok2VecListener.v1" +width = ${components.tok2vec.model.encode:width} +upstream = "*" +""" + + +@pytest.mark.issue(7029) +def test_issue7029(): + """Test that an empty document doesn't mess up an entire batch.""" + TRAIN_DATA = [ + ("I like green eggs", {"tags": ["N", "V", "J", "N"]}), + ("Eat blue ham", {"tags": ["V", "J", "N"]}), + ] + nlp = English.from_config(load_config_from_str(CONFIG_7029)) + train_examples = [] + for t in TRAIN_DATA: + train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) + optimizer = nlp.initialize(get_examples=lambda: train_examples) + for i in range(50): + losses = {} + nlp.update(train_examples, sgd=optimizer, losses=losses) + texts = ["first", "second", "third", "fourth", "and", "then", "some", ""] + docs1 = list(nlp.pipe(texts, batch_size=1)) + docs2 = list(nlp.pipe(texts, batch_size=4)) + assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]] + + def test_gold_biluo_U(en_vocab): words = ["I", "flew", "to", "London", "."] spaces = [True, True, True, False, True] @@ -525,6 +729,33 @@ def test_roundtrip_docs_to_docbin(doc): assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"] +def test_docbin_user_data_serialized(doc): + doc.user_data["check"] = True + nlp = English() + + with make_tempdir() as tmpdir: + output_file = tmpdir / "userdata.spacy" + DocBin(docs=[doc], store_user_data=True).to_disk(output_file) + reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab) + reloaded_doc = list(reloaded_docs)[0] + + assert reloaded_doc.user_data["check"] == True + + +def test_docbin_user_data_not_serialized(doc): + # this isn't serializable, but that shouldn't cause an error + doc.user_data["check"] = set() + nlp = English() + + with make_tempdir() as tmpdir: + output_file = tmpdir / "userdata.spacy" + DocBin(docs=[doc], store_user_data=False).to_disk(output_file) + reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab) + reloaded_doc = list(reloaded_docs)[0] + + assert "check" not in reloaded_doc.user_data + + @pytest.mark.parametrize( "tokens_a,tokens_b,expected", [ diff --git a/spacy/tests/universe/test_universe_json.py b/spacy/tests/universe/test_universe_json.py new file mode 100644 index 000000000..295889186 --- /dev/null +++ b/spacy/tests/universe/test_universe_json.py @@ -0,0 +1,17 @@ +import json +import re +from pathlib import Path + + +def test_universe_json(): + + root_dir = Path(__file__).parent + universe_file = root_dir / "universe.json" + + with universe_file.open() as f: + universe_data = json.load(f) + for entry in universe_data["resources"]: + if "github" in entry: + assert not re.match( + r"^(http:)|^(https:)", entry["github"] + ), "Github field should be user/repo, not a url" diff --git a/spacy/tests/vocab_vectors/test_lexeme.py b/spacy/tests/vocab_vectors/test_lexeme.py index b6fee6628..d91f41db3 100644 --- a/spacy/tests/vocab_vectors/test_lexeme.py +++ b/spacy/tests/vocab_vectors/test_lexeme.py @@ -1,7 +1,25 @@ -import pytest import numpy +import pytest from spacy.attrs import IS_ALPHA, IS_DIGIT +from spacy.lookups import Lookups +from spacy.tokens import Doc from spacy.util import OOV_RANK +from spacy.vocab import Vocab + + +@pytest.mark.issue(361) +@pytest.mark.parametrize("text1,text2", [("cat", "dog")]) +def test_issue361(en_vocab, text1, text2): + """Test Issue #361: Equality of lexemes""" + assert en_vocab[text1] == en_vocab[text1] + assert en_vocab[text1] != en_vocab[text2] + + +@pytest.mark.issue(600) +def test_issue600(): + vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}}) + doc = Doc(vocab, words=["hello"]) + doc[0].tag_ = "NN" @pytest.mark.parametrize("text1,prob1,text2,prob2", [("NOUN", -1, "opera", -2)]) diff --git a/spacy/tests/vocab_vectors/test_similarity.py b/spacy/tests/vocab_vectors/test_similarity.py index b5f7303b5..47cd1f060 100644 --- a/spacy/tests/vocab_vectors/test_similarity.py +++ b/spacy/tests/vocab_vectors/test_similarity.py @@ -16,6 +16,16 @@ def vocab(en_vocab, vectors): return en_vocab +@pytest.mark.issue(2219) +def test_issue2219(en_vocab): + """Test if indexing issue still occurs during Token-Token similarity""" + vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])] + add_vecs_to_vocab(en_vocab, vectors) + [(word1, vec1), (word2, vec2)] = vectors + doc = Doc(en_vocab, words=[word1, word2]) + assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0]) + + def test_vectors_similarity_LL(vocab, vectors): [(word1, vec1), (word2, vec2)] = vectors lex1 = vocab[word1] @@ -25,6 +35,7 @@ def test_vectors_similarity_LL(vocab, vectors): assert lex1.vector_norm != 0 assert lex2.vector_norm != 0 assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1] + assert isinstance(lex1.similarity(lex2), float) assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2)) assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1)) @@ -37,25 +48,46 @@ def test_vectors_similarity_TT(vocab, vectors): assert doc[0].vector_norm != 0 assert doc[1].vector_norm != 0 assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1] + assert isinstance(doc[0].similarity(doc[1]), float) assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2)) assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1])) +def test_vectors_similarity_SS(vocab, vectors): + [(word1, vec1), (word2, vec2)] = vectors + doc = Doc(vocab, words=[word1, word2]) + assert isinstance(doc[0:1].similarity(doc[0:2]), float) + assert doc[0:1].similarity(doc[0:2]) == doc[0:2].similarity(doc[0:1]) + + +def test_vectors_similarity_DD(vocab, vectors): + [(word1, vec1), (word2, vec2)] = vectors + doc1 = Doc(vocab, words=[word1, word2]) + doc2 = Doc(vocab, words=[word2, word1]) + assert isinstance(doc1.similarity(doc2), float) + assert doc1.similarity(doc2) == doc2.similarity(doc1) + + def test_vectors_similarity_TD(vocab, vectors): [(word1, vec1), (word2, vec2)] = vectors doc = Doc(vocab, words=[word1, word2]) with pytest.warns(UserWarning): + assert isinstance(doc.similarity(doc[0]), float) + assert isinstance(doc[0].similarity(doc), float) assert doc.similarity(doc[0]) == doc[0].similarity(doc) -def test_vectors_similarity_DS(vocab, vectors): - [(word1, vec1), (word2, vec2)] = vectors - doc = Doc(vocab, words=[word1, word2]) - assert doc.similarity(doc[:2]) == doc[:2].similarity(doc) - - def test_vectors_similarity_TS(vocab, vectors): [(word1, vec1), (word2, vec2)] = vectors doc = Doc(vocab, words=[word1, word2]) with pytest.warns(UserWarning): + assert isinstance(doc[:2].similarity(doc[0]), float) + assert isinstance(doc[0].similarity(doc[-2]), float) assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2]) + + +def test_vectors_similarity_DS(vocab, vectors): + [(word1, vec1), (word2, vec2)] = vectors + doc = Doc(vocab, words=[word1, word2]) + assert isinstance(doc.similarity(doc[:2]), float) + assert doc.similarity(doc[:2]) == doc[:2].similarity(doc) diff --git a/spacy/tests/vocab_vectors/test_vectors.py b/spacy/tests/vocab_vectors/test_vectors.py index 23597455f..0650a7487 100644 --- a/spacy/tests/vocab_vectors/test_vectors.py +++ b/spacy/tests/vocab_vectors/test_vectors.py @@ -1,12 +1,15 @@ -import pytest import numpy -from numpy.testing import assert_allclose, assert_equal -from thinc.api import get_current_ops -from spacy.vocab import Vocab -from spacy.vectors import Vectors -from spacy.tokenizer import Tokenizer +import pytest +from numpy.testing import assert_allclose, assert_almost_equal, assert_equal +from thinc.api import NumpyOps, get_current_ops + +from spacy.lang.en import English from spacy.strings import hash_string # type: ignore +from spacy.tokenizer import Tokenizer from spacy.tokens import Doc +from spacy.training.initialize import convert_vectors +from spacy.vectors import Vectors +from spacy.vocab import Vocab from ..util import add_vecs_to_vocab, get_cosine, make_tempdir @@ -29,22 +32,6 @@ def vectors(): ] -@pytest.fixture -def ngrams_vectors(): - return [ - ("apple", OPS.asarray([1, 2, 3])), - ("app", OPS.asarray([-0.1, -0.2, -0.3])), - ("ppl", OPS.asarray([-0.2, -0.3, -0.4])), - ("pl", OPS.asarray([0.7, 0.8, 0.9])), - ] - - -@pytest.fixture() -def ngrams_vocab(en_vocab, ngrams_vectors): - add_vecs_to_vocab(en_vocab, ngrams_vectors) - return en_vocab - - @pytest.fixture def data(): return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f") @@ -79,6 +66,79 @@ def tokenizer_v(vocab): return Tokenizer(vocab, {}, None, None, None) +@pytest.mark.issue(1518) +def test_issue1518(): + """Test vectors.resize() works.""" + vectors = Vectors(shape=(10, 10)) + vectors.add("hello", row=2) + vectors.resize((5, 9)) + + +@pytest.mark.issue(1539) +def test_issue1539(): + """Ensure vectors.resize() doesn't try to modify dictionary during iteration.""" + v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100]) + v.resize((100, 100)) + + +@pytest.mark.issue(1807) +def test_issue1807(): + """Test vocab.set_vector also adds the word to the vocab.""" + vocab = Vocab(vectors_name="test_issue1807") + assert "hello" not in vocab + vocab.set_vector("hello", numpy.ones((50,), dtype="f")) + assert "hello" in vocab + + +@pytest.mark.issue(2871) +def test_issue2871(): + """Test that vectors recover the correct key for spaCy reserved words.""" + words = ["dog", "cat", "SUFFIX"] + vocab = Vocab(vectors_name="test_issue2871") + vocab.vectors.resize(shape=(3, 10)) + vector_data = numpy.zeros((3, 10), dtype="f") + for word in words: + _ = vocab[word] # noqa: F841 + vocab.set_vector(word, vector_data[0]) + vocab.vectors.name = "dummy_vectors" + assert vocab["dog"].rank == 0 + assert vocab["cat"].rank == 1 + assert vocab["SUFFIX"].rank == 2 + assert vocab.vectors.find(key="dog") == 0 + assert vocab.vectors.find(key="cat") == 1 + assert vocab.vectors.find(key="SUFFIX") == 2 + + +@pytest.mark.issue(3412) +def test_issue3412(): + data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f") + vectors = Vectors(data=data, keys=["A", "B", "C"]) + keys, best_rows, scores = vectors.most_similar( + numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f") + ) + assert best_rows[0] == 2 + + +@pytest.mark.issue(4725) +def test_issue4725_2(): + if isinstance(get_current_ops, NumpyOps): + # ensures that this runs correctly and doesn't hang or crash because of the global vectors + # if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows), + # or because of issues with pickling the NER (cf test_issue4725_1) + vocab = Vocab(vectors_name="test_vocab_add_vector") + data = numpy.ndarray((5, 3), dtype="f") + data[0] = 1.0 + data[1] = 2.0 + vocab.set_vector("cat", data[0]) + vocab.set_vector("dog", data[1]) + nlp = English(vocab=vocab) + nlp.add_pipe("ner") + nlp.initialize() + docs = ["Kurt is in London."] * 10 + for _ in nlp.pipe(docs, batch_size=2, n_process=2): + pass + + def test_init_vectors_with_resize_shape(strings, resize_data): v = Vectors(shape=(len(strings), 3)) v.resize(shape=resize_data.shape) @@ -125,6 +185,7 @@ def test_init_vectors_with_data(strings, data): def test_init_vectors_with_shape(strings): v = Vectors(shape=(len(strings), 3)) assert v.shape == (len(strings), 3) + assert v.is_full is False def test_get_vector(strings, data): @@ -180,30 +241,6 @@ def test_vectors_token_vector(tokenizer_v, vectors, text): assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)]) -@pytest.mark.parametrize("text", ["apple"]) -def test_vectors__ngrams_word(ngrams_vocab, ngrams_vectors, text): - assert list(ngrams_vocab.get_vector(text)) == list(ngrams_vectors[0][1]) - - -@pytest.mark.parametrize("text", ["applpie"]) -def test_vectors__ngrams_subword(ngrams_vocab, ngrams_vectors, text): - truth = list(ngrams_vocab.get_vector(text, 1, 6)) - test = list( - [ - ( - ngrams_vectors[1][1][i] - + ngrams_vectors[2][1][i] - + ngrams_vectors[3][1][i] - ) - / 3 - for i in range(len(ngrams_vectors[1][1])) - ] - ) - eps = [abs(truth[i] - test[i]) for i in range(len(truth))] - for i in eps: - assert i < 1e-6 - - @pytest.mark.parametrize("text", ["apple", "orange"]) def test_vectors_lexeme_vector(vocab, text): lex = vocab[text] @@ -379,3 +416,178 @@ def test_vector_is_oov(): assert vocab["cat"].is_oov is False assert vocab["dog"].is_oov is False assert vocab["hamster"].is_oov is True + + +def test_init_vectors_unset(): + v = Vectors(shape=(10, 10)) + assert v.is_full is False + assert v.shape == (10, 10) + + with pytest.raises(ValueError): + v = Vectors(shape=(10, 10), mode="floret") + + v = Vectors(data=OPS.xp.zeros((10, 10)), mode="floret", hash_count=1) + assert v.is_full is True + + +def test_vectors_clear(): + data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") + v = Vectors(data=data, keys=["A", "B", "C"]) + assert v.is_full is True + assert hash_string("A") in v + v.clear() + # no keys + assert v.key2row == {} + assert list(v) == [] + assert v.is_full is False + assert "A" not in v + with pytest.raises(KeyError): + v["A"] + + +def test_vectors_get_batch(): + data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") + v = Vectors(data=data, keys=["A", "B", "C"]) + # check with mixed int/str keys + words = ["C", "B", "A", v.strings["B"]] + rows = v.find(keys=words) + vecs = OPS.as_contig(v.data[rows]) + assert_equal(OPS.to_numpy(vecs), OPS.to_numpy(v.get_batch(words))) + + +@pytest.fixture() +def floret_vectors_hashvec_str(): + """The full hashvec table from floret with the settings: + bucket 10, dim 10, minn 2, maxn 3, hash count 2, hash seed 2166136261, + bow <, eow >""" + return """10 10 2 3 2 2166136261 < > +0 -2.2611 3.9302 2.6676 -11.233 0.093715 -10.52 -9.6463 -0.11853 2.101 -0.10145 +1 -3.12 -1.7981 10.7 -6.171 4.4527 10.967 9.073 6.2056 -6.1199 -2.0402 +2 9.5689 5.6721 -8.4832 -1.2249 2.1871 -3.0264 -2.391 -5.3308 -3.2847 -4.0382 +3 3.6268 4.2759 -1.7007 1.5002 5.5266 1.8716 -12.063 0.26314 2.7645 2.4929 +4 -11.683 -7.7068 2.1102 2.214 7.2202 0.69799 3.2173 -5.382 -2.0838 5.0314 +5 -4.3024 8.0241 2.0714 -1.0174 -0.28369 1.7622 7.8797 -1.7795 6.7541 5.6703 +6 8.3574 -5.225 8.6529 8.5605 -8.9465 3.767 -5.4636 -1.4635 -0.98947 -0.58025 +7 -10.01 3.3894 -4.4487 1.1669 -11.904 6.5158 4.3681 0.79913 -6.9131 -8.687 +8 -5.4576 7.1019 -8.8259 1.7189 4.955 -8.9157 -3.8905 -0.60086 -2.1233 5.892 +9 8.0678 -4.4142 3.6236 4.5889 -2.7611 2.4455 0.67096 -4.2822 2.0875 4.6274 +""" + + +@pytest.fixture() +def floret_vectors_vec_str(): + """The top 10 rows from floret with the settings above, to verify + that the spacy floret vectors are equivalent to the fasttext static + vectors.""" + return """10 10 +, -5.7814 2.6918 0.57029 -3.6985 -2.7079 1.4406 1.0084 1.7463 -3.8625 -3.0565 +. 3.8016 -1.759 0.59118 3.3044 -0.72975 0.45221 -2.1412 -3.8933 -2.1238 -0.47409 +der 0.08224 2.6601 -1.173 1.1549 -0.42821 -0.097268 -2.5589 -1.609 -0.16968 0.84687 +die -2.8781 0.082576 1.9286 -0.33279 0.79488 3.36 3.5609 -0.64328 -2.4152 0.17266 +und 2.1558 1.8606 -1.382 0.45424 -0.65889 1.2706 0.5929 -2.0592 -2.6949 -1.6015 +" -1.1242 1.4588 -1.6263 1.0382 -2.7609 -0.99794 -0.83478 -1.5711 -1.2137 1.0239 +in -0.87635 2.0958 4.0018 -2.2473 -1.2429 2.3474 1.8846 0.46521 -0.506 -0.26653 +von -0.10589 1.196 1.1143 -0.40907 -1.0848 -0.054756 -2.5016 -1.0381 -0.41598 0.36982 +( 0.59263 2.1856 0.67346 1.0769 1.0701 1.2151 1.718 -3.0441 2.7291 3.719 +) 0.13812 3.3267 1.657 0.34729 -3.5459 0.72372 0.63034 -1.6145 1.2733 0.37798 +""" + + +def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str): + nlp = English() + nlp_plain = English() + # load both vec and hashvec tables + with make_tempdir() as tmpdir: + p = tmpdir / "test.hashvec" + with open(p, "w") as fileh: + fileh.write(floret_vectors_hashvec_str) + convert_vectors(nlp, p, truncate=0, prune=-1, mode="floret") + p = tmpdir / "test.vec" + with open(p, "w") as fileh: + fileh.write(floret_vectors_vec_str) + convert_vectors(nlp_plain, p, truncate=0, prune=-1) + + word = "der" + # ngrams: full padded word + padded 2-grams + padded 3-grams + ngrams = nlp.vocab.vectors._get_ngrams(word) + assert ngrams == ["", "", ""] + # rows: 2 rows per ngram + rows = OPS.xp.asarray( + [ + h % nlp.vocab.vectors.shape[0] + for ngram in ngrams + for h in nlp.vocab.vectors._get_ngram_hashes(ngram) + ], + dtype="uint32", + ) + assert_equal( + OPS.to_numpy(rows), + numpy.asarray([5, 6, 7, 5, 8, 2, 8, 9, 3, 3, 4, 6, 7, 3, 0, 2]), + ) + assert len(rows) == len(ngrams) * nlp.vocab.vectors.hash_count + # all vectors are equivalent for plain static table vs. hash ngrams + for word in nlp_plain.vocab.vectors: + word = nlp_plain.vocab.strings.as_string(word) + assert_almost_equal( + nlp.vocab[word].vector, nlp_plain.vocab[word].vector, decimal=3 + ) + + # every word has a vector + assert nlp.vocab[word * 5].has_vector + + # check that single and batched vector lookups are identical + words = [s for s in nlp_plain.vocab.vectors] + single_vecs = OPS.to_numpy(OPS.asarray([nlp.vocab[word].vector for word in words])) + batch_vecs = OPS.to_numpy(nlp.vocab.vectors.get_batch(words)) + assert_equal(single_vecs, batch_vecs) + + # an empty key returns 0s + assert_equal( + OPS.to_numpy(nlp.vocab[""].vector), + numpy.zeros((nlp.vocab.vectors.shape[0],)), + ) + # an empty batch returns 0s + assert_equal( + OPS.to_numpy(nlp.vocab.vectors.get_batch([""])), + numpy.zeros((1, nlp.vocab.vectors.shape[0])), + ) + # an empty key within a batch returns 0s + assert_equal( + OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]), + numpy.zeros((nlp.vocab.vectors.shape[0],)), + ) + + # the loaded ngram vector table cannot be modified + # except for clear: warning, then return without modifications + vector = list(range(nlp.vocab.vectors.shape[1])) + orig_bytes = nlp.vocab.vectors.to_bytes(exclude=["strings"]) + with pytest.warns(UserWarning): + nlp.vocab.set_vector("the", vector) + assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) + with pytest.warns(UserWarning): + nlp.vocab[word].vector = vector + assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) + with pytest.warns(UserWarning): + nlp.vocab.vectors.add("the", row=6) + assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) + with pytest.warns(UserWarning): + nlp.vocab.vectors.resize(shape=(100, 10)) + assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) + with pytest.raises(ValueError): + nlp.vocab.vectors.clear() + + # data and settings are serialized correctly + with make_tempdir() as d: + nlp.vocab.to_disk(d) + vocab_r = Vocab() + vocab_r.from_disk(d) + assert nlp.vocab.vectors.to_bytes() == vocab_r.vectors.to_bytes() + assert_equal( + OPS.to_numpy(nlp.vocab.vectors.data), OPS.to_numpy(vocab_r.vectors.data) + ) + assert_equal(nlp.vocab.vectors._get_cfg(), vocab_r.vectors._get_cfg()) + assert_almost_equal( + OPS.to_numpy(nlp.vocab[word].vector), + OPS.to_numpy(vocab_r[word].vector), + decimal=6, + ) diff --git a/spacy/tests/vocab_vectors/test_vocab_api.py b/spacy/tests/vocab_vectors/test_vocab_api.py index 56ef1d108..16cf80a08 100644 --- a/spacy/tests/vocab_vectors/test_vocab_api.py +++ b/spacy/tests/vocab_vectors/test_vocab_api.py @@ -1,6 +1,19 @@ import pytest -from spacy.attrs import LEMMA, ORTH, IS_ALPHA +from spacy.attrs import IS_ALPHA, LEMMA, ORTH from spacy.parts_of_speech import NOUN, VERB +from spacy.vocab import Vocab + + +@pytest.mark.issue(1868) +def test_issue1868(): + """Test Vocab.__contains__ works with int keys.""" + vocab = Vocab() + lex = vocab["hello"] + assert lex.orth in vocab + assert lex.orth_ in vocab + assert "some string" not in vocab + int_id = vocab.strings.add("some string") + assert int_id not in vocab @pytest.mark.parametrize( diff --git a/spacy/tokenizer.pxd b/spacy/tokenizer.pxd index 719e8e6f5..fa38a1015 100644 --- a/spacy/tokenizer.pxd +++ b/spacy/tokenizer.pxd @@ -23,10 +23,12 @@ cdef class Tokenizer: cdef object _infix_finditer cdef object _rules cdef PhraseMatcher _special_matcher - cdef int _property_init_count # TODO: unused, remove in v3.1 - cdef int _property_init_max # TODO: unused, remove in v3.1 + # TODO next two are unused and should be removed in v4 + # https://github.com/explosion/spaCy/pull/9150 + cdef int _unused_int1 + cdef int _unused_int2 - cdef Doc _tokenize_affixes(self, unicode string, bint with_special_cases) + cdef Doc _tokenize_affixes(self, str string, bint with_special_cases) cdef int _apply_special_cases(self, Doc doc) except -1 cdef void _filter_special_spans(self, vector[SpanC] &original, vector[SpanC] &filtered, int doc_len) nogil @@ -37,13 +39,13 @@ cdef class Tokenizer: cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1 - cdef int _tokenize(self, Doc tokens, unicode span, hash_t key, + cdef int _tokenize(self, Doc tokens, str span, hash_t key, int* has_special, bint with_special_cases) except -1 - cdef unicode _split_affixes(self, Pool mem, unicode string, + cdef str _split_affixes(self, Pool mem, str string, vector[LexemeC*] *prefixes, vector[LexemeC*] *suffixes, int* has_special, bint with_special_cases) - cdef int _attach_tokens(self, Doc tokens, unicode string, + cdef int _attach_tokens(self, Doc tokens, str string, vector[LexemeC*] *prefixes, vector[LexemeC*] *suffixes, int* has_special, bint with_special_cases) except -1 diff --git a/spacy/tokenizer.pyx b/spacy/tokenizer.pyx index 5a89e5a17..4a148b356 100644 --- a/spacy/tokenizer.pyx +++ b/spacy/tokenizer.pyx @@ -1,6 +1,4 @@ # cython: embedsignature=True, profile=True, binding=True -from __future__ import unicode_literals - from cython.operator cimport dereference as deref from cython.operator cimport preincrement as preinc from libc.string cimport memcpy, memset @@ -47,10 +45,12 @@ cdef class Tokenizer: `re.compile(string).search` to match suffixes. `infix_finditer` (callable): A function matching the signature of `re.compile(string).finditer` to find infixes. - token_match (callable): A boolean function matching strings to be + token_match (callable): A function matching the signature of + `re.compile(string).match`, for matching strings to be recognized as tokens. - url_match (callable): A boolean function matching strings to be - recognized as tokens after considering prefixes and suffixes. + url_match (callable): A function matching the signature of + `re.compile(string).match`, for matching strings to be + recognized as urls. EXAMPLE: >>> tokenizer = Tokenizer(nlp.vocab) @@ -132,7 +132,7 @@ cdef class Tokenizer: self.url_match) return (self.__class__, args, None, None) - def __call__(self, unicode string): + def __call__(self, str string): """Tokenize a string. string (str): The string to tokenize. @@ -145,7 +145,7 @@ cdef class Tokenizer: return doc @cython.boundscheck(False) - cdef Doc _tokenize_affixes(self, unicode string, bint with_special_cases): + cdef Doc _tokenize_affixes(self, str string, bint with_special_cases): """Tokenize according to affix and token_match settings. string (str): The string to tokenize. @@ -161,7 +161,7 @@ cdef class Tokenizer: cdef int start = 0 cdef int has_special = 0 cdef bint in_ws = string[0].isspace() - cdef unicode span + cdef str span # The task here is much like string.split, but not quite # We find spans of whitespace and non-space characters, and ignore # spans that are exactly ' '. So, our sequences will all be separated @@ -373,7 +373,7 @@ cdef class Tokenizer: return False return True - cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key, int* has_special, bint with_special_cases) except -1: + cdef int _tokenize(self, Doc tokens, str span, hash_t orig_key, int* has_special, bint with_special_cases) except -1: cdef vector[LexemeC*] prefixes cdef vector[LexemeC*] suffixes cdef int orig_size @@ -385,16 +385,16 @@ cdef class Tokenizer: self._save_cached(&tokens.c[orig_size], orig_key, has_special, tokens.length - orig_size) - cdef unicode _split_affixes(self, Pool mem, unicode string, + cdef str _split_affixes(self, Pool mem, str string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes, int* has_special, bint with_special_cases): cdef size_t i - cdef unicode prefix - cdef unicode suffix - cdef unicode minus_pre - cdef unicode minus_suf + cdef str prefix + cdef str suffix + cdef str minus_pre + cdef str minus_suf cdef size_t last_size = 0 while string and len(string) != last_size: if self.token_match and self.token_match(string): @@ -410,7 +410,7 @@ cdef class Tokenizer: string = minus_pre prefixes.push_back(self.vocab.get(mem, prefix)) break - suf_len = self.find_suffix(string) + suf_len = self.find_suffix(string[pre_len:]) if suf_len != 0: suffix = string[-suf_len:] minus_suf = string[:-suf_len] @@ -430,7 +430,7 @@ cdef class Tokenizer: suffixes.push_back(self.vocab.get(mem, suffix)) return string - cdef int _attach_tokens(self, Doc tokens, unicode string, + cdef int _attach_tokens(self, Doc tokens, str string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes, int* has_special, @@ -440,7 +440,7 @@ cdef class Tokenizer: cdef int split, end cdef const LexemeC* const* lexemes cdef const LexemeC* lexeme - cdef unicode span + cdef str span cdef int i if prefixes.size(): for i in range(prefixes.size()): @@ -513,7 +513,7 @@ cdef class Tokenizer: cached.data.lexemes = lexemes self._cache.set(key, cached) - def find_infix(self, unicode string): + def find_infix(self, str string): """Find internal split points of the string, such as hyphens. string (str): The string to segment. @@ -527,7 +527,7 @@ cdef class Tokenizer: return 0 return list(self.infix_finditer(string)) - def find_prefix(self, unicode string): + def find_prefix(self, str string): """Find the length of a prefix that should be segmented from the string, or None if no prefix rules match. @@ -541,7 +541,7 @@ cdef class Tokenizer: match = self.prefix_search(string) return (match.end() - match.start()) if match is not None else 0 - def find_suffix(self, unicode string): + def find_suffix(self, str string): """Find the length of a suffix that should be segmented from the string, or None if no suffix rules match. @@ -579,7 +579,7 @@ cdef class Tokenizer: if attr not in (ORTH, NORM): raise ValueError(Errors.E1005.format(attr=self.vocab.strings[attr], chunk=chunk)) - def add_special_case(self, unicode string, substrings): + def add_special_case(self, str string, substrings): """Add a special-case tokenization rule. string (str): The string to specially tokenize. diff --git a/spacy/tokens/_serialize.py b/spacy/tokens/_serialize.py index 510a2ea71..bd2bdb811 100644 --- a/spacy/tokens/_serialize.py +++ b/spacy/tokens/_serialize.py @@ -37,7 +37,7 @@ class DocBin: "spans": List[Dict[str, bytes]], # SpanGroups data for each doc "spaces": bytes, # Serialized numpy boolean array with spaces data "lengths": bytes, # Serialized numpy int32 array with the doc lengths - "strings": List[unicode] # List of unique strings in the token data + "strings": List[str] # List of unique strings in the token data "version": str, # DocBin version number } @@ -117,7 +117,8 @@ class DocBin: self.strings.add(token.ent_kb_id_) self.strings.add(token.ent_id_) self.cats.append(doc.cats) - self.user_data.append(srsly.msgpack_dumps(doc.user_data)) + if self.store_user_data: + self.user_data.append(srsly.msgpack_dumps(doc.user_data)) self.span_groups.append(doc.spans.to_bytes()) for key, group in doc.spans.items(): for span in group: diff --git a/spacy/tokens/doc.pxd b/spacy/tokens/doc.pxd index c74ee0b63..57d087958 100644 --- a/spacy/tokens/doc.pxd +++ b/spacy/tokens/doc.pxd @@ -56,7 +56,7 @@ cdef class Doc: cdef public bint has_unknown_spaces - cdef public list _py_tokens + cdef public object _context cdef int length cdef int max_length diff --git a/spacy/tokens/doc.pyi b/spacy/tokens/doc.pyi index 2b18cee7a..f540002c9 100644 --- a/spacy/tokens/doc.pyi +++ b/spacy/tokens/doc.pyi @@ -29,6 +29,7 @@ class Doc: tensor: numpy.ndarray user_data: Dict[str, Any] has_unknown_spaces: bool + _context: Any @classmethod def set_extension( cls, @@ -138,8 +139,12 @@ class Doc: def count_by( self, attr_id: int, exclude: Optional[Any] = ..., counts: Optional[Any] = ... ) -> Dict[Any, int]: ... - def from_array(self, attrs: List[int], array: Ints2d) -> Doc: ... - def to_array(self, py_attr_ids: List[int]) -> numpy.ndarray: ... + def from_array( + self, attrs: Union[int, str, List[Union[int, str]]], array: Ints2d + ) -> Doc: ... + def to_array( + self, py_attr_ids: Union[int, str, List[Union[int, str]]] + ) -> numpy.ndarray: ... @staticmethod def from_docs( docs: List[Doc], diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index ee3fa8906..eeb7dc965 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -262,13 +262,13 @@ cdef class Doc: raise ValueError(Errors.E027) cdef const LexemeC* lexeme for word, has_space in zip(words, spaces): - if isinstance(word, unicode): - lexeme = self.vocab.get(self.vocab.mem, word) + if isinstance(word, str): + lexeme = self.vocab.get(self.mem, word) elif isinstance(word, bytes): raise ValueError(Errors.E028.format(value=word)) else: try: - lexeme = self.vocab.get_by_orth(self.vocab.mem, word) + lexeme = self.vocab.get_by_orth(self.mem, word) except TypeError: raise TypeError(Errors.E1022.format(wtype=type(word))) self.push_back(lexeme, has_space) @@ -538,7 +538,13 @@ cdef class Doc: kb_id = self.vocab.strings.add(kb_id) alignment_modes = ("strict", "contract", "expand") if alignment_mode not in alignment_modes: - raise ValueError(Errors.E202.format(mode=alignment_mode, modes=", ".join(alignment_modes))) + raise ValueError( + Errors.E202.format( + name="alignment", + mode=alignment_mode, + modes=", ".join(alignment_modes), + ) + ) cdef int start = token_by_char(self.c, self.length, start_idx) if start < 0 or (alignment_mode == "strict" and start_idx != self[start].idx): return None @@ -635,7 +641,7 @@ cdef class Doc: if not len(self): self._vector = xp.zeros((self.vocab.vectors_length,), dtype="f") return self._vector - elif self.vocab.vectors.data.size > 0: + elif self.vocab.vectors.size > 0: self._vector = sum(t.vector for t in self) / len(self) return self._vector elif self.tensor.size > 0: @@ -1177,7 +1183,7 @@ cdef class Doc: token_offset = -1 for doc in docs[:-1]: token_offset += len(doc) - if not (len(doc) > 0 and doc[-1].is_space): + if len(doc) > 0 and not doc[-1].is_space: concat_spaces[token_offset] = True concat_array = numpy.concatenate(arrays) @@ -1223,7 +1229,6 @@ cdef class Doc: other.tensor = copy.deepcopy(self.tensor) other.cats = copy.deepcopy(self.cats) other.user_data = copy.deepcopy(self.user_data) - other.spans = self.spans.copy() other.sentiment = self.sentiment other.has_unknown_spaces = self.has_unknown_spaces other.user_hooks = dict(self.user_hooks) @@ -1372,14 +1377,14 @@ cdef class Doc: self.has_unknown_spaces = msg["has_unknown_spaces"] start = 0 cdef const LexemeC* lex - cdef unicode orth_ + cdef str orth_ text = msg["text"] attrs = msg["array_body"] for i in range(attrs.shape[0]): end = start + attrs[i, 0] has_space = attrs[i, 1] orth_ = text[start:end] - lex = self.vocab.get(self.vocab.mem, orth_) + lex = self.vocab.get(self.mem, orth_) self.push_back(lex, has_space) start = end + has_space self.from_array(msg["array_head"][2:], attrs[:, 2:]) @@ -1433,7 +1438,7 @@ cdef class Doc: attributes are inherited from the syntactic root of the span. RETURNS (Token): The first newly merged token. """ - cdef unicode tag, lemma, ent_type + cdef str tag, lemma, ent_type attr_len = len(attributes) span_len = len(spans) if not attr_len == span_len: @@ -1705,17 +1710,18 @@ cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end): def pickle_doc(doc): bytes_data = doc.to_bytes(exclude=["vocab", "user_data", "user_hooks"]) hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks, - doc.user_token_hooks) + doc.user_token_hooks, doc._context) return (unpickle_doc, (doc.vocab, srsly.pickle_dumps(hooks_and_data), bytes_data)) def unpickle_doc(vocab, hooks_and_data, bytes_data): - user_data, doc_hooks, span_hooks, token_hooks = srsly.pickle_loads(hooks_and_data) + user_data, doc_hooks, span_hooks, token_hooks, _context = srsly.pickle_loads(hooks_and_data) doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data, exclude=["user_data"]) doc.user_hooks.update(doc_hooks) doc.user_span_hooks.update(span_hooks) doc.user_token_hooks.update(token_hooks) + doc._context = _context return doc diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index c9c807d7d..f7ddc5136 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -1,5 +1,3 @@ -from __future__ import unicode_literals - cimport numpy as np from libc.math cimport sqrt @@ -366,8 +364,10 @@ cdef class Span: return 0.0 vector = self.vector xp = get_array_module(vector) - return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) - + result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) + # ensure we get a scalar back (numpy does this automatically but cupy doesn't) + return result.item() + cpdef np.ndarray to_array(self, object py_attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy `ndarray` of shape `(N, M)`, where `N` is the length of the document. @@ -406,6 +406,10 @@ cdef class Span: """ if "sent" in self.doc.user_span_hooks: return self.doc.user_span_hooks["sent"](self) + elif "sents" in self.doc.user_hooks: + for sentence in self.doc.user_hooks["sents"](self.doc): + if sentence.start <= self.start < sentence.end: + return sentence # Use `sent_start` token attribute to find sentence boundaries cdef int n = 0 if self.doc.has_annotation("SENT_START"): @@ -424,6 +428,47 @@ cdef class Span: else: raise ValueError(Errors.E030) + @property + def sents(self): + """Obtain the sentences that contain this span. If the given span + crosses sentence boundaries, return all sentences it is a part of. + + RETURNS (Iterable[Span]): All sentences that the span is a part of. + + DOCS: https://spacy.io/api/span#sents + """ + cdef int start + cdef int i + + if "sents" in self.doc.user_span_hooks: + yield from self.doc.user_span_hooks["sents"](self) + elif "sents" in self.doc.user_hooks: + for sentence in self.doc.user_hooks["sents"](self.doc): + if sentence.end > self.start: + if sentence.start < self.end or sentence.start == self.start == self.end: + yield sentence + else: + break + else: + if not self.doc.has_annotation("SENT_START"): + raise ValueError(Errors.E030) + # Use `sent_start` token attribute to find sentence boundaries + # Find start of the 1st sentence of the Span + start = self.start + while self.doc.c[start].sent_start != 1 and start > 0: + start -= 1 + + # Now, find all the sentences in the span + for i in range(start + 1, self.doc.length): + if self.doc.c[i].sent_start == 1: + yield Span(self.doc, start, i) + start = i + if start >= self.end: + break + if start < self.end: + yield Span(self.doc, start, self.end) + + @property def ents(self): """The named entities in the span. Returns a tuple of named entity @@ -454,7 +499,7 @@ cdef class Span: """ if "has_vector" in self.doc.user_span_hooks: return self.doc.user_span_hooks["has_vector"](self) - elif self.vocab.vectors.data.size > 0: + elif self.vocab.vectors.size > 0: return any(token.has_vector for token in self) elif self.doc.tensor.size > 0: return True @@ -754,7 +799,7 @@ cdef class Span: def __get__(self): return self.root.ent_id_ - def __set__(self, unicode key): + def __set__(self, str key): raise NotImplementedError(Errors.E200.format(attr="ent_id_")) @property @@ -775,7 +820,7 @@ cdef class Span: def __get__(self): return self.doc.vocab.strings[self.label] - def __set__(self, unicode label_): + def __set__(self, str label_): self.label = self.doc.vocab.strings.add(label_) property kb_id_: @@ -783,7 +828,7 @@ cdef class Span: def __get__(self): return self.doc.vocab.strings[self.kb_id] - def __set__(self, unicode kb_id_): + def __set__(self, str kb_id_): self.kb_id = self.doc.vocab.strings.add(kb_id_) diff --git a/spacy/tokens/span_group.pyx b/spacy/tokens/span_group.pyx index eb9221584..6cfa75237 100644 --- a/spacy/tokens/span_group.pyx +++ b/spacy/tokens/span_group.pyx @@ -63,7 +63,7 @@ cdef class SpanGroup: doc = self._doc_ref() if doc is None: # referent has been garbage collected - raise RuntimeError(Errors.E866) + raise RuntimeError(Errors.E865) return doc @property diff --git a/spacy/tokens/token.pyx b/spacy/tokens/token.pyx index c5baae510..b515ab67b 100644 --- a/spacy/tokens/token.pyx +++ b/spacy/tokens/token.pyx @@ -20,6 +20,7 @@ from .doc cimport set_children_from_heads from .. import parts_of_speech from ..errors import Errors, Warnings +from ..attrs import IOB_STRINGS from .underscore import Underscore, get_ext_args @@ -209,8 +210,10 @@ cdef class Token: return 0.0 vector = self.vector xp = get_array_module(vector) - return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) - + result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) + # ensure we get a scalar back (numpy does this automatically but cupy doesn't) + return result.item() + def has_morph(self): """Check whether the token has annotated morph information. Return False when the morph annotation is unset/missing. @@ -267,7 +270,7 @@ cdef class Token: """RETURNS (str): The text content of the span (with trailing whitespace). """ - cdef unicode orth = self.vocab.strings[self.c.lex.orth] + cdef str orth = self.vocab.strings[self.c.lex.orth] if self.c.spacy: return orth + " " else: @@ -743,7 +746,7 @@ cdef class Token: @classmethod def iob_strings(cls): - return ("", "I", "O", "B") + return IOB_STRINGS @property def ent_iob_(self): @@ -820,7 +823,7 @@ cdef class Token: def __get__(self): return self.vocab.strings[self.norm] - def __set__(self, unicode norm_): + def __set__(self, str norm_): self.c.norm = self.vocab.strings.add(norm_) @property @@ -858,7 +861,7 @@ cdef class Token: def __get__(self): return self.vocab.strings[self.c.lemma] - def __set__(self, unicode lemma_): + def __set__(self, str lemma_): self.c.lemma = self.vocab.strings.add(lemma_) property pos_: @@ -892,7 +895,7 @@ cdef class Token: def __get__(self): return self.vocab.strings[self.c.dep] - def __set__(self, unicode label): + def __set__(self, str label): self.c.dep = self.vocab.strings.add(label) @property diff --git a/spacy/training/__init__.py b/spacy/training/__init__.py index 99fe7c19f..a4feb01f4 100644 --- a/spacy/training/__init__.py +++ b/spacy/training/__init__.py @@ -7,5 +7,5 @@ from .iob_utils import offsets_to_biluo_tags, biluo_tags_to_offsets # noqa: F40 from .iob_utils import biluo_tags_to_spans, tags_to_entities # noqa: F401 from .gold_io import docs_to_json, read_json_file # noqa: F401 from .batchers import minibatch_by_padded_size, minibatch_by_words # noqa: F401 -from .loggers import console_logger, wandb_logger_v3 as wandb_logger # noqa: F401 +from .loggers import console_logger # noqa: F401 from .callbacks import create_copy_from_base_model # noqa: F401 diff --git a/spacy/training/corpus.py b/spacy/training/corpus.py index b30d918fd..b9f929fcd 100644 --- a/spacy/training/corpus.py +++ b/spacy/training/corpus.py @@ -41,7 +41,10 @@ def create_docbin_reader( @util.registry.readers("spacy.JsonlCorpus.v1") def create_jsonl_reader( - path: Union[str, Path], min_length: int = 0, max_length: int = 0, limit: int = 0 + path: Optional[Union[str, Path]], + min_length: int = 0, + max_length: int = 0, + limit: int = 0, ) -> Callable[["Language"], Iterable[Example]]: return JsonlCorpus(path, min_length=min_length, max_length=max_length, limit=limit) @@ -221,7 +224,7 @@ class JsonlCorpus: def __init__( self, - path: Union[str, Path], + path: Optional[Union[str, Path]], *, limit: int = 0, min_length: int = 0, diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index 96abcc7cd..b59288e38 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -13,7 +13,7 @@ import warnings from .pretrain import get_tok2vec_ref from ..lookups import Lookups -from ..vectors import Vectors +from ..vectors import Vectors, Mode as VectorsMode from ..errors import Errors, Warnings from ..schemas import ConfigSchemaTraining from ..util import registry, load_model_from_config, resolve_dot_names, logger @@ -132,7 +132,7 @@ def init_vocab( logger.info(f"Added vectors: {vectors}") # warn if source model vectors are not identical sourced_vectors_hashes = nlp.meta.pop("_sourced_vectors_hashes", {}) - vectors_hash = hash(nlp.vocab.vectors.to_bytes()) + vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"])) for sourced_component, sourced_vectors_hash in sourced_vectors_hashes.items(): if vectors_hash != sourced_vectors_hash: warnings.warn(Warnings.W113.format(name=sourced_component)) @@ -160,7 +160,13 @@ def load_vectors_into_model( err = ConfigValidationError.from_error(e, title=title, desc=desc) raise err from None - if len(vectors_nlp.vocab.vectors.keys()) == 0: + if ( + len(vectors_nlp.vocab.vectors.keys()) == 0 + and vectors_nlp.vocab.vectors.mode != VectorsMode.floret + ) or ( + vectors_nlp.vocab.vectors.shape[0] == 0 + and vectors_nlp.vocab.vectors.mode == VectorsMode.floret + ): logger.warning(Warnings.W112.format(name=name)) for lex in nlp.vocab: @@ -197,41 +203,80 @@ def convert_vectors( truncate: int, prune: int, name: Optional[str] = None, + mode: str = VectorsMode.default, ) -> None: vectors_loc = ensure_path(vectors_loc) if vectors_loc and vectors_loc.parts[-1].endswith(".npz"): - nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb"))) + nlp.vocab.vectors = Vectors( + strings=nlp.vocab.strings, data=numpy.load(vectors_loc.open("rb")) + ) for lex in nlp.vocab: if lex.rank and lex.rank != OOV_RANK: nlp.vocab.vectors.add(lex.orth, row=lex.rank) # type: ignore[attr-defined] else: if vectors_loc: logger.info(f"Reading vectors from {vectors_loc}") - vectors_data, vector_keys = read_vectors(vectors_loc, truncate) + vectors_data, vector_keys, floret_settings = read_vectors( + vectors_loc, + truncate, + mode=mode, + ) logger.info(f"Loaded vectors from {vectors_loc}") else: vectors_data, vector_keys = (None, None) - if vector_keys is not None: + if vector_keys is not None and mode != VectorsMode.floret: for word in vector_keys: if word not in nlp.vocab: nlp.vocab[word] if vectors_data is not None: - nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys) + if mode == VectorsMode.floret: + nlp.vocab.vectors = Vectors( + strings=nlp.vocab.strings, + data=vectors_data, + **floret_settings, + ) + else: + nlp.vocab.vectors = Vectors( + strings=nlp.vocab.strings, data=vectors_data, keys=vector_keys + ) if name is None: # TODO: Is this correct? Does this matter? nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors" else: nlp.vocab.vectors.name = name nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name - if prune >= 1: + if prune >= 1 and mode != VectorsMode.floret: nlp.vocab.prune_vectors(prune) -def read_vectors(vectors_loc: Path, truncate_vectors: int): +def read_vectors( + vectors_loc: Path, truncate_vectors: int, *, mode: str = VectorsMode.default +): f = ensure_shape(vectors_loc) - shape = tuple(int(size) for size in next(f).split()) - if truncate_vectors >= 1: - shape = (truncate_vectors, shape[1]) + header_parts = next(f).split() + shape = tuple(int(size) for size in header_parts[:2]) + floret_settings = {} + if mode == VectorsMode.floret: + if len(header_parts) != 8: + raise ValueError( + "Invalid header for floret vectors. " + "Expected: bucket dim minn maxn hash_count hash_seed BOW EOW" + ) + floret_settings = { + "mode": "floret", + "minn": int(header_parts[2]), + "maxn": int(header_parts[3]), + "hash_count": int(header_parts[4]), + "hash_seed": int(header_parts[5]), + "bow": header_parts[6], + "eow": header_parts[7], + } + if truncate_vectors >= 1: + raise ValueError(Errors.E860) + else: + assert len(header_parts) == 2 + if truncate_vectors >= 1: + shape = (truncate_vectors, shape[1]) vectors_data = numpy.zeros(shape=shape, dtype="f") vectors_keys = [] for i, line in enumerate(tqdm.tqdm(f)): @@ -244,7 +289,7 @@ def read_vectors(vectors_loc: Path, truncate_vectors: int): vectors_keys.append(word) if i == truncate_vectors - 1: break - return vectors_data, vectors_keys + return vectors_data, vectors_keys, floret_settings def open_file(loc: Union[str, Path]) -> IO: @@ -271,7 +316,7 @@ def ensure_shape(vectors_loc): lines = open_file(vectors_loc) first_line = next(lines) try: - shape = tuple(int(size) for size in first_line.split()) + shape = tuple(int(size) for size in first_line.split()[:2]) except ValueError: shape = None if shape is not None: diff --git a/spacy/training/loggers.py b/spacy/training/loggers.py index 602e0ff3e..edd0f1959 100644 --- a/spacy/training/loggers.py +++ b/spacy/training/loggers.py @@ -4,7 +4,6 @@ import tqdm import sys from ..util import registry -from .. import util from ..errors import Errors if TYPE_CHECKING: @@ -99,167 +98,3 @@ def console_logger(progress_bar: bool = False): return log_step, finalize return setup_printer - - -@registry.loggers("spacy.WandbLogger.v2") -def wandb_logger_v2( - project_name: str, - remove_config_values: List[str] = [], - model_log_interval: Optional[int] = None, - log_dataset_dir: Optional[str] = None, -): - try: - import wandb - - # test that these are available - from wandb import init, log, join # noqa: F401 - except ImportError: - raise ImportError(Errors.E880) - - console = console_logger(progress_bar=False) - - def setup_logger( - nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr - ) -> Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]: - config = nlp.config.interpolate() - config_dot = util.dict_to_dot(config) - for field in remove_config_values: - del config_dot[field] - config = util.dot_to_dict(config_dot) - run = wandb.init(project=project_name, config=config, reinit=True) - console_log_step, console_finalize = console(nlp, stdout, stderr) - - def log_dir_artifact( - path: str, - name: str, - type: str, - metadata: Optional[Dict[str, Any]] = {}, - aliases: Optional[List[str]] = [], - ): - dataset_artifact = wandb.Artifact(name, type=type, metadata=metadata) - dataset_artifact.add_dir(path, name=name) - wandb.log_artifact(dataset_artifact, aliases=aliases) - - if log_dataset_dir: - log_dir_artifact(path=log_dataset_dir, name="dataset", type="dataset") - - def log_step(info: Optional[Dict[str, Any]]): - console_log_step(info) - if info is not None: - score = info["score"] - other_scores = info["other_scores"] - losses = info["losses"] - wandb.log({"score": score}) - if losses: - wandb.log({f"loss_{k}": v for k, v in losses.items()}) - if isinstance(other_scores, dict): - wandb.log(other_scores) - if model_log_interval and info.get("output_path"): - if info["step"] % model_log_interval == 0 and info["step"] != 0: - log_dir_artifact( - path=info["output_path"], - name="pipeline_" + run.id, - type="checkpoint", - metadata=info, - aliases=[ - f"epoch {info['epoch']} step {info['step']}", - "latest", - "best" - if info["score"] == max(info["checkpoints"])[0] - else "", - ], - ) - - def finalize() -> None: - console_finalize() - wandb.join() - - return log_step, finalize - - return setup_logger - - -@registry.loggers("spacy.WandbLogger.v3") -def wandb_logger_v3( - project_name: str, - remove_config_values: List[str] = [], - model_log_interval: Optional[int] = None, - log_dataset_dir: Optional[str] = None, - entity: Optional[str] = None, - run_name: Optional[str] = None, -): - try: - import wandb - - # test that these are available - from wandb import init, log, join # noqa: F401 - except ImportError: - raise ImportError(Errors.E880) - - console = console_logger(progress_bar=False) - - def setup_logger( - nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr - ) -> Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]: - config = nlp.config.interpolate() - config_dot = util.dict_to_dot(config) - for field in remove_config_values: - del config_dot[field] - config = util.dot_to_dict(config_dot) - run = wandb.init( - project=project_name, config=config, entity=entity, reinit=True - ) - - if run_name: - wandb.run.name = run_name - - console_log_step, console_finalize = console(nlp, stdout, stderr) - - def log_dir_artifact( - path: str, - name: str, - type: str, - metadata: Optional[Dict[str, Any]] = {}, - aliases: Optional[List[str]] = [], - ): - dataset_artifact = wandb.Artifact(name, type=type, metadata=metadata) - dataset_artifact.add_dir(path, name=name) - wandb.log_artifact(dataset_artifact, aliases=aliases) - - if log_dataset_dir: - log_dir_artifact(path=log_dataset_dir, name="dataset", type="dataset") - - def log_step(info: Optional[Dict[str, Any]]): - console_log_step(info) - if info is not None: - score = info["score"] - other_scores = info["other_scores"] - losses = info["losses"] - wandb.log({"score": score}) - if losses: - wandb.log({f"loss_{k}": v for k, v in losses.items()}) - if isinstance(other_scores, dict): - wandb.log(other_scores) - if model_log_interval and info.get("output_path"): - if info["step"] % model_log_interval == 0 and info["step"] != 0: - log_dir_artifact( - path=info["output_path"], - name="pipeline_" + run.id, - type="checkpoint", - metadata=info, - aliases=[ - f"epoch {info['epoch']} step {info['step']}", - "latest", - "best" - if info["score"] == max(info["checkpoints"])[0] - else "", - ], - ) - - def finalize() -> None: - console_finalize() - wandb.join() - - return log_step, finalize - - return setup_logger diff --git a/spacy/training/pretrain.py b/spacy/training/pretrain.py index 2328ebbc7..52af84aaf 100644 --- a/spacy/training/pretrain.py +++ b/spacy/training/pretrain.py @@ -31,6 +31,8 @@ def pretrain( allocator = config["training"]["gpu_allocator"] if use_gpu >= 0 and allocator: set_gpu_allocator(allocator) + # ignore in pretraining because we're creating it now + config["initialize"]["init_tok2vec"] = None nlp = load_model_from_config(config) _config = nlp.config.interpolate() P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain) @@ -49,7 +51,12 @@ def pretrain( objective = model.attrs["loss"] # TODO: move this to logger function? tracker = ProgressTracker(frequency=10000) - msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}") + if P["n_save_epoch"]: + msg.divider( + f"Pre-training tok2vec layer - starting at epoch {epoch_resume} - saving every {P['n_save_epoch']} epoch" + ) + else: + msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}") row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")} msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings) @@ -78,7 +85,12 @@ def pretrain( msg.row(progress, **row_settings) if P["n_save_every"] and (batch_id % P["n_save_every"] == 0): _save_model(epoch, is_temp=True) - _save_model(epoch) + + if P["n_save_epoch"]: + if epoch % P["n_save_epoch"] == 0 or epoch == P["max_epochs"] - 1: + _save_model(epoch) + else: + _save_model(epoch) tracker.epoch_loss = 0.0 diff --git a/spacy/util.py b/spacy/util.py index cf62a4ecd..14714143c 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -17,6 +17,7 @@ import numpy import srsly import catalogue from catalogue import RegistryError, Registry +import langcodes import sys import warnings from packaging.specifiers import SpecifierSet, InvalidSpecifier @@ -29,6 +30,7 @@ import tempfile import shutil import shlex import inspect +import pkgutil import logging try: @@ -61,7 +63,7 @@ OOV_RANK = numpy.iinfo(numpy.uint64).max DEFAULT_OOV_PROB = -20 LEXEME_NORM_LANGS = ["cs", "da", "de", "el", "en", "id", "lb", "mk", "pt", "ru", "sr", "ta", "th"] -# Default order of sections in the config.cfg. Not all sections needs to exist, +# Default order of sections in the config file. Not all sections needs to exist, # and additional sections are added at the end, in alphabetical order. CONFIG_SECTION_ORDER = ["paths", "variables", "system", "nlp", "components", "corpora", "training", "pretraining", "initialize"] # fmt: on @@ -94,6 +96,7 @@ class registry(thinc.registry): readers = catalogue.create("spacy", "readers", entry_points=True) augmenters = catalogue.create("spacy", "augmenters", entry_points=True) loggers = catalogue.create("spacy", "loggers", entry_points=True) + scorers = catalogue.create("spacy", "scorers", entry_points=True) # These are factories registered via third-party packages and the # spacy_factories entry point. This registry only exists so we can easily # load them via the entry points. The "true" factories are added via the @@ -257,20 +260,88 @@ def lang_class_is_loaded(lang: str) -> bool: return lang in registry.languages +def find_matching_language(lang: str) -> Optional[str]: + """ + Given an IETF language code, find a supported spaCy language that is a + close match for it (according to Unicode CLDR language-matching rules). + This allows for language aliases, ISO 639-2 codes, more detailed language + tags, and close matches. + + Returns the language code if a matching language is available, or None + if there is no matching language. + + >>> find_matching_language('en') + 'en' + >>> find_matching_language('pt-BR') # Brazilian Portuguese + 'pt' + >>> find_matching_language('fra') # an ISO 639-2 code for French + 'fr' + >>> find_matching_language('iw') # obsolete alias for Hebrew + 'he' + >>> find_matching_language('no') # Norwegian + 'nb' + >>> find_matching_language('mo') # old code for ro-MD + 'ro' + >>> find_matching_language('zh-Hans') # Simplified Chinese + 'zh' + >>> find_matching_language('zxx') + None + """ + import spacy.lang # noqa: F401 + + if lang == "xx": + return "xx" + + # Find out which language modules we have + possible_languages = [] + for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore + code = modinfo.name + if code == "xx": + # Temporarily make 'xx' into a valid language code + possible_languages.append("mul") + elif langcodes.tag_is_valid(code): + possible_languages.append(code) + + # Distances from 1-9 allow near misses like Bosnian -> Croatian and + # Norwegian -> Norwegian Bokmål. A distance of 10 would include several + # more possibilities, like variants of Chinese like 'wuu', but text that + # is labeled that way is probably trying to be distinct from 'zh' and + # shouldn't automatically match. + match = langcodes.closest_supported_match(lang, possible_languages, max_distance=9) + if match == "mul": + # Convert 'mul' back to spaCy's 'xx' + return "xx" + else: + return match + + def get_lang_class(lang: str) -> Type["Language"]: """Import and load a Language class. - lang (str): Two-letter language code, e.g. 'en'. + lang (str): IETF language code, such as 'en'. RETURNS (Language): Language class. """ # Check if language is registered / entry point is available if lang in registry.languages: return registry.languages.get(lang) else: + # Find the language in the spacy.lang subpackage try: module = importlib.import_module(f".lang.{lang}", "spacy") except ImportError as err: - raise ImportError(Errors.E048.format(lang=lang, err=err)) from err + # Find a matching language. For example, if the language 'no' is + # requested, we can use language-matching to load `spacy.lang.nb`. + try: + match = find_matching_language(lang) + except langcodes.tag_parser.LanguageTagError: + # proceed to raising an import error + match = None + + if match: + lang = match + module = importlib.import_module(f".lang.{lang}", "spacy") + else: + raise ImportError(Errors.E048.format(lang=lang, err=err)) from err set_lang_class(lang, getattr(module, module.__all__[0])) # type: ignore[attr-defined] return registry.languages.get(lang) @@ -394,7 +465,7 @@ def load_model_from_path( """Load a model from a data directory path. Creates Language class with pipeline from config.cfg and then calls from_disk() with path. - model_path (Path): Mmodel path. + model_path (Path): Model path. meta (Dict[str, Any]): Optional model meta. vocab (Vocab / True): Optional vocab to pass in on initialization. If True, a new Vocab object will be created. @@ -571,8 +642,8 @@ def load_config( sys.stdin.read(), overrides=overrides, interpolate=interpolate ) else: - if not config_path or not config_path.exists() or not config_path.is_file(): - raise IOError(Errors.E053.format(path=config_path, name="config.cfg")) + if not config_path or not config_path.is_file(): + raise IOError(Errors.E053.format(path=config_path, name="config file")) return config.from_disk( config_path, overrides=overrides, interpolate=interpolate ) diff --git a/spacy/vectors.pyx b/spacy/vectors.pyx index 7cb3322c2..bc4863703 100644 --- a/spacy/vectors.pyx +++ b/spacy/vectors.pyx @@ -1,16 +1,23 @@ cimport numpy as np +from libc.stdint cimport uint32_t, uint64_t from cython.operator cimport dereference as deref from libcpp.set cimport set as cppset +from murmurhash.mrmr cimport hash128_x64 import functools import numpy +from typing import cast +import warnings +from enum import Enum import srsly -from thinc.api import get_array_module, get_current_ops +from thinc.api import Ops, get_array_module, get_current_ops +from thinc.backends import get_array_ops +from thinc.types import Floats2d from .strings cimport StringStore from .strings import get_string_id -from .errors import Errors +from .errors import Errors, Warnings from . import util @@ -18,18 +25,13 @@ def unpickle_vectors(bytes_data): return Vectors().from_bytes(bytes_data) -class GlobalRegistry: - """Global store of vectors, to avoid repeatedly loading the data.""" - data = {} +class Mode(str, Enum): + default = "default" + floret = "floret" @classmethod - def register(cls, name, data): - cls.data[name] = data - return functools.partial(cls.get, name) - - @classmethod - def get(cls, name): - return cls.data[name] + def values(cls): + return list(cls.__members__.keys()) cdef class Vectors: @@ -37,45 +39,93 @@ cdef class Vectors: Vectors data is kept in the vectors.data attribute, which should be an instance of numpy.ndarray (for CPU vectors) or cupy.ndarray - (for GPU vectors). `vectors.key2row` is a dictionary mapping word hashes to - rows in the vectors.data table. + (for GPU vectors). - Multiple keys can be mapped to the same vector, and not all of the rows in - the table need to be assigned - so len(list(vectors.keys())) may be - greater or smaller than vectors.shape[0]. + In the default mode, `vectors.key2row` is a dictionary mapping word hashes + to rows in the vectors.data table. Multiple keys can be mapped to the same + vector, and not all of the rows in the table need to be assigned - so + len(list(vectors.keys())) may be greater or smaller than vectors.shape[0]. + + In floret mode, the floret settings (minn, maxn, etc.) are used to + calculate the vector from the rows corresponding to the key's ngrams. DOCS: https://spacy.io/api/vectors """ + cdef public object strings cdef public object name + cdef readonly object mode cdef public object data cdef public object key2row cdef cppset[int] _unset + cdef readonly uint32_t minn + cdef readonly uint32_t maxn + cdef readonly uint32_t hash_count + cdef readonly uint32_t hash_seed + cdef readonly unicode bow + cdef readonly unicode eow - def __init__(self, *, shape=None, data=None, keys=None, name=None): + def __init__(self, *, strings=None, shape=None, data=None, keys=None, name=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">"): """Create a new vector store. + strings (StringStore): The string store. shape (tuple): Size of the table, as (# entries, # columns) data (numpy.ndarray or cupy.ndarray): The vector data. keys (iterable): A sequence of keys, aligned with the data. name (str): A name to identify the vectors table. + mode (str): Vectors mode: "default" or "floret" (default: "default"). + minn (int): The floret char ngram minn (default: 0). + maxn (int): The floret char ngram maxn (default: 0). + hash_count (int): The floret hash count (1-4, default: 1). + hash_seed (int): The floret hash seed (default: 0). + bow (str): The floret BOW string (default: "<"). + eow (str): The floret EOW string (default: ">"). DOCS: https://spacy.io/api/vectors#init """ + self.strings = strings + if self.strings is None: + self.strings = StringStore() self.name = name - if data is None: - if shape is None: - shape = (0,0) - ops = get_current_ops() - data = ops.xp.zeros(shape, dtype="f") - self.data = data + if mode not in Mode.values(): + raise ValueError( + Errors.E202.format( + name="vectors", + mode=mode, + modes=str(Mode.values()) + ) + ) + self.mode = Mode(mode).value self.key2row = {} - if self.data is not None: - self._unset = cppset[int]({i for i in range(self.data.shape[0])}) - else: + self.minn = minn + self.maxn = maxn + self.hash_count = hash_count + self.hash_seed = hash_seed + self.bow = bow + self.eow = eow + if self.mode == Mode.default: + if data is None: + if shape is None: + shape = (0,0) + ops = get_current_ops() + data = ops.xp.zeros(shape, dtype="f") + self._unset = cppset[int]({i for i in range(data.shape[0])}) + else: + self._unset = cppset[int]() + self.data = data + if keys is not None: + for i, key in enumerate(keys): + self.add(key, row=i) + elif self.mode == Mode.floret: + if maxn < minn: + raise ValueError(Errors.E863) + if hash_count < 1 or hash_count >= 5: + raise ValueError(Errors.E862) + if data is None: + raise ValueError(Errors.E864) + if keys is not None: + raise ValueError(Errors.E861) + self.data = data self._unset = cppset[int]() - if keys is not None: - for i, key in enumerate(keys): - self.add(key, row=i) @property def shape(self): @@ -96,7 +146,7 @@ cdef class Vectors: DOCS: https://spacy.io/api/vectors#size """ - return self.data.shape[0] * self.data.shape[1] + return self.data.size @property def is_full(self): @@ -106,6 +156,8 @@ cdef class Vectors: DOCS: https://spacy.io/api/vectors#is_full """ + if self.mode == Mode.floret: + return True return self._unset.size() == 0 @property @@ -113,7 +165,8 @@ cdef class Vectors: """Get the number of keys in the table. Note that this is the number of all keys, not just unique vectors. - RETURNS (int): The number of keys in the table. + RETURNS (int): The number of keys in the table for default vectors. + For floret vectors, return -1. DOCS: https://spacy.io/api/vectors#n_keys """ @@ -125,25 +178,33 @@ cdef class Vectors: def __getitem__(self, key): """Get a vector by key. If the key is not found, a KeyError is raised. - key (int): The key to get the vector for. + key (str/int): The key to get the vector for. RETURNS (ndarray): The vector for the key. DOCS: https://spacy.io/api/vectors#getitem """ - i = self.key2row[key] - if i is None: - raise KeyError(Errors.E058.format(key=key)) - else: - return self.data[i] + if self.mode == Mode.default: + i = self.key2row.get(get_string_id(key), None) + if i is None: + raise KeyError(Errors.E058.format(key=key)) + else: + return self.data[i] + elif self.mode == Mode.floret: + return self.get_batch([key])[0] + raise KeyError(Errors.E058.format(key=key)) def __setitem__(self, key, vector): """Set a vector for the given key. - key (int): The key to set the vector for. + key (str/int): The key to set the vector for. vector (ndarray): The vector to set. DOCS: https://spacy.io/api/vectors#setitem """ + if self.mode == Mode.floret: + warnings.warn(Warnings.W115.format(method="Vectors.__setitem__")) + return + key = get_string_id(key) i = self.key2row[key] self.data[i] = vector if self._unset.count(i): @@ -175,7 +236,10 @@ cdef class Vectors: DOCS: https://spacy.io/api/vectors#contains """ - return key in self.key2row + if self.mode == Mode.floret: + return True + else: + return key in self.key2row def resize(self, shape, inplace=False): """Resize the underlying vectors array. If inplace=True, the memory @@ -192,6 +256,9 @@ cdef class Vectors: DOCS: https://spacy.io/api/vectors#resize """ + if self.mode == Mode.floret: + warnings.warn(Warnings.W115.format(method="Vectors.resize")) + return -1 xp = get_array_module(self.data) if inplace: if shape[1] != self.data.shape[1]: @@ -207,7 +274,7 @@ cdef class Vectors: self.data = resized_array self._sync_unset() removed_items = [] - for key, row in list(self.key2row.items()): + for key, row in self.key2row.copy().items(): if row >= shape[0]: self.key2row.pop(key) removed_items.append((key, row)) @@ -244,16 +311,23 @@ cdef class Vectors: def find(self, *, key=None, keys=None, row=None, rows=None): """Look up one or more keys by row, or vice versa. - key (str / int): Find the row that the given key points to. + key (Union[int, str]): Find the row that the given key points to. Returns int, -1 if missing. - keys (iterable): Find rows that the keys point to. + keys (Iterable[Union[int, str]]): Find rows that the keys point to. Returns ndarray. row (int): Find the first key that points to the row. Returns int. - rows (iterable): Find the keys that point to the rows. + rows (Iterable[int]): Find the keys that point to the rows. Returns ndarray. RETURNS: The requested key, keys, row or rows. """ + if self.mode == Mode.floret: + raise ValueError( + Errors.E858.format( + mode=self.mode, + alternative="Use Vectors[key] instead.", + ) + ) if sum(arg is None for arg in (key, keys, row, rows)) != 3: bad_kwargs = {"key": key, "keys": keys, "row": row, "rows": rows} raise ValueError(Errors.E059.format(kwargs=bad_kwargs)) @@ -273,6 +347,73 @@ cdef class Vectors: results = [row2key[row] for row in rows] return xp.asarray(results, dtype="uint64") + def _get_ngram_hashes(self, unicode s): + """Calculate up to 4 32-bit hash values with MurmurHash3_x64_128 using + the floret hash settings. + key (str): The string key. + RETURNS: A list of the integer hashes. + """ + # MurmurHash3_x64_128 returns an array of 2 uint64_t values. + cdef uint64_t[2] out + chars = s.encode("utf8") + cdef char* utf8_string = chars + hash128_x64(utf8_string, len(chars), self.hash_seed, &out) + rows = [ + out[0] & 0xffffffffu, + out[0] >> 32, + out[1] & 0xffffffffu, + out[1] >> 32, + ] + return rows[:min(self.hash_count, 4)] + + def _get_ngrams(self, unicode key): + """Get all padded ngram strings using the ngram settings. + key (str): The string key. + RETURNS: A list of the ngram strings for the padded key. + """ + key = self.bow + key + self.eow + ngrams = [key] + [ + key[start:start+ngram_size] + for ngram_size in range(self.minn, self.maxn + 1) + for start in range(0, len(key) - ngram_size + 1) + ] + return ngrams + + def get_batch(self, keys): + """Get the vectors for the provided keys efficiently as a batch. + keys (Iterable[Union[int, str]]): The keys. + RETURNS: The requested vectors from the vector table. + """ + ops = get_array_ops(self.data) + if self.mode == Mode.default: + rows = self.find(keys=keys) + vecs = self.data[rows] + elif self.mode == Mode.floret: + keys = [self.strings.as_string(key) for key in keys] + if sum(len(key) for key in keys) == 0: + return ops.xp.zeros((len(keys), self.data.shape[1])) + unique_keys = tuple(set(keys)) + row_index = {key: i for i, key in enumerate(unique_keys)} + rows = [row_index[key] for key in keys] + indices = [] + lengths = [] + for key in unique_keys: + if key == "": + ngram_rows = [] + else: + ngram_rows = [ + h % self.data.shape[0] + for ngram in self._get_ngrams(key) + for h in self._get_ngram_hashes(ngram) + ] + indices.extend(ngram_rows) + lengths.append(len(ngram_rows)) + indices = ops.asarray(indices, dtype="int32") + lengths = ops.asarray(lengths, dtype="int32") + vecs = ops.reduce_mean(cast(Floats2d, self.data[indices]), lengths) + vecs = vecs[rows] + return ops.as_contig(vecs) + def add(self, key, *, vector=None, row=None): """Add a key to the table. Keys can be mapped to an existing vector by setting `row`, or a new vector can be added. @@ -284,6 +425,9 @@ cdef class Vectors: DOCS: https://spacy.io/api/vectors#add """ + if self.mode == Mode.floret: + warnings.warn(Warnings.W115.format(method="Vectors.add")) + return -1 # use int for all keys and rows in key2row for more efficient access # and serialization key = int(get_string_id(key)) @@ -324,6 +468,11 @@ cdef class Vectors: RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)` tuple. """ + if self.mode == Mode.floret: + raise ValueError(Errors.E858.format( + mode=self.mode, + alternative="", + )) xp = get_array_module(self.data) filled = sorted(list({row for row in self.key2row.values()})) if len(filled) < n: @@ -368,7 +517,35 @@ cdef class Vectors: for i in range(len(queries)) ], dtype="uint64") return (keys, best_rows, scores) - def to_disk(self, path, **kwargs): + def to_ops(self, ops: Ops): + self.data = ops.asarray(self.data) + + def _get_cfg(self): + if self.mode == Mode.default: + return { + "mode": Mode(self.mode).value, + } + elif self.mode == Mode.floret: + return { + "mode": Mode(self.mode).value, + "minn": self.minn, + "maxn": self.maxn, + "hash_count": self.hash_count, + "hash_seed": self.hash_seed, + "bow": self.bow, + "eow": self.eow, + } + + def _set_cfg(self, cfg): + self.mode = Mode(cfg.get("mode", Mode.default)).value + self.minn = cfg.get("minn", 0) + self.maxn = cfg.get("maxn", 0) + self.hash_count = cfg.get("hash_count", 0) + self.hash_seed = cfg.get("hash_seed", 0) + self.bow = cfg.get("bow", "<") + self.eow = cfg.get("eow", ">") + + def to_disk(self, path, *, exclude=tuple()): """Save the current state to a directory. path (str / Path): A path to a directory, which will be created if @@ -390,12 +567,14 @@ cdef class Vectors: save_array(self.data, _file) serializers = { + "strings": lambda p: self.strings.to_disk(p.with_suffix(".json")), "vectors": lambda p: save_vectors(p), - "key2row": lambda p: srsly.write_msgpack(p, self.key2row) + "key2row": lambda p: srsly.write_msgpack(p, self.key2row), + "vectors.cfg": lambda p: srsly.write_json(p, self._get_cfg()), } - return util.to_disk(path, serializers, []) + return util.to_disk(path, serializers, exclude) - def from_disk(self, path, **kwargs): + def from_disk(self, path, *, exclude=tuple()): """Loads state from a directory. Modifies the object in place and returns it. @@ -422,17 +601,23 @@ cdef class Vectors: if path.exists(): self.data = ops.xp.load(str(path)) + def load_settings(path): + if path.exists(): + self._set_cfg(srsly.read_json(path)) + serializers = { + "strings": lambda p: self.strings.from_disk(p.with_suffix(".json")), "vectors": load_vectors, "keys": load_keys, "key2row": load_key2row, + "vectors.cfg": load_settings, } - util.from_disk(path, serializers, []) + util.from_disk(path, serializers, exclude) self._sync_unset() return self - def to_bytes(self, **kwargs): + def to_bytes(self, *, exclude=tuple()): """Serialize the current state to a binary string. exclude (list): String names of serialization fields to exclude. @@ -447,12 +632,14 @@ cdef class Vectors: return srsly.msgpack_dumps(self.data) serializers = { + "strings": lambda: self.strings.to_bytes(), "key2row": lambda: srsly.msgpack_dumps(self.key2row), - "vectors": serialize_weights + "vectors": serialize_weights, + "vectors.cfg": lambda: srsly.json_dumps(self._get_cfg()), } - return util.to_bytes(serializers, []) + return util.to_bytes(serializers, exclude) - def from_bytes(self, data, **kwargs): + def from_bytes(self, data, *, exclude=tuple()): """Load state from a binary string. data (bytes): The data to load from. @@ -469,13 +656,25 @@ cdef class Vectors: self.data = xp.asarray(srsly.msgpack_loads(b)) deserializers = { + "strings": lambda b: self.strings.from_bytes(b), "key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)), - "vectors": deserialize_weights + "vectors": deserialize_weights, + "vectors.cfg": lambda b: self._set_cfg(srsly.json_loads(b)) } - util.from_bytes(data, deserializers, []) + util.from_bytes(data, deserializers, exclude) self._sync_unset() return self + def clear(self): + """Clear all entries in the vector table. + + DOCS: https://spacy.io/api/vectors#clear + """ + if self.mode == Mode.floret: + raise ValueError(Errors.E859) + self.key2row = {} + self._sync_unset() + def _sync_unset(self): filled = {row for row in self.key2row.values()} self._unset = cppset[int]({row for row in range(self.data.shape[0]) if row not in filled}) diff --git a/spacy/vocab.pxd b/spacy/vocab.pxd index 9067476f7..9c951b2b7 100644 --- a/spacy/vocab.pxd +++ b/spacy/vocab.pxd @@ -27,21 +27,21 @@ cdef class Vocab: cdef Pool mem cdef readonly StringStore strings cdef public Morphology morphology - cdef public object vectors + cdef public object _vectors cdef public object _lookups cdef public object writing_system cdef public object get_noun_chunks cdef readonly int length - cdef public object data_dir + cdef public object _unused_object # TODO remove in v4, see #9150 cdef public object lex_attr_getters cdef public object cfg - cdef const LexemeC* get(self, Pool mem, unicode string) except NULL + cdef const LexemeC* get(self, Pool mem, str string) except NULL cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL cdef const TokenC* make_fused_token(self, substrings) except NULL - cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL + cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1 - cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL + cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL cdef PreshMap _by_orth diff --git a/spacy/vocab.pyi b/spacy/vocab.pyi index 603ef1ae7..713e85c01 100644 --- a/spacy/vocab.pyi +++ b/spacy/vocab.pyi @@ -71,7 +71,7 @@ def unpickle_vocab( sstore: StringStore, vectors: Any, morphology: Any, - data_dir: Any, + _unused_object: Any, lex_attr_getters: Any, lookups: Any, get_noun_chunks: Any, diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index 5bbbac8ac..badd291ed 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -14,7 +14,7 @@ from .attrs cimport LANG, ORTH from .compat import copy_reg from .errors import Errors from .attrs import intify_attrs, NORM, IS_STOP -from .vectors import Vectors +from .vectors import Vectors, Mode as VectorsMode from .util import registry from .lookups import Lookups from . import util @@ -60,7 +60,7 @@ cdef class Vocab: vice versa. lookups (Lookups): Container for large lookup tables and dictionaries. oov_prob (float): Default OOV probability. - vectors_name (unicode): Optional name to identify the vectors table. + vectors_name (str): Optional name to identify the vectors table. get_noun_chunks (Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]): A function that yields base noun phrases used for Doc.noun_chunks. """ @@ -77,11 +77,21 @@ cdef class Vocab: _ = self[string] self.lex_attr_getters = lex_attr_getters self.morphology = Morphology(self.strings) - self.vectors = Vectors(name=vectors_name) + self.vectors = Vectors(strings=self.strings, name=vectors_name) self.lookups = lookups self.writing_system = writing_system self.get_noun_chunks = get_noun_chunks + property vectors: + def __get__(self): + return self._vectors + + def __set__(self, vectors): + for s in vectors.strings: + self.strings.add(s) + self._vectors = vectors + self._vectors.strings = self.strings + @property def lang(self): langfunc = None @@ -105,7 +115,7 @@ cdef class Vocab: See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`, `Token.check_flag`. - flag_getter (callable): A function `f(unicode) -> bool`, to get the + flag_getter (callable): A function `f(str) -> bool`, to get the flag value. flag_id (int): An integer between 1 and 63 (inclusive), specifying the bit at which the flag will be stored. If -1, the lowest @@ -128,7 +138,7 @@ cdef class Vocab: self.lex_attr_getters[flag_id] = flag_getter return flag_id - cdef const LexemeC* get(self, Pool mem, unicode string) except NULL: + cdef const LexemeC* get(self, Pool mem, str string) except NULL: """Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme` if necessary using memory acquired from the given pool. If the pool is the lexicon's own memory, the lexeme is saved in the lexicon. @@ -162,12 +172,17 @@ cdef class Vocab: else: return self._new_lexeme(mem, self.strings[orth]) - cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL: + cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL: + # I think this heuristic is bad, and the Vocab should always + # own the lexemes. It avoids weird bugs this way, as it's how the thing + # was originally supposed to work. The best solution to the growing + # memory use is to periodically reset the vocab, which is an action + # that should be up to the user to do (so we don't need to keep track + # of the doc ownership). + # TODO: Change the C API so that the mem isn't passed in here. + mem = self.mem #if len(string) < 3 or self.length < 10000: # mem = self.mem - # TODO: Experiment with never allowing the Doc to own lexemes, to see - # if it solves the Doc.copy() issue. - mem = self.mem cdef bint is_oov = mem is not self.mem lex = mem.alloc(1, sizeof(LexemeC)) lex.orth = self.strings.add(string) @@ -179,7 +194,7 @@ cdef class Vocab: if self.lex_attr_getters is not None: for attr, func in self.lex_attr_getters.items(): value = func(string) - if isinstance(value, unicode): + if isinstance(value, str): value = self.strings.add(value) if value is not None: Lexeme.set_struct_attr(lex, attr, value) @@ -196,7 +211,7 @@ cdef class Vocab: def __contains__(self, key): """Check whether the string or int key has an entry in the vocabulary. - string (unicode): The ID string. + string (str): The ID string. RETURNS (bool) Whether the string has an entry in the vocabulary. DOCS: https://spacy.io/api/vocab#contains @@ -204,7 +219,7 @@ cdef class Vocab: cdef hash_t int_key if isinstance(key, bytes): int_key = self.strings[key.decode("utf8")] - elif isinstance(key, unicode): + elif isinstance(key, str): int_key = self.strings[key] else: int_key = key @@ -229,7 +244,7 @@ cdef class Vocab: previously unseen unicode string is given, a new lexeme is created and stored. - id_or_string (int or unicode): The integer ID of a word, or its unicode + id_or_string (int or str): The integer ID of a word, or its unicode string. If `int >= Lexicon.size`, `IndexError` is raised. If `id_or_string` is neither an int nor a unicode string, `ValueError` is raised. @@ -242,7 +257,7 @@ cdef class Vocab: DOCS: https://spacy.io/api/vocab#getitem """ cdef attr_t orth - if isinstance(id_or_string, unicode): + if isinstance(id_or_string, str): orth = self.strings.add(id_or_string) else: orth = id_or_string @@ -268,7 +283,7 @@ cdef class Vocab: @property def vectors_length(self): - return self.vectors.data.shape[1] + return self.vectors.shape[1] def reset_vectors(self, *, width=None, shape=None): """Drop the current vector table. Because all vectors must be the same @@ -277,10 +292,10 @@ cdef class Vocab: if width is not None and shape is not None: raise ValueError(Errors.E065.format(width=width, shape=shape)) elif shape is not None: - self.vectors = Vectors(shape=shape) + self.vectors = Vectors(strings=self.strings, shape=shape) else: - width = width if width is not None else self.vectors.data.shape[1] - self.vectors = Vectors(shape=(self.vectors.shape[0], width)) + width = width if width is not None else self.vectors.shape[1] + self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width)) def prune_vectors(self, nr_row, batch_size=1024): """Reduce the current vector table to `nr_row` unique entries. Words @@ -309,6 +324,8 @@ cdef class Vocab: DOCS: https://spacy.io/api/vocab#prune_vectors """ + if self.vectors.mode != VectorsMode.default: + raise ValueError(Errors.E866) ops = get_current_ops() xp = get_array_module(self.vectors.data) # Make sure all vectors are in the vocab @@ -323,7 +340,7 @@ cdef class Vocab: keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64") keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]]) toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]]) - self.vectors = Vectors(data=keep, keys=keys[:nr_row], name=self.vectors.name) + self.vectors = Vectors(strings=self.strings, data=keep, keys=keys[:nr_row], name=self.vectors.name) syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size) syn_keys = ops.to_numpy(syn_keys) remap = {} @@ -335,19 +352,12 @@ cdef class Vocab: remap[word] = (synonym, score) return remap - def get_vector(self, orth, minn=None, maxn=None): + def get_vector(self, orth): """Retrieve a vector for a word in the vocabulary. Words can be looked up by string or int ID. If no vectors data is loaded, ValueError is raised. - If `minn` is defined, then the resulting vector uses Fasttext's - subword features by average over ngrams of `orth`. - orth (int / unicode): The hash value of a word, or its unicode string. - minn (int): Minimum n-gram length used for Fasttext's ngram computation. - Defaults to the length of `orth`. - maxn (int): Maximum n-gram length used for Fasttext's ngram computation. - Defaults to the length of `orth`. RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size and shape determined by the `vocab.vectors` instance. Usually, a numpy ndarray of shape (300,) and dtype float32. @@ -356,47 +366,17 @@ cdef class Vocab: """ if isinstance(orth, str): orth = self.strings.add(orth) - word = self[orth].orth_ - if orth in self.vectors.key2row: + if self.has_vector(orth): return self.vectors[orth] xp = get_array_module(self.vectors.data) vectors = xp.zeros((self.vectors_length,), dtype="f") - if minn is None: - return vectors - # Fasttext's ngram computation taken from - # https://github.com/facebookresearch/fastText - # Assign default ngram limit to maxn which is the length of the word. - if maxn is None: - maxn = len(word) - ngrams_size = 0; - for i in range(len(word)): - ngram = "" - if (word[i] and 0xC0) == 0x80: - continue - n = 1 - j = i - while (j < len(word) and n <= maxn): - if n > maxn: - break - ngram += word[j] - j = j + 1 - while (j < len(word) and (word[j] and 0xC0) == 0x80): - ngram += word[j] - j = j + 1 - if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))): - if self.strings[ngram] in self.vectors.key2row: - vectors = xp.add(self.vectors[self.strings[ngram]], vectors) - ngrams_size += 1 - n = n + 1 - if ngrams_size > 0: - vectors = vectors * (1.0/ngrams_size) return vectors def set_vector(self, orth, vector): """Set a vector for a word in the vocabulary. Words can be referenced by string or int ID. - orth (int / unicode): The word. + orth (int / str): The word. vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set. DOCS: https://spacy.io/api/vocab#set_vector @@ -412,13 +392,14 @@ cdef class Vocab: self.vectors.resize((new_rows, width)) lex = self[orth] # Add word to vocab if necessary row = self.vectors.add(orth, vector=vector) - lex.rank = row + if row >= 0: + lex.rank = row def has_vector(self, orth): """Check whether a word has a vector. Returns False if no vectors have been loaded. Words can be looked up by string or int ID. - orth (int / unicode): The word. + orth (int / str): The word. RETURNS (bool): Whether the word has a vector. DOCS: https://spacy.io/api/vocab#has_vector @@ -443,7 +424,7 @@ cdef class Vocab: def to_disk(self, path, *, exclude=tuple()): """Save the current state to a directory. - path (unicode or Path): A path to a directory, which will be created if + path (str or Path): A path to a directory, which will be created if it doesn't exist. exclude (Iterable[str]): String names of serialization fields to exclude. @@ -456,7 +437,7 @@ cdef class Vocab: if "strings" not in exclude: self.strings.to_disk(path / "strings.json") if "vectors" not in "exclude": - self.vectors.to_disk(path) + self.vectors.to_disk(path, exclude=["strings"]) if "lookups" not in "exclude": self.lookups.to_disk(path) @@ -464,7 +445,7 @@ cdef class Vocab: """Loads state from a directory. Modifies the object in place and returns it. - path (unicode or Path): A path to a directory. + path (str or Path): A path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Vocab): The modified `Vocab` object. @@ -499,7 +480,7 @@ cdef class Vocab: if self.vectors is None: return None else: - return self.vectors.to_bytes() + return self.vectors.to_bytes(exclude=["strings"]) getters = { "strings": lambda: self.strings.to_bytes(), @@ -521,7 +502,7 @@ cdef class Vocab: if self.vectors is None: return None else: - return self.vectors.from_bytes(b) + return self.vectors.from_bytes(b, exclude=["strings"]) setters = { "strings": lambda b: self.strings.from_bytes(b), @@ -546,21 +527,21 @@ def pickle_vocab(vocab): sstore = vocab.strings vectors = vocab.vectors morph = vocab.morphology - data_dir = vocab.data_dir + _unused_object = vocab._unused_object lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters) lookups = vocab.lookups get_noun_chunks = vocab.get_noun_chunks return (unpickle_vocab, - (sstore, vectors, morph, data_dir, lex_attr_getters, lookups, get_noun_chunks)) + (sstore, vectors, morph, _unused_object, lex_attr_getters, lookups, get_noun_chunks)) -def unpickle_vocab(sstore, vectors, morphology, data_dir, +def unpickle_vocab(sstore, vectors, morphology, _unused_object, lex_attr_getters, lookups, get_noun_chunks): cdef Vocab vocab = Vocab() vocab.vectors = vectors vocab.strings = sstore vocab.morphology = morphology - vocab.data_dir = data_dir + vocab._unused_object = _unused_object vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters) vocab.lookups = lookups vocab.get_noun_chunks = get_noun_chunks diff --git a/website/UNIVERSE.md b/website/UNIVERSE.md index d37c4561a..770bbde13 100644 --- a/website/UNIVERSE.md +++ b/website/UNIVERSE.md @@ -44,7 +44,7 @@ markup is correct. "id": "unique-project-id", "title": "Project title", "slogan": "A short summary", - "description": "A longer description – *Mardown allowed!*", + "description": "A longer description – *Markdown allowed!*", "github": "user/repo", "pip": "package-name", "code_example": [ diff --git a/website/docs/api/architectures.md b/website/docs/api/architectures.md index 72a75bb31..7a3d26b41 100644 --- a/website/docs/api/architectures.md +++ b/website/docs/api/architectures.md @@ -82,7 +82,7 @@ consisting of a CNN and a layer-normalized maxout activation function. | `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ | | `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ | | `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ | -| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ | +| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 20 words at a time. Recommended value is `1`. ~~int~~ | | `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ | | `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ | | `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ | @@ -124,6 +124,14 @@ Instead of defining its own `Tok2Vec` instance, a model architecture like [Tagger](/api/architectures#tagger) can define a listener as its `tok2vec` argument that connects to the shared `tok2vec` component in the pipeline. +Listeners work by caching the `Tok2Vec` output for a given batch of `Doc`s. This +means that in order for a component to work with the listener, the batch of +`Doc`s passed to the listener must be the same as the batch of `Doc`s passed to +the `Tok2Vec`. As a result, any manipulation of the `Doc`s which would affect +`Tok2Vec` output, such as to create special contexts or remove `Doc`s for which +no prediction can be made, must happen inside the model, **after** the call to +the `Tok2Vec` component. + | Name | Description | | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `width` | The width of the vectors produced by the "upstream" [`Tok2Vec`](/api/tok2vec) component. ~~int~~ | @@ -150,7 +158,7 @@ be configured with the `attrs` argument. The suggested attributes are `NORM`, `PREFIX`, `SUFFIX` and `SHAPE`. This lets the model take into account some subword information, without construction a fully character-based representation. If pretrained vectors are available, they can be included in the -representation as well, with the vectors table will be kept static (i.e. it's +representation as well, with the vectors table kept static (i.e. it's not updated). | Name | Description | @@ -288,7 +296,7 @@ learned linear projection to control the dimensionality. Unknown tokens are mapped to a zero vector. See the documentation on [static vectors](/usage/embeddings-transformers#static-vectors) for details. -| Name |  Description | +| Name | Description | | ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `nO` | The output width of the layer, after the linear projection. ~~Optional[int]~~ | | `nM` | The width of the static vectors. ~~Optional[int]~~ | @@ -310,7 +318,7 @@ mapped to a zero vector. See the documentation on Extract arrays of input features from [`Doc`](/api/doc) objects. Expects a list of feature names to extract, which should refer to token attributes. -| Name |  Description | +| Name | Description | | ----------- | ------------------------------------------------------------------------ | | `columns` | The token attributes to extract. ~~List[Union[int, str]]~~ | | **CREATES** | The created feature extraction layer. ~~Model[List[Doc], List[Ints2d]]~~ | diff --git a/website/docs/api/attributeruler.md b/website/docs/api/attributeruler.md index a253ca9f8..965bffbcc 100644 --- a/website/docs/api/attributeruler.md +++ b/website/docs/api/attributeruler.md @@ -48,12 +48,13 @@ Initialize the attribute ruler. > ruler = nlp.add_pipe("attribute_ruler") > ``` -| Name | Description | -| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary to pass to the matcher. ~~Vocab~~ | -| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. ~~str~~ | -| _keyword-only_ | | -| `validate` | Whether patterns should be validated (passed to the [`Matcher`](/api/matcher#init)). Defaults to `False`. ~~bool~~ | +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `vocab` | The shared vocabulary to pass to the matcher. ~~Vocab~~ | +| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. ~~str~~ | +| _keyword-only_ | | +| `validate` | Whether patterns should be validated (passed to the [`Matcher`](/api/matcher#init)). Defaults to `False`. ~~bool~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"tag`", `"pos"`, `"morph"` and `"lemma"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | ## AttributeRuler.\_\_call\_\_ {#call tag="method"} @@ -175,21 +176,6 @@ Load attribute ruler patterns from morph rules. | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `morph_rules` | The morph rules that map token text and fine-grained tags to coarse-grained tags, lemmas and morphological features. ~~Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]~~ | -## AttributeRuler.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = ruler.score(examples) -> ``` - -| Name | Description | -| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"tag"`, `"pos"`, `"morph"` and `"lemma"` if present in any of the target token attributes. ~~Dict[str, float]~~ | - ## AttributeRuler.to_disk {#to_disk tag="method"} Serialize the pipe to disk. diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md index a4462af56..89e2e87d9 100644 --- a/website/docs/api/cli.md +++ b/website/docs/api/cli.md @@ -148,8 +148,8 @@ $ python -m spacy init config [output_file] [--lang] [--pipeline] [--optimize] [ ### init fill-config {#init-fill-config new="3"} -Auto-fill a partial [`config.cfg` file](/usage/training#config) file with **all -default values**, e.g. a config generated with the +Auto-fill a partial [.cfg file](/usage/training#config) with **all default +values**, e.g. a config generated with the [quickstart widget](/usage/training#quickstart). Config files used for training should always be complete and not contain any hidden defaults or missing values, so this command helps you create your final training config. In order to find @@ -175,7 +175,7 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff] | Name | Description | | ---------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `base_path` | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). ~~Path (positional)~~ | -| `output_file` | Path to output `.cfg` file. If not set, the config is written to stdout so you can pipe it forward to a file. ~~Path (positional)~~ | +| `output_file` | Path to output `.cfg` file or "-" to write to stdout so you can pipe it to a file. Defaults to "-" (stdout). ~~Path (positional)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--pretraining`, `-pt` | Include config for pretraining (with [`spacy pretrain`](/api/cli#pretrain)). Defaults to `False`. ~~bool (flag)~~ | | `--diff`, `-D` | Print a visual diff highlighting the changes. ~~bool (flag)~~ | @@ -203,11 +203,12 @@ $ python -m spacy init vectors [lang] [vectors_loc] [output_dir] [--prune] [--tr | Name | Description | | ------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `lang` | Pipeline language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. ~~str (positional)~~ | +| `lang` | Pipeline language [IETF language tag](https://www.w3.org/International/articles/language-tags/), such as `en`. ~~str (positional)~~ | | `vectors_loc` | Location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. ~~Path (positional)~~ | | `output_dir` | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~ | | `--truncate`, `-t` | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~ | | `--prune`, `-p` | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~ | +| `--mode`, `-m` | Vectors mode: `default` or [`floret`](https://github.com/explosion/floret). Defaults to `default`. ~~Optional[str] \(option)~~ | | `--name`, `-n` | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~ | | `--verbose`, `-V` | Print additional information and explanations. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | diff --git a/website/docs/api/data-formats.md b/website/docs/api/data-formats.md index 001455f33..b7aedc511 100644 --- a/website/docs/api/data-formats.md +++ b/website/docs/api/data-formats.md @@ -181,25 +181,25 @@ single corpus once and then divide it up into `train` and `dev` partitions. This section defines settings and controls for the training and evaluation process that are used when you run [`spacy train`](/api/cli#train). -| Name | Description | -| ----------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ | -| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ | -| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ | -| `dev_corpus` | Dot notation of the config location defining the dev corpus. Defaults to `corpora.dev`. ~~str~~ | -| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ | -| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ | -| `frozen_components` | Pipeline component names that are "frozen" and shouldn't be initialized or updated during training. See [here](/usage/training#config-components) for details. Defaults to `[]`. ~~List[str]~~ | -| `annotating_components` | Pipeline component names that should set annotations on the predicted docs during training. See [here](/usage/training#annotating-components) for details. Defaults to `[]`. ~~List[str]~~ | -| `gpu_allocator` | Library for cupy to route GPU memory allocation to. Can be `"pytorch"` or `"tensorflow"`. Defaults to variable `${system.gpu_allocator}`. ~~str~~ | -| `logger` | Callable that takes the `nlp` and stdout and stderr `IO` objects, sets up the logger, and returns two new callables to log a training step and to finalize the logger. Defaults to [`ConsoleLogger`](/api/top-level#ConsoleLogger). ~~Callable[[Language, IO, IO], [Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]]]~~ | -| `max_epochs` | Maximum number of epochs to train for. `0` means an unlimited number of epochs. `-1` means that the train corpus should be streamed rather than loaded into memory with no shuffling within the training loop. Defaults to `0`. ~~int~~ | -| `max_steps` | Maximum number of update steps to train for. `0` means an unlimited number of steps. Defaults to `20000`. ~~int~~ | -| `optimizer` | The optimizer. The learning rate schedule and other settings can be configured as part of the optimizer. Defaults to [`Adam`](https://thinc.ai/docs/api-optimizers#adam). ~~Optimizer~~ | -| `patience` | How many steps to continue without improvement in evaluation score. `0` disables early stopping. Defaults to `1600`. ~~int~~ | -| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ | -| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ | -| `train_corpus` | Dot notation of the config location defining the train corpus. Defaults to `corpora.train`. ~~str~~ | +| Name | Description | +| ---------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ | +| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ | +| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ | +| `dev_corpus` | Dot notation of the config location defining the dev corpus. Defaults to `corpora.dev`. ~~str~~ | +| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ | +| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ | +| `frozen_components` | Pipeline component names that are "frozen" and shouldn't be initialized or updated during training. See [here](/usage/training#config-components) for details. Defaults to `[]`. ~~List[str]~~ | +| `annotating_components` 3.1 | Pipeline component names that should set annotations on the predicted docs during training. See [here](/usage/training#annotating-components) for details. Defaults to `[]`. ~~List[str]~~ | +| `gpu_allocator` | Library for cupy to route GPU memory allocation to. Can be `"pytorch"` or `"tensorflow"`. Defaults to variable `${system.gpu_allocator}`. ~~str~~ | +| `logger` | Callable that takes the `nlp` and stdout and stderr `IO` objects, sets up the logger, and returns two new callables to log a training step and to finalize the logger. Defaults to [`ConsoleLogger`](/api/top-level#ConsoleLogger). ~~Callable[[Language, IO, IO], [Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]]]~~ | +| `max_epochs` | Maximum number of epochs to train for. `0` means an unlimited number of epochs. `-1` means that the train corpus should be streamed rather than loaded into memory with no shuffling within the training loop. Defaults to `0`. ~~int~~ | +| `max_steps` | Maximum number of update steps to train for. `0` means an unlimited number of steps. Defaults to `20000`. ~~int~~ | +| `optimizer` | The optimizer. The learning rate schedule and other settings can be configured as part of the optimizer. Defaults to [`Adam`](https://thinc.ai/docs/api-optimizers#adam). ~~Optimizer~~ | +| `patience` | How many steps to continue without improvement in evaluation score. `0` disables early stopping. Defaults to `1600`. ~~int~~ | +| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ | +| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ | +| `train_corpus` | Dot notation of the config location defining the train corpus. Defaults to `corpora.train`. ~~str~~ | ### pretraining {#config-pretraining tag="section,optional"} @@ -248,7 +248,7 @@ Also see the usage guides on the | `after_init` | Optional callback to modify the `nlp` object after initialization. ~~Optional[Callable[[Language], Language]]~~ | | `before_init` | Optional callback to modify the `nlp` object before initialization. ~~Optional[Callable[[Language], Language]]~~ | | `components` | Additional arguments passed to the `initialize` method of a pipeline component, keyed by component name. If type annotations are available on the method, the config will be validated against them. The `initialize` methods will always receive the `get_examples` callback and the current `nlp` object. ~~Dict[str, Dict[str, Any]]~~ | -| `init_tok2vec` | Optional path to pretrained tok2vec weights created with [`spacy pretrain`](/api/cli#pretrain). Defaults to variable `${paths.init_tok2vec}`. ~~Optional[str]~~ | +| `init_tok2vec` | Optional path to pretrained tok2vec weights created with [`spacy pretrain`](/api/cli#pretrain). Defaults to variable `${paths.init_tok2vec}`. Ignored when actually running pretraining, as you're creating the file to be used later. ~~Optional[str]~~ | | `lookups` | Additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). Defaults to `null`. ~~Optional[Lookups]~~ | | `tokenizer` | Additional arguments passed to the `initialize` method of the specified tokenizer. Can be used for languages like Chinese that depend on dictionaries or trained models for tokenization. If type annotations are available on the method, the config will be validated against them. The `initialize` method will always receive the `get_examples` callback and the current `nlp` object. ~~Dict[str, Any]~~ | | `vectors` | Name or path of pipeline containing pretrained word vectors to use, e.g. created with [`init vectors`](/api/cli#init-vectors). Defaults to `null`. ~~Optional[str]~~ | @@ -535,7 +535,7 @@ As of spaCy v3.0, the `meta.json` **isn't** used to construct the language class and pipeline anymore and only contains meta information for reference and for creating a Python package with [`spacy package`](/api/cli#package). How to set up the `nlp` object is now defined in the -[`config.cfg`](/api/data-formats#config), which includes detailed information +[config file](/api/data-formats#config), which includes detailed information about the pipeline components and their model architectures, and all other settings and hyperparameters used to train the pipeline. It's the **single source of truth** used for loading a pipeline. diff --git a/website/docs/api/dependencyparser.md b/website/docs/api/dependencyparser.md index c48172a22..118cdc611 100644 --- a/website/docs/api/dependencyparser.md +++ b/website/docs/api/dependencyparser.md @@ -105,6 +105,7 @@ shortcut for this and instantiate the component using its string name and | `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ | | `learn_tokens` | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. Defaults to `False`. ~~bool~~ | | `min_action_freq` | The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. ~~int~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_deps`](/api/scorer#score_deps) for the attribute `"dep"` ignoring the labels `p` and `punct` and [`Scorer.score_spans`](/api/scorer/#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ | ## DependencyParser.\_\_call\_\_ {#call tag="method"} @@ -273,21 +274,6 @@ predicted scores. | `scores` | Scores representing the model's predictions. ~~StateClass~~ | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | -## DependencyParser.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = parser.score(examples) -> ``` - -| Name | Description | -| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans) and [`Scorer.score_deps`](/api/scorer#score_deps). ~~Dict[str, Union[float, Dict[str, float]]]~~ | - ## DependencyParser.create_optimizer {#create_optimizer tag="method"} Create an [`Optimizer`](https://thinc.ai/docs/api-optimizers) for the pipeline diff --git a/website/docs/api/entitylinker.md b/website/docs/api/entitylinker.md index bbc8f3942..3d3372679 100644 --- a/website/docs/api/entitylinker.md +++ b/website/docs/api/entitylinker.md @@ -51,15 +51,17 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("entity_linker", config=config) > ``` -| Setting | Description | -| ---------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | -| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | -| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | -| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | -| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | -| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| Setting | Description | +| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ | +| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ | +| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ | +| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ | +| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ | +| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/entity_linker.py @@ -92,18 +94,20 @@ custom knowledge base, you should either call [`set_kb`](/api/entitylinker#set_kb) or provide a `kb_loader` in the [`initialize`](/api/entitylinker#initialize) call. -| Name | Description | -| ---------------------- | -------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | -| _keyword-only_ | | -| `entity_vector_length` | Size of encoding vectors in the KB. ~~int~~ | -| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | -| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~ | -| `n_sents` | The number of neighbouring sentences to take into account. ~~int~~ | -| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. ~~bool~~ | -| `incl_context` | Whether or not to include the local context in the model. ~~bool~~ | +| Name | Description | +| ---------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `entity_vector_length` | Size of encoding vectors in the KB. ~~int~~ | +| `get_candidates` | Function that generates plausible candidates for a given `Span` object. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ | +| `labels_discard` | NER labels that will automatically get a `"NIL"` prediction. ~~Iterable[str]~~ | +| `n_sents` | The number of neighbouring sentences to take into account. ~~int~~ | +| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. ~~bool~~ | +| `incl_context` | Whether or not to include the local context in the model. ~~bool~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ | ## EntityLinker.\_\_call\_\_ {#call tag="method"} @@ -269,21 +273,6 @@ pipe's entity linking model and context encoder. Delegates to | `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | -## EntityLinker.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = entity_linker.score(examples) -> ``` - -| Name | Description | -| ----------- | ---------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_links`](/api/scorer#score_links) . ~~Dict[str, float]~~ | - ## EntityLinker.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. diff --git a/website/docs/api/entityrecognizer.md b/website/docs/api/entityrecognizer.md index ba7022c14..14b6fece4 100644 --- a/website/docs/api/entityrecognizer.md +++ b/website/docs/api/entityrecognizer.md @@ -65,7 +65,8 @@ architectures and their arguments and hyperparameters. | `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[List[str]]~~ | | `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ | | `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [TransitionBasedParser](/api/architectures#TransitionBasedParser). ~~Model[List[Doc], List[Floats2d]]~~ | -| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER wiill learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ | +| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER will learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ | +| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/ner.pyx @@ -269,21 +270,6 @@ predicted scores. | `scores` | Scores representing the model's predictions. ~~StateClass~~ | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | -## EntityRecognizer.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = ner.score(examples) -> ``` - -| Name | Description | -| ----------- | --------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ | - ## EntityRecognizer.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. diff --git a/website/docs/api/entityruler.md b/website/docs/api/entityruler.md index c9c3ec365..1ef283870 100644 --- a/website/docs/api/entityruler.md +++ b/website/docs/api/entityruler.md @@ -61,6 +61,7 @@ how the component should be configured. You can override its settings via the | `validate` | Whether patterns should be validated (passed to the `Matcher` and `PhraseMatcher`). Defaults to `False`. ~~bool~~ | | `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ | | `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"\|\|"`. ~~str~~ | +| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/entityruler.py @@ -98,9 +99,9 @@ be a token pattern (list) or a phrase pattern (string). For example: ## EntityRuler.initialize {#initialize tag="method" new="3"} Initialize the component with data and used before training to load in rules -from a file. This method is typically called by -[`Language.initialize`](/api/language#initialize) and lets you customize -arguments it receives via the +from a [pattern file](/usage/rule-based-matching/#entityruler-files). This method +is typically called by [`Language.initialize`](/api/language#initialize) and +lets you customize arguments it receives via the [`[initialize.components]`](/api/data-formats#config-initialize) block in the config. @@ -209,6 +210,24 @@ of dicts) or a phrase pattern (string). For more details, see the usage guide on | ---------- | ---------------------------------------------------------------- | | `patterns` | The patterns to add. ~~List[Dict[str, Union[str, List[dict]]]]~~ | + +## EntityRuler.remove {#remove tag="method" new="3.2.1"} + +Remove a pattern by its ID from the entity ruler. A `ValueError` is raised if the ID does not exist. + +> #### Example +> +> ```python +> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}] +> ruler = nlp.add_pipe("entity_ruler") +> ruler.add_patterns(patterns) +> ruler.remove("apple") +> ``` + +| Name | Description | +| ---------- | ---------------------------------------------------------------- | +| `id` | The ID of the pattern rule. ~~str~~ | + ## EntityRuler.to_disk {#to_disk tag="method"} Save the entity ruler patterns to a directory. The patterns will be saved as diff --git a/website/docs/api/language.md b/website/docs/api/language.md index d0d6b9514..8d7686243 100644 --- a/website/docs/api/language.md +++ b/website/docs/api/language.md @@ -1000,6 +1000,11 @@ subclasses like `English` or `German` to make language-specific functionality like the [lexical attribute getters](/usage/linguistic-features#language-data) available to the loaded object. +Note that if you want to serialize and reload a whole pipeline, using this alone +won't work, you also need to handle the config. See +["Serializing the pipeline"](https://spacy.io/usage/saving-loading#pipeline) for +details. + > #### Example > > ```python @@ -1039,7 +1044,7 @@ available to the loaded object. | Name | Description | | ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `Defaults` | Settings, data and factory methods for creating the `nlp` object and processing pipeline. ~~Defaults~~ | -| `lang` | Two-letter language ID, i.e. [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). ~~str~~ | +| `lang` | [IETF language tag](https://www.w3.org/International/articles/language-tags/), such as 'en' for English. ~~str~~ | | `default_config` | Base [config](/usage/training#config) to use for [Language.config](/api/language#config). Defaults to [`default_config.cfg`](%%GITHUB_SPACY/spacy/default_config.cfg). ~~Config~~ | ## Defaults {#defaults} diff --git a/website/docs/api/lemmatizer.md b/website/docs/api/lemmatizer.md index 8cb869f64..2fa040917 100644 --- a/website/docs/api/lemmatizer.md +++ b/website/docs/api/lemmatizer.md @@ -56,11 +56,13 @@ data format used by the lookup and rule-based lemmatizers, see > nlp.add_pipe("lemmatizer", config=config) > ``` -| Setting | Description | -| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `mode` | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `lookup` if no language-specific lemmatizer is available (see the following table). ~~str~~ | -| `overwrite` | Whether to overwrite existing lemmas. Defaults to `False`. ~~bool~~ | -| `model` | **Not yet implemented:** the model to use. ~~Model~~ | +| Setting | Description | +| -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `mode` | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `lookup` if no language-specific lemmatizer is available (see the following table). ~~str~~ | +| `overwrite` | Whether to overwrite existing lemmas. Defaults to `False`. ~~bool~~ | +| `model` | **Not yet implemented:** the model to use. ~~Model~~ | +| _keyword-only_ | | +| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ | Many languages specify a default lemmatizer mode other than `lookup` if a better lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md index c34560dec..3e7f9dc04 100644 --- a/website/docs/api/matcher.md +++ b/website/docs/api/matcher.md @@ -44,6 +44,9 @@ rule-based matching are: | `SPACY` | Token has a trailing space. ~~bool~~ | |  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ | | `ENT_TYPE` | The token's entity label. ~~str~~ | +| `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ | +| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ | +| `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ | | `_` 2.1 | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ | | `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ | diff --git a/website/docs/api/morphologizer.md b/website/docs/api/morphologizer.md index 00af83e6f..434c56833 100644 --- a/website/docs/api/morphologizer.md +++ b/website/docs/api/morphologizer.md @@ -42,9 +42,12 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("morphologizer", config=config) > ``` -| Setting | Description | -| ------- | ------------------------------------------------------------------------------------------------------- | -| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| Setting | Description | +| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ | +| `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx @@ -56,6 +59,19 @@ Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#add_pipe). +The `overwrite` and `extend` settings determine how existing annotation is +handled (with the example for existing annotation `A=B|C=D` + predicted +annotation `C=E|X=Y`): + +- `overwrite=True, extend=True`: overwrite values of existing features, add any + new features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=E|X=Y`) +- `overwrite=True, extend=False`: overwrite completely, removing any existing + features (`A=B|C=D` + `C=E|X=Y` → `C=E|X=Y`) +- `overwrite=False, extend=True`: keep values of existing features, add any new + features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D|X=Y`) +- `overwrite=False, extend=False`: do not modify the existing annotation if set + (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D`) + > #### Example > > ```python @@ -71,11 +87,15 @@ shortcut for this and instantiate the component using its string name and > morphologizer = Morphologizer(nlp.vocab, model) > ``` -| Name | Description | -| ------- | -------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| Name | Description | +| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ | +| `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | ## Morphologizer.\_\_call\_\_ {#call tag="method"} diff --git a/website/docs/api/pipe.md b/website/docs/api/pipe.md index 2f856c667..263942e3e 100644 --- a/website/docs/api/pipe.md +++ b/website/docs/api/pipe.md @@ -297,10 +297,12 @@ Score a batch of examples. > scores = pipe.score(examples) > ``` -| Name | Description | -| ----------- | ------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, e.g. produced by the [`Scorer`](/api/scorer). ~~Dict[str, Union[float, Dict[str, float]]]~~ | +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------------------- | +| `examples` | The examples to score. ~~Iterable[Example]~~ | +| _keyword-only_ | +| `\*\*kwargs` | Any additional settings to pass on to the scorer. ~~Any~~ | +| **RETURNS** | The scores, e.g. produced by the [`Scorer`](/api/scorer). ~~Dict[str, Union[float, Dict[str, float]]]~~ | ## TrainablePipe.create_optimizer {#create_optimizer tag="method"} diff --git a/website/docs/api/pipeline-functions.md b/website/docs/api/pipeline-functions.md index a776eca9b..ff19d3e71 100644 --- a/website/docs/api/pipeline-functions.md +++ b/website/docs/api/pipeline-functions.md @@ -130,3 +130,25 @@ exceed the transformer model max length. | `min_length` | The minimum length for a token to be split. Defaults to `25`. ~~int~~ | | `split_length` | The length of the split tokens. Defaults to `5`. ~~int~~ | | **RETURNS** | The modified `Doc` with the split tokens. ~~Doc~~ | + +## doc_cleaner {#doc_cleaner tag="function" new="3.2.1"} + +Clean up `Doc` attributes. Intended for use at the end of pipelines with +`tok2vec` or `transformer` pipeline components that store tensors and other +values that can require a lot of memory and frequently aren't needed after the +whole pipeline has run. + +> #### Example +> +> ```python +> config = {"attrs": {"tensor": None}} +> nlp.add_pipe("doc_cleaner", config=config) +> doc = nlp("text") +> assert doc.tensor is None +> ``` + +| Setting | Description | +| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `attrs` | A dict of the `Doc` attributes and the values to set them to. Defaults to `{"tensor": None, "_.trf_data": None}` to clean up after `tok2vec` and `transformer` components. ~~dict~~ | +| `silent` | If `False`, show warnings if attributes aren't found or can't be set. Defaults to `True`. ~~bool~~ | +| **RETURNS** | The modified `Doc` with the modified attributes. ~~Doc~~ | diff --git a/website/docs/api/scorer.md b/website/docs/api/scorer.md index c8163091f..8dbe3b276 100644 --- a/website/docs/api/scorer.md +++ b/website/docs/api/scorer.md @@ -27,9 +27,13 @@ Create a new `Scorer`. > scorer = Scorer(nlp) > ``` -| Name | Description | -| ----- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `nlp` | The pipeline to use for scoring, where each pipeline component may provide a scoring method. If none is provided, then a default pipeline for the multi-language code `xx` is constructed containing: `senter`, `tagger`, `morphologizer`, `parser`, `ner`, `textcat`. ~~Language~~ | +| Name | Description | +| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `nlp` | The pipeline to use for scoring, where each pipeline component may provide a scoring method. If none is provided, then a default pipeline is constructed using the `default_lang` and `default_pipeline` settings. ~~Optional[Language]~~ | +| `default_lang` | The language to use for a default pipeline if `nlp` is not provided. Defaults to `xx`. ~~str~~ | +| `default_pipeline` | The pipeline components to use for a default pipeline if `nlp` is not provided. Defaults to `("senter", "tagger", "morphologizer", "parser", "ner", "textcat")`. ~~Iterable[string]~~ | +| _keyword-only_ | | +| `\*\*kwargs` | Any additional settings to pass on to the individual scoring methods. ~~Any~~ | ## Scorer.score {#score tag="method"} @@ -37,15 +41,20 @@ Calculate the scores for a list of [`Example`](/api/example) objects using the scoring methods provided by the components in the pipeline. The returned `Dict` contains the scores provided by the individual pipeline -components. For the scoring methods provided by the `Scorer` and use by the core -pipeline components, the individual score names start with the `Token` or `Doc` -attribute being scored: +components. For the scoring methods provided by the `Scorer` and used by the +core pipeline components, the individual score names start with the `Token` or +`Doc` attribute being scored: -- `token_acc`, `token_p`, `token_r`, `token_f`, +- `token_acc`, `token_p`, `token_r`, `token_f` - `sents_p`, `sents_r`, `sents_f` -- `tag_acc`, `pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc` +- `tag_acc` +- `pos_acc` +- `morph_acc`, `morph_micro_p`, `morph_micro_r`, `morph_micro_f`, + `morph_per_feat` +- `lemma_acc` - `dep_uas`, `dep_las`, `dep_las_per_type` - `ents_p`, `ents_r` `ents_f`, `ents_per_type` +- `spans_sc_p`, `spans_sc_r`, `spans_sc_f` - `cats_score` (depends on config, description provided in `cats_score_desc`), `cats_micro_p`, `cats_micro_r`, `cats_micro_f`, `cats_macro_p`, `cats_macro_r`, `cats_macro_f`, `cats_macro_auc`, `cats_f_per_type`, @@ -80,7 +89,7 @@ Docs with `has_unknown_spaces` are skipped during scoring. > ``` | Name | Description | -| ----------- | ------------------------------------------------------------------------------------------------------------------- | +| ----------- | ------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------ | | `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | | **RETURNS** | `Dict` | A dictionary containing the scores `token_acc`, `token_p`, `token_r`, `token_f`. ~~Dict[str, float]]~~ | @@ -120,14 +129,14 @@ scoring. > print(scores["morph_per_feat"]) > ``` -| Name | Description | -| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | -| `attr` | The attribute to score. ~~str~~ | -| _keyword-only_ | | -| `getter` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. ~~Callable[[Token, str], Any]~~ | -| `missing_values` | Attribute values to treat as missing annotation in the reference annotation. Defaults to `{0, None, ""}`. ~~Set[Any]~~ | -| **RETURNS** | A dictionary containing the per-feature PRF scores under the key `{attr}_per_feat`. ~~Dict[str, Dict[str, float]]~~ | +| Name | Description | +| ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | +| `attr` | The attribute to score. ~~str~~ | +| _keyword-only_ | | +| `getter` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. ~~Callable[[Token, str], Any]~~ | +| `missing_values` | Attribute values to treat as missing annotation in the reference annotation. Defaults to `{0, None, ""}`. ~~Set[Any]~~ | +| **RETURNS** | A dictionary containing the micro PRF scores under the key `{attr}_micro_p/r/f` and the per-feature PRF scores under `{attr}_per_feat`. ~~Dict[str, Dict[str, float]]~~ | ## Scorer.score_spans {#score_spans tag="staticmethod" new="3"} @@ -253,3 +262,11 @@ entities that overlap between the gold reference and the predictions. | _keyword-only_ | | | `negative_labels` | The string values that refer to no annotation (e.g. "NIL"). ~~Iterable[str]~~ | | **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ | + +## get_ner_prf {#get_ner_prf new="3"} + +Compute micro-PRF and per-entity PRF scores. + +| Name | Description | +| ---------- | ------------------------------------------------------------------------------------------------------------------- | +| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | diff --git a/website/docs/api/sentencerecognizer.md b/website/docs/api/sentencerecognizer.md index 8d8e57319..29bf10393 100644 --- a/website/docs/api/sentencerecognizer.md +++ b/website/docs/api/sentencerecognizer.md @@ -39,9 +39,11 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("senter", config=config) > ``` -| Setting | Description | -| ------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| Setting | Description | +| ---------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/senter.pyx @@ -70,11 +72,14 @@ Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#add_pipe). -| Name | Description | -| ------- | -------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| Name | Description | +| ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ | ## SentenceRecognizer.\_\_call\_\_ {#call tag="method"} @@ -248,21 +253,6 @@ predicted scores. | `scores` | Scores representing the model's predictions. | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | -## SentenceRecognizer.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = senter.score(examples) -> ``` - -| Name | Description | -| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"`, `"tag"` and `"lemma"`. ~~Dict[str, float]~~ | - ## SentenceRecognizer.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. diff --git a/website/docs/api/sentencizer.md b/website/docs/api/sentencizer.md index ef2465c27..b75c7a2f1 100644 --- a/website/docs/api/sentencizer.md +++ b/website/docs/api/sentencizer.md @@ -37,9 +37,11 @@ how the component should be configured. You can override its settings via the > nlp.add_pipe("sentencizer", config=config) > ``` -| Setting | Description | -| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None`. ~~Optional[List[str]]~~ | `None` | +| Setting | Description | +| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None`. ~~Optional[List[str]]~~ | `None` | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"` ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/sentencizer.pyx @@ -60,10 +62,12 @@ Initialize the sentencizer. > sentencizer = Sentencizer() > ``` -| Name | Description | -| -------------- | ----------------------------------------------------------------------------------------------------------------------- | -| _keyword-only_ | | -| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. ~~Optional[List[str]]~~ | +| Name | Description | +| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- | +| _keyword-only_ | | +| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. ~~Optional[List[str]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"` ~~Optional[Callable]~~ | ```python ### punct_chars defaults @@ -122,21 +126,6 @@ applied to the `Doc` in order. | `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ | | **YIELDS** | The processed documents in order. ~~Doc~~ | -## Sentencizer.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = sentencizer.score(examples) -> ``` - -| Name | Description | -| ----------- | --------------------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). ~~Dict[str, Union[float, Dict[str, float]]~~ | - ## Sentencizer.to_disk {#to_disk tag="method"} Save the sentencizer settings (punctuation characters) to a directory. Will diff --git a/website/docs/api/span.md b/website/docs/api/span.md index 2938b4253..7ecebf93e 100644 --- a/website/docs/api/span.md +++ b/website/docs/api/span.md @@ -518,6 +518,27 @@ sent = doc[sent.start : max(sent.end, span.end)] | ----------- | ------------------------------------------------------- | | **RETURNS** | The sentence span that this span is a part of. ~~Span~~ | +## Span.sents {#sents tag="property" model="sentences" new="3.2.1"} + +Returns a generator over the sentences the span belongs to. This property is only available +when [sentence boundaries](/usage/linguistic-features#sbd) have been set on the +document by the `parser`, `senter`, `sentencizer` or some custom function. It +will raise an error otherwise. + +If the span happens to cross sentence boundaries, all sentences the span overlaps with will be returned. + +> #### Example +> +> ```python +> doc = nlp("Give it back! He pleaded.") +> span = doc[2:4] +> assert len(span.sents) == 2 +> ``` + +| Name | Description | +| ----------- | -------------------------------------------------------------------------- | +| **RETURNS** | A generator yielding sentences this `Span` is a part of ~~Iterable[Span]~~ | + ## Attributes {#attributes} | Name | Description | diff --git a/website/docs/api/spancategorizer.md b/website/docs/api/spancategorizer.md index 4edc6fb5b..26fcaefdf 100644 --- a/website/docs/api/spancategorizer.md +++ b/website/docs/api/spancategorizer.md @@ -59,6 +59,7 @@ architectures and their arguments and hyperparameters. | `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"spans"`. ~~str~~ | | `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ | | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/spancat.py @@ -257,22 +258,6 @@ predicted scores. | `spans_scores` | Scores representing the model's predictions. ~~Tuple[Ragged, Floats2d]~~ | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | -## SpanCategorizer.score {#score tag="method"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = spancat.score(examples) -> ``` - -| Name | Description | -| -------------- | ---------------------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| _keyword-only_ | | -| **RETURNS** | The scores, produced by [`Scorer.score_spans`](/api/scorer#score_spans). ~~Dict[str, Union[float, Dict[str, float]]]~~ | - ## SpanCategorizer.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. diff --git a/website/docs/api/tagger.md b/website/docs/api/tagger.md index f34456b0c..b51864d3a 100644 --- a/website/docs/api/tagger.md +++ b/website/docs/api/tagger.md @@ -40,9 +40,12 @@ architectures and their arguments and hyperparameters. > nlp.add_pipe("tagger", config=config) > ``` -| Setting | Description | -| ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| Setting | Description | +| ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ | +| `neg_prefix` 3.2.1 | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ | ```python %%GITHUB_SPACY/spacy/pipeline/tagger.pyx @@ -69,11 +72,14 @@ Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#add_pipe). -| Name | Description | -| ------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| Name | Description | +| ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ | +| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ | ## Tagger.\_\_call\_\_ {#call tag="method"} @@ -264,21 +270,6 @@ predicted scores. | `scores` | Scores representing the model's predictions. | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | -## Tagger.score {#score tag="method" new="3"} - -Score a batch of examples. - -> #### Example -> -> ```python -> scores = tagger.score(examples) -> ``` - -| Name | Description | -| ----------- | --------------------------------------------------------------------------------------------------------------------------------- | -| `examples` | The examples to score. ~~Iterable[Example]~~ | -| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Dict[str, float]~~ | - ## Tagger.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md index 62a921d02..47f868637 100644 --- a/website/docs/api/textcategorizer.md +++ b/website/docs/api/textcategorizer.md @@ -112,13 +112,14 @@ Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#create_pipe). -| Name | Description | -| -------------- | -------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | -| _keyword-only_ | | -| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| _keyword-only_ | | +| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | +| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | ## TextCategorizer.\_\_call\_\_ {#call tag="method"} diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index c78a1de03..be19f9c3a 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -83,7 +83,7 @@ Create a blank pipeline of a given language class. This function is the twin of | Name | Description | | ----------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `name` | [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) of the language class to load. ~~str~~ | +| `name` | [IETF language tag](https://www.w3.org/International/articles/language-tags/), such as 'en', of the language class to load. ~~str~~ | | _keyword-only_ | | | `vocab` | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~ | | `config` 3 | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ | @@ -313,11 +313,12 @@ If a setting is not present in the options, the default value will be used. > displacy.serve(doc, style="ent", options=options) > ``` -| Name | Description | -| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `ents` | Entity types to highlight or `None` for all types (default). ~~Optional[List[str]]~~ | -| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | -| `template` 2.2 | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | +| Name | Description | +| ------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `ents` | Entity types to highlight or `None` for all types (default). ~~Optional[List[str]]~~ | +| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ | +| `template` 2.2 | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ | +| `kb_url_template` 3.2.1 | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ | By default, displaCy comes with colors for all entity types used by [spaCy's trained pipelines](/models). If you're using custom entity types, you @@ -326,6 +327,14 @@ or pipeline package can also expose a [`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy) to add custom labels and their colors automatically. +By default, displaCy links to `#` for entities without a `kb_id` set on their +span. If you wish to link an entity to their URL then consider using the +`kb_url_template` option from above. For example if the `kb_id` on a span is +`Q95` and this is a Wikidata identifier then this option can be set to +`https://www.wikidata.org/wiki/{}`. Clicking on your entity in the rendered HTML +should redirect you to their Wikidata page, in this case +`https://www.wikidata.org/wiki/Q95`. + ## registry {#registry source="spacy/util.py" new="3"} spaCy's function registry extends @@ -373,6 +382,7 @@ factories. | `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). | | `readers` | Registry for file and data readers, including training and evaluation data readers like [`Corpus`](/api/corpus). | | `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). | +| `scorers` | Registry for functions that create scoring methods for user with the [`Scorer`](/api/scorer). Scoring methods are called with `Iterable[Example]` and arbitrary `\*\*kwargs` and return scores as `Dict[str, Any]`. | | `tokenizers` | Registry for tokenizer factories. Registered functions should return a callback that receives the `nlp` object and returns a [`Tokenizer`](/api/tokenizer) or a custom callable. | ### spacy-transformers registry {#registry-transformers} @@ -410,10 +420,13 @@ finished. To log each training step, a [`spacy train`](/api/cli#train), including information such as the training loss and the accuracy scores on the development set. -There are two built-in logging functions: a logger printing results to the -console in tabular format (which is the default), and one that also sends the -results to a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of -using one of the built-in loggers listed here, you can also +The built-in, default logger is the ConsoleLogger, which prints results to the +console in tabular format. The +[spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as +a dependency of spaCy, enables other loggers: currently it provides one that +sends results to a [Weights & Biases](https://www.wandb.com/) dashboard. + +Instead of using one of the built-in loggers, you can [implement your own](/usage/training#custom-logging). #### spacy.ConsoleLogger.v1 {#ConsoleLogger tag="registered function"} @@ -462,64 +475,6 @@ start decreasing across epochs. -#### spacy.WandbLogger.v3 {#WandbLogger tag="registered function"} - -> #### Installation -> -> ```bash -> $ pip install wandb -> $ wandb login -> ``` - -Built-in logger that sends the results of each training step to the dashboard of -the [Weights & Biases](https://www.wandb.com/) tool. To use this logger, Weights -& Biases should be installed, and you should be logged in. The logger will send -the full config file to W&B, as well as various system information such as -memory utilization, network traffic, disk IO, GPU statistics, etc. This will -also include information such as your hostname and operating system, as well as -the location of your Python executable. - - - -Note that by default, the full (interpolated) -[training config](/usage/training#config) is sent over to the W&B dashboard. If -you prefer to **exclude certain information** such as path names, you can list -those fields in "dot notation" in the `remove_config_values` parameter. These -fields will then be removed from the config before uploading, but will otherwise -remain in the config file stored on your local system. - - - -> #### Example config -> -> ```ini -> [training.logger] -> @loggers = "spacy.WandbLogger.v3" -> project_name = "monitor_spacy_training" -> remove_config_values = ["paths.train", "paths.dev", "corpora.train.path", "corpora.dev.path"] -> log_dataset_dir = "corpus" -> model_log_interval = 1000 -> ``` - -| Name | Description | -| ---------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `project_name` | The name of the project in the Weights & Biases interface. The project will be created automatically if it doesn't exist yet. ~~str~~ | -| `remove_config_values` | A list of values to include from the config before it is uploaded to W&B (default: empty). ~~List[str]~~ | -| `model_log_interval` | Steps to wait between logging model checkpoints to W&B dasboard (default: None). ~~Optional[int]~~ | -| `log_dataset_dir` | Directory containing dataset to be logged and versioned as W&B artifact (default: None). ~~Optional[str]~~ | -| `run_name` | The name of the run. If you don't specify a run_name, the name will be created by wandb library. (default: None ). ~~Optional[str]~~ | -| `entity` | An entity is a username or team name where you're sending runs. If you don't specify an entity, the run will be sent to your default entity, which is usually your username. (default: None). ~~Optional[str]~~ | - - - -Get started with tracking your spaCy training runs in Weights & Biases using our -project template. It trains on the IMDB Movie Review Dataset and includes a -simple config with the built-in `WandbLogger`, as well as a custom example of -creating variants of the config for a simple hyperparameter grid search and -logging the results. - - - ## Readers {#readers} ### File readers {#file-readers source="github.com/explosion/srsly" new="3"} diff --git a/website/docs/api/vectors.md b/website/docs/api/vectors.md index 1a7f7a3f5..b3bee822c 100644 --- a/website/docs/api/vectors.md +++ b/website/docs/api/vectors.md @@ -8,15 +8,30 @@ new: 2 Vectors data is kept in the `Vectors.data` attribute, which should be an instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU -vectors). Multiple keys can be mapped to the same vector, and not all of the -rows in the table need to be assigned – so `vectors.n_keys` may be greater or -smaller than `vectors.shape[0]`. +vectors). + +As of spaCy v3.2, `Vectors` supports two types of vector tables: + +- `default`: A standard vector table (as in spaCy v3.1 and earlier) where each + key is mapped to one row in the vector table. Multiple keys can be mapped to + the same vector, and not all of the rows in the table need to be assigned – so + `vectors.n_keys` may be greater or smaller than `vectors.shape[0]`. +- `floret`: Only supports vectors trained with + [floret](https://github.com/explosion/floret), an extended version of + [fastText](https://fasttext.cc) that produces compact vector tables by + combining fastText's subword ngrams with Bloom embeddings. The compact tables + are similar to the [`HashEmbed`](https://thinc.ai/docs/api-layers#hashembed) + embeddings already used in many spaCy components. Each word is represented as + the sum of one or more rows as determined by the settings related to character + ngrams and the hash table. ## Vectors.\_\_init\_\_ {#init tag="method"} -Create a new vector store. You can set the vector values and keys directly on -initialization, or supply a `shape` keyword argument to create an empty table -you can add vectors to later. +Create a new vector store. With the default mode, you can set the vector values +and keys directly on initialization, or supply a `shape` keyword argument to +create an empty table you can add vectors to later. In floret mode, the complete +vector data and settings must be provided on initialization and cannot be +modified later. > #### Example > @@ -30,13 +45,21 @@ you can add vectors to later. > vectors = Vectors(data=data, keys=keys) > ``` -| Name | Description | -| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| _keyword-only_ | | -| `shape` | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ | -| `data` | The vector data. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | -| `keys` | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~ | -| `name` | A name to identify the vectors table. ~~str~~ | +| Name | Description | +| ----------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| _keyword-only_ | | +| `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ | +| `shape` | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ | +| `data` | The vector data. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | +| `keys` | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~ | +| `name` | A name to identify the vectors table. ~~str~~ | +| `mode` 3.2 | Vectors mode: `"default"` or [`"floret"`](https://github.com/explosion/floret) (default: `"default"`). ~~str~~ | +| `minn` 3.2 | The floret char ngram minn (default: `0`). ~~int~~ | +| `maxn` 3.2 | The floret char ngram maxn (default: `0`). ~~int~~ | +| `hash_count` 3.2 | The floret hash count. Supported values: 1--4 (default: `1`). ~~int~~ | +| `hash_seed` 3.2 | The floret hash seed (default: `0`). ~~int~~ | +| `bow` 3.2 | The floret BOW string (default: `"<"`). ~~str~~ | +| `eow` 3.2 | The floret EOW string (default: `">"`). ~~str~~ | ## Vectors.\_\_getitem\_\_ {#getitem tag="method"} @@ -53,12 +76,12 @@ raised. | Name | Description | | ----------- | ---------------------------------------------------------------- | -| `key` | The key to get the vector for. ~~int~~ | +| `key` | The key to get the vector for. ~~Union[int, str]~~ | | **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | ## Vectors.\_\_setitem\_\_ {#setitem tag="method"} -Set a vector for the given key. +Set a vector for the given key. Not supported for `floret` mode. > #### Example > @@ -75,7 +98,8 @@ Set a vector for the given key. ## Vectors.\_\_iter\_\_ {#iter tag="method"} -Iterate over the keys in the table. +Iterate over the keys in the table. In `floret` mode, the keys table is not +used. > #### Example > @@ -105,7 +129,8 @@ Return the number of vectors in the table. ## Vectors.\_\_contains\_\_ {#contains tag="method"} -Check whether a key has been mapped to a vector entry in the table. +Check whether a key has been mapped to a vector entry in the table. In `floret` +mode, returns `True` for all keys. > #### Example > @@ -123,11 +148,8 @@ Check whether a key has been mapped to a vector entry in the table. ## Vectors.add {#add tag="method"} Add a key to the table, optionally setting a vector value as well. Keys can be -mapped to an existing vector by setting `row`, or a new vector can be added. -When adding string keys, keep in mind that the `Vectors` class itself has no -[`StringStore`](/api/stringstore), so you have to store the hash-to-string -mapping separately. If you need to manage the strings, you should use the -`Vectors` via the [`Vocab`](/api/vocab) class, e.g. `vocab.vectors`. +mapped to an existing vector by setting `row`, or a new vector can be added. Not +supported for `floret` mode. > #### Example > @@ -152,7 +174,8 @@ Resize the underlying vectors array. If `inplace=True`, the memory is reallocated. This may cause other references to the data to become invalid, so only use `inplace=True` if you're sure that's what you want. If the number of vectors is reduced, keys mapped to rows that have been deleted are removed. -These removed items are returned as a list of `(key, row)` tuples. +These removed items are returned as a list of `(key, row)` tuples. Not supported +for `floret` mode. > #### Example > @@ -168,7 +191,8 @@ These removed items are returned as a list of `(key, row)` tuples. ## Vectors.keys {#keys tag="method"} -A sequence of the keys in the table. +A sequence of the keys in the table. In `floret` mode, the keys table is not +used. > #### Example > @@ -185,7 +209,7 @@ A sequence of the keys in the table. Iterate over vectors that have been assigned to at least one key. Note that some vectors may be unassigned, so the number of vectors returned may be less than -the length of the vectors table. +the length of the vectors table. In `floret` mode, the keys table is not used. > #### Example > @@ -200,7 +224,8 @@ the length of the vectors table. ## Vectors.items {#items tag="method"} -Iterate over `(key, vector)` pairs, in order. +Iterate over `(key, vector)` pairs, in order. In `floret` mode, the keys table +is empty. > #### Example > @@ -215,7 +240,7 @@ Iterate over `(key, vector)` pairs, in order. ## Vectors.find {#find tag="method"} -Look up one or more keys by row, or vice versa. +Look up one or more keys by row, or vice versa. Not supported for `floret` mode. > #### Example > @@ -273,7 +298,8 @@ The vector size, i.e. `rows * dims`. Whether the vectors table is full and has no slots are available for new keys. If a table is full, it can be resized using -[`Vectors.resize`](/api/vectors#resize). +[`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always +full and cannot be resized. > #### Example > @@ -291,7 +317,7 @@ If a table is full, it can be resized using Get the number of keys in the table. Note that this is the number of _all_ keys, not just unique vectors. If several keys are mapped to the same vectors, they -will be counted individually. +will be counted individually. In `floret` mode, the keys table is not used. > #### Example > @@ -311,7 +337,8 @@ For each of the given vectors, find the `n` most similar entries to it by cosine. Queries are by vector. Results are returned as a `(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are performed in chunks to avoid consuming too much memory. You can set the -`batch_size` to control the size/space trade-off during the calculations. +`batch_size` to control the size/space trade-off during the calculations. Not +supported for `floret` mode. > #### Example > @@ -329,6 +356,38 @@ performed in chunks to avoid consuming too much memory. You can set the | `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ | | **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ | +## Vectors.get_batch {#get_batch tag="method" new="3.2"} + +Get the vectors for the provided keys efficiently as a batch. + +> #### Example +> +> ```python +> words = ["cat", "dog"] +> vectors = nlp.vocab.vectors.get_batch(words) +> ``` + +| Name | Description | +| ------ | --------------------------------------- | +| `keys` | The keys. ~~Iterable[Union[int, str]]~~ | + +## Vectors.to_ops {#to_ops tag="method"} + +Change the embedding matrix to use different Thinc ops. + +> #### Example +> +> ```python +> from thinc.api import NumpyOps +> +> vectors.to_ops(NumpyOps()) +> +> ``` + +| Name | Description | +|-------|----------------------------------------------------------| +| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ | + ## Vectors.to_disk {#to_disk tag="method"} Save the current state to a directory. diff --git a/website/docs/usage/embeddings-transformers.md b/website/docs/usage/embeddings-transformers.md index 985678d15..2b74b6c57 100644 --- a/website/docs/usage/embeddings-transformers.md +++ b/website/docs/usage/embeddings-transformers.md @@ -391,8 +391,8 @@ A wide variety of PyTorch models are supported, but some might not work. If a model doesn't seem to work feel free to open an [issue](https://github.com/explosion/spacy/issues). Additionally note that Transformers loaded in spaCy can only be used for tensors, and pretrained -task-specific heads or text generation features cannot be used as part of -the `transformer` pipeline component. +task-specific heads or text generation features cannot be used as part of the +`transformer` pipeline component. @@ -715,8 +715,8 @@ network for a temporary task that forces the model to learn something about sentence structure and word cooccurrence statistics. Pretraining produces a **binary weights file** that can be loaded back in at the -start of training, using the configuration option `initialize.init_tok2vec`. -The weights file specifies an initial set of weights. Training then proceeds as +start of training, using the configuration option `initialize.init_tok2vec`. The +weights file specifies an initial set of weights. Training then proceeds as normal. You can only pretrain one subnetwork from your pipeline at a time, and the @@ -751,15 +751,14 @@ layer = "tok2vec" #### Connecting pretraining to training {#pretraining-training} -To benefit from pretraining, your training step needs to know to initialize -its `tok2vec` component with the weights learned from the pretraining step. -You do this by setting `initialize.init_tok2vec` to the filename of the -`.bin` file that you want to use from pretraining. +To benefit from pretraining, your training step needs to know to initialize its +`tok2vec` component with the weights learned from the pretraining step. You do +this by setting `initialize.init_tok2vec` to the filename of the `.bin` file +that you want to use from pretraining. -A pretraining step that runs for 5 epochs with an output path of `pretrain/`, -as an example, produces `pretrain/model0.bin` through `pretrain/model4.bin`. -To make use of the final output, you could fill in this value in your config -file: +A pretraining step that runs for 5 epochs with an output path of `pretrain/`, as +an example, produces `pretrain/model0.bin` through `pretrain/model4.bin`. To +make use of the final output, you could fill in this value in your config file: ```ini ### config.cfg @@ -773,16 +772,14 @@ init_tok2vec = ${paths.init_tok2vec} -The outputs of `spacy pretrain` are not the same data format as the -pre-packaged static word vectors that would go into -[`initialize.vectors`](/api/data-formats#config-initialize). -The pretraining output consists of the weights that the `tok2vec` -component should start with in an existing pipeline, so it goes in -`initialize.init_tok2vec`. +The outputs of `spacy pretrain` are not the same data format as the pre-packaged +static word vectors that would go into +[`initialize.vectors`](/api/data-formats#config-initialize). The pretraining +output consists of the weights that the `tok2vec` component should start with in +an existing pipeline, so it goes in `initialize.init_tok2vec`. - #### Pretraining objectives {#pretraining-objectives} > ```ini diff --git a/website/docs/usage/linguistic-features.md b/website/docs/usage/linguistic-features.md index f8f47ab53..f748fa8d6 100644 --- a/website/docs/usage/linguistic-features.md +++ b/website/docs/usage/linguistic-features.md @@ -105,7 +105,7 @@ coarse-grained part-of-speech tags and morphological features. that the verb is past tense (e.g. `VBD` for a past tense verb in the Penn Treebank) . 2. For words whose coarse-grained POS is not set by a prior process, a - [mapping table](#mapping-exceptions) maps the fine-grained tags to a + [mapping table](#mappings-exceptions) maps the fine-grained tags to a coarse-grained POS tags and morphological features. ```python diff --git a/website/docs/usage/models.md b/website/docs/usage/models.md index d1c9a0a81..3b79c4d0d 100644 --- a/website/docs/usage/models.md +++ b/website/docs/usage/models.md @@ -247,6 +247,10 @@ config can be used to configure the split mode to `A`, `B` or `C`. split_mode = "A" ``` +Extra information, such as reading, inflection form, and the SudachiPy +normalized form, is available in `Token.morph`. For `B` or `C` split modes, +subtokens are stored in `Doc.user_data["sub_tokens"]`. + If you run into errors related to `sudachipy`, which is currently under active diff --git a/website/docs/usage/processing-pipelines.md b/website/docs/usage/processing-pipelines.md index 0264a2825..11fd1459d 100644 --- a/website/docs/usage/processing-pipelines.md +++ b/website/docs/usage/processing-pipelines.md @@ -1479,7 +1479,7 @@ especially useful it you want to pass in a string instead of calling ### Example: Pipeline component for GPE entities and country meta data via a REST API {#component-example3} This example shows the implementation of a pipeline component that fetches -country meta data via the [REST Countries API](https://restcountries.eu), sets +country meta data via the [REST Countries API](https://restcountries.com), sets entity annotations for countries and sets custom attributes on the `Doc` and `Span` – for example, the capital, latitude/longitude coordinates and even the country flag. @@ -1495,7 +1495,7 @@ from spacy.tokens import Doc, Span, Token @Language.factory("rest_countries") class RESTCountriesComponent: def __init__(self, nlp, name, label="GPE"): - r = requests.get("https://restcountries.eu/rest/v2/all") + r = requests.get("https://restcountries.com/v2/all") r.raise_for_status() # make sure requests raises an error if it fails countries = r.json() # Convert API response to dict keyed by country name for easy lookup diff --git a/website/docs/usage/projects.md b/website/docs/usage/projects.md index 6f6cef7c8..e0e787a1d 100644 --- a/website/docs/usage/projects.md +++ b/website/docs/usage/projects.md @@ -1016,20 +1016,22 @@ commands: [Weights & Biases](https://www.wandb.com/) is a popular platform for experiment tracking. spaCy integrates with it out-of-the-box via the -[`WandbLogger`](/api/top-level#WandbLogger), which you can add as the -`[training.logger]` block of your training [config](/usage/training#config). The -results of each step are then logged in your project, together with the full -**training config**. This means that _every_ hyperparameter, registered function -name and argument will be tracked and you'll be able to see the impact it has on -your results. +[`WandbLogger`](https://github.com/explosion/spacy-loggers#wandblogger), which +you can add as the `[training.logger]` block of your training +[config](/usage/training#config). The results of each step are then logged in +your project, together with the full **training config**. This means that +_every_ hyperparameter, registered function name and argument will be tracked +and you'll be able to see the impact it has on your results. > #### Example config > > ```ini > [training.logger] -> @loggers = "spacy.WandbLogger.v2" +> @loggers = "spacy.WandbLogger.v3" > project_name = "monitor_spacy_training" > remove_config_values = ["paths.train", "paths.dev", "corpora.train.path", "corpora.dev.path"] +> log_dataset_dir = "corpus" +> model_log_interval = 1000 > ``` ![Screenshot: Visualized training results](../images/wandb1.jpg) diff --git a/website/docs/usage/training.md b/website/docs/usage/training.md index bd5ea7751..f46f0052b 100644 --- a/website/docs/usage/training.md +++ b/website/docs/usage/training.md @@ -942,8 +942,8 @@ During training, the results of each step are passed to a logger function. By default, these results are written to the console with the [`ConsoleLogger`](/api/top-level#ConsoleLogger). There is also built-in support for writing the log files to [Weights & Biases](https://www.wandb.com/) with the -[`WandbLogger`](/api/top-level#WandbLogger). On each step, the logger function -receives a **dictionary** with the following keys: +[`WandbLogger`](https://github.com/explosion/spacy-loggers#wandblogger). On each +step, the logger function receives a **dictionary** with the following keys: | Key | Value | | -------------- | ----------------------------------------------------------------------------------------------------- | diff --git a/website/docs/usage/v3-2.md b/website/docs/usage/v3-2.md new file mode 100644 index 000000000..d1d45c7ba --- /dev/null +++ b/website/docs/usage/v3-2.md @@ -0,0 +1,244 @@ +--- +title: What's New in v3.2 +teaser: New features and how to upgrade +menu: + - ['New Features', 'features'] + - ['Upgrading Notes', 'upgrading'] +--- + +## New Features {#features hidden="true"} + +spaCy v3.2 adds support for [`floret`](https://github.com/explosion/floret) +vectors, makes custom `Doc` creation and scoring easier, and includes many bug +fixes and improvements. For the trained pipelines, there's a new transformer +pipeline for Japanese and the Universal Dependencies training data has been +updated across the board to the most recent release. + + + +spaCy is now up to **8 × faster on M1 Macs** by calling into Apple's +native Accelerate library for matrix multiplication. For more details, see +[`thinc-apple-ops`](https://github.com/explosion/thinc-apple-ops). + +```bash +$ pip install spacy[apple] +``` + + + +### Registered scoring functions {#registered-scoring-functions} + +To customize the scoring, you can specify a scoring function for each component +in your config from the new [`scorers` registry](/api/top-level#registry): + +```ini +### config.cfg (excerpt) {highlight="3"} +[components.tagger] +factory = "tagger" +scorer = {"@scorers":"spacy.tagger_scorer.v1"} +``` + +### Overwrite settings {#overwrite} + +Most pipeline components now include an `overwrite` setting in the config that +determines whether existing annotation in the `Doc` is preserved or overwritten: + +```ini +### config.cfg (excerpt) {highlight="3"} +[components.tagger] +factory = "tagger" +overwrite = false +``` + +### Doc input for pipelines {#doc-input} + +[`nlp`](/api/language#call) and [`nlp.pipe`](/api/language#pipe) accept +[`Doc`](/api/doc) input, skipping the tokenizer if a `Doc` is provided instead +of a string. This makes it easier to create a `Doc` with custom tokenization or +to set custom extensions before processing: + +```python +doc = nlp.make_doc("This is text 500.") +doc._.text_id = 500 +doc = nlp(doc) +``` + +### Support for floret vectors {#vectors} + +We recently published [`floret`](https://github.com/explosion/floret), an +extended version of [fastText](https://fasttext.cc) that combines fastText's +subwords with Bloom embeddings for compact, full-coverage vectors. The use of +subwords means that there are no OOV words and due to Bloom embeddings, the +vector table can be kept very small at <100K entries. Bloom embeddings are +already used by [HashEmbed](https://thinc.ai/docs/api-layers#hashembed) in +[tok2vec](/api/architectures#tok2vec-arch) for compact spaCy models. + +For easy integration, floret includes a +[Python wrapper](https://github.com/explosion/floret/blob/main/python/README.md): + +```bash +$ pip install floret +``` + +A demo project shows how to train and import floret vectors: + + + +Train toy English floret vectors and import them into a spaCy pipeline. + + + +Two additional demo projects compare standard fastText vectors with floret +vectors for full spaCy pipelines. For agglutinative languages like Finnish or +Korean, there are large improvements in performance due to the use of subwords +(no OOV words!), with a vector table containing merely 50K entries. + + + +Finnish UD+NER vector and pipeline training, comparing standard fasttext vs. +floret vectors. + +For the default project settings with 1M (2.6G) tokenized training texts and 50K +300-dim vectors, ~300K keys for the standard vectors: + +| Vectors | TAG | POS | DEP UAS | DEP LAS | NER F | +| -------------------------------------------- | -------: | -------: | -------: | -------: | -------: | +| none | 93.3 | 92.3 | 79.7 | 72.8 | 61.0 | +| standard (pruned: 50K vectors for 300K keys) | 95.9 | 94.7 | 83.3 | 77.9 | 68.5 | +| standard (unpruned: 300K vectors/keys) | 96.0 | 95.0 | **83.8** | 78.4 | 69.1 | +| floret (minn 4, maxn 5; 50K vectors, no OOV) | **96.6** | **95.5** | 83.5 | **78.5** | **70.9** | + + + + + +Korean UD vector and pipeline training, comparing standard fasttext vs. floret +vectors. + +For the default project settings with 1M (3.3G) tokenized training texts and 50K +300-dim vectors, ~800K keys for the standard vectors: + +| Vectors | TAG | POS | DEP UAS | DEP LAS | +| -------------------------------------------- | -------: | -------: | -------: | -------: | +| none | 72.5 | 85.0 | 73.2 | 64.3 | +| standard (pruned: 50K vectors for 800K keys) | 77.9 | 89.4 | 78.8 | 72.8 | +| standard (unpruned: 800K vectors/keys) | 79.0 | 90.2 | 79.2 | 73.9 | +| floret (minn 2, maxn 3; 50K vectors, no OOV) | **82.5** | **93.8** | **83.0** | **80.1** | + + + +### Updates for spacy-transformers v1.1 {#spacy-transformers} + +[`spacy-transformers`](https://github.com/explosion/spacy-transformers) v1.1 has +been refactored to improve serialization and support of inline transformer +components and replacing listeners. In addition, the transformer model output is +provided as +[`ModelOutput`](https://huggingface.co/transformers/main_classes/output.html?highlight=modeloutput#transformers.file_utils.ModelOutput) +instead of tuples in +`TransformerData.model_output and FullTransformerBatch.model_output.` For +backwards compatibility, the tuple format remains available under +`TransformerData.tensors` and `FullTransformerBatch.tensors`. See more details +in the [transformer API docs](/api/architectures#TransformerModel). + +`spacy-transfomers` v1.1 also adds support for `transformer_config` settings +such as `output_attentions`. Additional output is stored under +`TransformerData.model_output`. More details are in the +[TransformerModel docs](/api/architectures#TransformerModel). The training speed +has been improved by streamlining allocations for tokenizer output and there is +new support for [mixed-precision training](/api/architectures#TransformerModel). + +### New transformer package for Japanese {#pipeline-packages} + +spaCy v3.2 adds a new transformer pipeline package for Japanese +[`ja_core_news_trf`](/models/ja#ja_core_news_trf), which uses the `basic` +pretokenizer instead of `mecab` to limit the number of dependencies required for +the pipeline. Thanks to Hiroshi Matsuda and the spaCy Japanese community for +their contributions! + +### Pipeline and language updates {#pipeline-updates} + +- All Universal Dependencies training data has been updated to v2.8. +- The Catalan data, tokenizer and lemmatizer have been updated, thanks to Carlos + Rodriguez, Carme Armentano and the Barcelona Supercomputing Center! +- The transformer pipelines are trained using spacy-transformers v1.1, with + improved IO and more options for + [model config and output](/api/architectures#TransformerModel). +- Trailing whitespace has been added as a `tok2vec` feature, improving the + performance for many components, especially fine-grained tagging and sentence + segmentation. +- The English attribute ruler patterns have been overhauled to improve + `Token.pos` and `Token.morph`. + +spaCy v3.2 also features a new Irish lemmatizer, support for `noun_chunks` in +Portuguese, improved `noun_chunks` for Spanish and additional updates for +Bulgarian, Catalan, Sinhala, Tagalog, Tigrinya and Vietnamese. + +## Notes about upgrading from v3.1 {#upgrading} + +### Pipeline package version compatibility {#version-compat} + +> #### Using legacy implementations +> +> In spaCy v3, you'll still be able to load and reference legacy implementations +> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the +> components or architectures change and newer versions are available in the +> core library. + +When you're loading a pipeline package trained with spaCy v3.0 or v3.1, you will +see a warning telling you that the pipeline may be incompatible. This doesn't +necessarily have to be true, but we recommend running your pipelines against +your test suite or evaluation data to make sure there are no unexpected results. +If you're using one of the [trained pipelines](/models) we provide, you should +run [`spacy download`](/api/cli#download) to update to the latest version. To +see an overview of all installed packages and their compatibility, you can run +[`spacy validate`](/api/cli#validate). + +If you've trained your own custom pipeline and you've confirmed that it's still +working as expected, you can update the spaCy version requirements in the +[`meta.json`](/api/data-formats#meta): + +```diff +- "spacy_version": ">=3.1.0,<3.2.0", ++ "spacy_version": ">=3.2.0,<3.3.0", +``` + +### Updating v3.1 configs + +To update a config from spaCy v3.1 with the new v3.2 settings, run +[`init fill-config`](/api/cli#init-fill-config): + +```cli +$ python -m spacy init fill-config config-v3.1.cfg config-v3.2.cfg +``` + +In many cases ([`spacy train`](/api/cli#train), +[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in +automatically, but you'll need to fill in the new settings to run +[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data). + +## Notes about upgrading from spacy-transformers v1.0 {#upgrading-transformers} + +When you're loading a transformer pipeline package trained with +[`spacy-transformers`](https://github.com/explosion/spacy-transformers) v1.0 +after upgrading to `spacy-transformers` v1.1, you'll see a warning telling you +that the pipeline may be incompatible. `spacy-transformers` v1.1 should be able +to import v1.0 `transformer` components into the new internal format with no +change in performance, but here we'd also recommend running your test suite to +verify that the pipeline still performs as expected. + +If you save your pipeline with [`nlp.to_disk`](/api/language#to_disk), it will +be saved in the new v1.1 format and should be fully compatible with +`spacy-transformers` v1.1. Once you've confirmed the performance, you can update +the requirements in [`meta.json`](/api/data-formats#meta): + +```diff + "requirements": [ +- "spacy-transformers>=1.0.3,<1.1.0" ++ "spacy-transformers>=1.1.2,<1.2.0" + ] +``` + +If you're using one of the [trained pipelines](/models) we provide, you should +run [`spacy download`](/api/cli#download) to update to the latest version. To +see an overview of all installed packages and their compatibility, you can run +[`spacy validate`](/api/cli#validate). diff --git a/website/meta/languages.json b/website/meta/languages.json index 2ba117d53..a7dda6482 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -192,17 +192,10 @@ "models": [ "ja_core_news_sm", "ja_core_news_md", - "ja_core_news_lg" + "ja_core_news_lg", + "ja_core_news_trf" ], "dependencies": [ - { - "name": "Unidic", - "url": "http://unidic.ninjal.ac.jp/back_number#unidic_cwj" - }, - { - "name": "Mecab", - "url": "https://github.com/taku910/mecab" - }, { "name": "SudachiPy", "url": "https://github.com/WorksApplications/SudachiPy" diff --git a/website/meta/sidebars.json b/website/meta/sidebars.json index 6fe09f052..1054f7626 100644 --- a/website/meta/sidebars.json +++ b/website/meta/sidebars.json @@ -10,7 +10,8 @@ { "text": "Facts & Figures", "url": "/usage/facts-figures" }, { "text": "spaCy 101", "url": "/usage/spacy-101" }, { "text": "New in v3.0", "url": "/usage/v3" }, - { "text": "New in v3.1", "url": "/usage/v3-1" } + { "text": "New in v3.1", "url": "/usage/v3-1" }, + { "text": "New in v3.2", "url": "/usage/v3-2" } ] }, { diff --git a/website/meta/site.json b/website/meta/site.json index b8f1a58ef..169680f86 100644 --- a/website/meta/site.json +++ b/website/meta/site.json @@ -22,7 +22,8 @@ "list": "89ad33e698" }, "docSearch": { - "apiKey": "371e26ed49d29a27bd36273dfdaf89af", + "appId": "Y1LB128RON", + "apiKey": "bb601a1daab73e2dc66faf2b79564807", "indexName": "spacy" }, "binderUrl": "explosion/spacy-io-binder", diff --git a/website/meta/universe.json b/website/meta/universe.json index 80608c77d..0fde2d612 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,43 @@ { "resources": [ + { + "id": "spacypdfreader", + "title": "spadypdfreader", + "category": ["pipeline"], + "tags": ["PDF"], + "slogan": "Easy PDF to text to spaCy text extraction in Python.", + "description": "*spacypdfreader* is a Python library that allows you to convert PDF files directly into *spaCy* `Doc` objects. The library provides several built in parsers or bring your own parser. `Doc` objects are annotated with several custom attributes including: `token._.page_number`, `doc._.page_range`, `doc._.first_page`, `doc._.last_page`, `doc._.pdf_file_name`, and `doc._.page(int)`.", + "github": "SamEdwardes/spacypdfreader", + "pip": "spacypdfreader", + "url": "https://samedwardes.github.io/spacypdfreader/", + "code_language": "python", + "author": "Sam Edwardes", + "author_links": { + "twitter": "TheReaLSamlam", + "github": "SamEdwardes", + "website": "https://samedwardes.com" + }, + "code_example": [ + "import spacy", + "from spacypdfreader import pdf_reader", + "", + "nlp = spacy.load('en_core_web_sm')", + "doc = pdf_reader('tests/data/test_pdf_01.pdf', nlp)", + "", + "# Get the page number of any token.", + "print(doc[0]._.page_number) # 1", + "print(doc[-1]._.page_number) # 4", + "", + "# Get page meta data about the PDF document.", + "print(doc._.pdf_file_name) # 'tests/data/test_pdf_01.pdf'", + "print(doc._.page_range) # (1, 4)", + "print(doc._.first_page) # 1", + "print(doc._.last_page) # 4", + "", + "# Get all of the text from a specific PDF page.", + "print(doc._.page(4)) # 'able to display the destination page (unless...'" + ] + }, { "id": "nlpcloud", "title": "NLPCloud.io", @@ -26,32 +64,6 @@ "category": ["apis", "nonpython", "standalone"], "tags": ["api", "deploy", "production"] }, - { - "id": "denomme", - "title": "denomme : Multilingual Name Detector", - "slogan": "Multilingual Name Detection", - "description": "A SpaCy extension for Spans to extract multilingual names out of documents trained on XLM-roberta backbone", - "github": "meghanabhange/denomme", - "pip": "denomme https://denomme.s3.us-east-2.amazonaws.com/xx_denomme-0.3.1/dist/xx_denomme-0.3.1.tar.gz", - "code_example": [ - "from spacy.lang.xx import MultiLanguage", - "from denomme.name import person_name_component", - "nlp = MultiLanguage()", - "nlp.add_pipe('denomme')", - "doc = nlp('Hi my name is Meghana S.R Bhange and I want to talk Asha')", - "print(doc._.person_name)", - "# ['Meghana S.R Bhange', 'Asha']" - ], - "thumb": "https://i.ibb.co/jwGVWPZ/rainbow-bohemian-logo-removebg-preview.png", - "code_language": "python", - "author": "Meghana Bhange", - "author_links": { - "github": "meghanabhange", - "twitter": "_aspiringcat" - }, - "category": ["standalone"], - "tags": ["person-name-detection"] - }, { "id": "eMFDscore", "title": "eMFDscore : Extended Moral Foundation Dictionary Scoring for Python", @@ -1752,6 +1764,23 @@ }, "category": ["courses"] }, + { + "type": "education", + "id": "applt-course", + "title": "Applied Language Technology", + "slogan": "NLP for newcomers using spaCy and Stanza", + "description": "These learning materials provide an introduction to applied language technology for audiences who are unfamiliar with language technology and programming. The learning materials assume no previous knowledge of the Python programming language.", + "url": "https://applied-language-technology.mooc.fi", + "image": "https://www.mv.helsinki.fi/home/thiippal/images/applt-preview.jpg", + "thumb": "https://www.mv.helsinki.fi/home/thiippal/images/applt-logo.png", + "author": "Tuomo Hiippala", + "author_links": { + "twitter": "tuomo_h", + "github": "thiippal", + "website": "https://www.mv.helsinki.fi/home/thiippal/" + }, + "category": ["courses"] + }, { "type": "education", "id": "video-spacys-ner-model", @@ -2757,6 +2786,54 @@ "website": "https://yanaiela.github.io" } }, + { + "id": "Healthsea", + "title": "Healthsea", + "slogan": "Healthsea: an end-to-end spaCy pipeline for exploring health supplement effects", + "description": "This spaCy project trains an NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities to analyze supplement reviews and their potential effects on health.", + "github": "explosion/healthsea", + "thumb": "https://github.com/explosion/healthsea/blob/main/img/Jellyfish.png", + "category": ["pipeline", "research"], + "code_example": [ + "import spacy", + "", + "nlp = spacy.load(\"en_healthsea\")", + "doc = nlp(\"This is great for joint pain.\")", + "", + "# Clause Segmentation & Blinding", + "print(doc._.clauses)", + "", + "> {", + "> \"split_indices\": [0, 7],", + "> \"has_ent\": true,", + "> \"ent_indices\": [4, 6],", + "> \"blinder\": \"_CONDITION_\",", + "> \"ent_name\": \"joint pain\",", + "> \"cats\": {", + "> \"POSITIVE\": 0.9824668169021606,", + "> \"NEUTRAL\": 0.017364952713251114,", + "> \"NEGATIVE\": 0.00002889777533710003,", + "> \"ANAMNESIS\": 0.0001394189748680219", + "> \"prediction_text\": [\"This\", \"is\", \"great\", \"for\", \"_CONDITION_\", \"!\"]", + "> }", + "", + "# Aggregated results", + "> {", + "> \"joint_pain\": {", + "> \"effects\": [\"POSITIVE\"],", + "> \"effect\": \"POSITIVE\",", + "> \"label\": \"CONDITION\",", + "> \"text\": \"joint pain\"", + "> }", + "> }" + ], + "author": "Edward Schmuhl", + "author_links": { + "github": "thomashacker", + "twitter": "aestheticedwar1", + "website": "https://explosion.ai/" + } + }, { "id": "presidio", "title": "Presidio", @@ -3343,6 +3420,65 @@ "category": ["research", "standalone", "scientific"], "tags": ["Text Analytics", "Coherence", "Cohesion"] }, + { + "id": "lingfeat", + "title": "LingFeat", + "slogan": "A Linguistic Feature Extraction (Text Analysis) Tool for Readability Assessment and Text Simplification", + "description": "LingFeat is a feature extraction library which currently extracts 255 linguistic features from English string input. Categories include syntax, semantics, discourse, and also traditional readability formulas. Published in EMNLP 2021.", + "github": "brucewlee/lingfeat", + "pip": "lingfeat", + "code_example": [ + "from lingfeat import extractor", + "", + "", + "text = 'TAEAN, South Chungcheong Province -- Just before sunup, Lee Young-ho, a seasoned fisherman with over 30 years of experience, silently waits for boats carrying blue crabs as the season for the seafood reaches its height. Soon afterward, small and big boats sail into Sinjin Port in Taean County, South Chungcheong Province, the second-largest source of blue crab after Incheon, accounting for 29 percent of total production of the country. A crane lifts 28 boxes filled with blue crabs weighing 40 kilograms each from the boat, worth about 10 million won ($8,500). “It has been a productive fall season for crabbing here. The water temperature is a very important factor affecting crab production. They hate cold water,” Lee said. The temperature of the sea off Taean appeared to have stayed at the level where crabs become active. If the sea temperature suddenly drops, crabs go into their winter dormancy mode, burrowing into the mud and sleeping through the cold months.'", + "", + "", + "#Pass text", + "LingFeat = extractor.pass_text(text)", + "", + "", + "#Preprocess text", + "LingFeat.preprocess()", + "", + "", + "#Extract features", + "#each method returns a dictionary of the corresponding features", + "#Advanced Semantic (AdSem) Features", + "WoKF = LingFeat.WoKF_() #Wikipedia Knowledge Features", + "WBKF = LingFeat.WBKF_() #WeeBit Corpus Knowledge Features", + "OSKF = LingFeat.OSKF_() #OneStopEng Corpus Knowledge Features", + "", + "#Discourse (Disco) Features", + "EnDF = LingFeat.EnDF_() #Entity Density Features", + "EnGF = LingFeat.EnGF_() #Entity Grid Features", + "", + "#Syntactic (Synta) Features", + "PhrF = LingFeat.PhrF_() #Noun/Verb/Adj/Adv/... Phrasal Features", + "TrSF = LingFeat.TrSF_() #(Parse) Tree Structural Features", + "POSF = LingFeat.POSF_() #Noun/Verb/Adj/Adv/... Part-of-Speech Features", + "", + "#Lexico Semantic (LxSem) Features", + "TTRF = LingFeat.TTRF_() #Type Token Ratio Features", + "VarF = LingFeat.VarF_() #Noun/Verb/Adj/Adv Variation Features", + "PsyF = LingFeat.PsyF_() #Psycholinguistic Difficulty of Words (AoA Kuperman)", + "WoLF = LingFeat.WorF_() #Word Familiarity from Frequency Count (SubtlexUS)", + "", + "Shallow Traditional (ShTra) Features", + "ShaF = LingFeat.ShaF_() #Shallow Features (e.g. avg number of tokens)", + "TraF = LingFeat.TraF_() #Traditional Formulas" + ], + "code_language": "python", + "thumb": "https://raw.githubusercontent.com/brucewlee/lingfeat/master/img/lingfeat_logo2.png", + "image": "https://raw.githubusercontent.com/brucewlee/lingfeat/master/img/lingfeat_logo.png", + "author": "Bruce W. Lee (이웅성)", + "author_links": { + "github": "brucewlee", + "website": "https://brucewlee.github.io/" + }, + "category": ["research", "scientific"], + "tags": ["Readability", "Simplification", "Feature Extraction", "Syntax", "Discourse", "Semantics", "Lexical"] + }, { "id": "hmrb", "title": "Hammurabi", @@ -3518,7 +3654,48 @@ }, "category": ["pipeline", "research", "standalone"], "tags": ["spacy", "python", "nlp", "ner"] - } + }, + { + "id": "WordDumb", + "title": "WordDumb", + "slogan": "A calibre plugin that generates Word Wise and X-Ray files.", + "description": "A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.", + "github": "xxyzz/WordDumb", + "code_language": "python", + "thumb": "https://raw.githubusercontent.com/xxyzz/WordDumb/master/starfish.svg", + "image": "https://user-images.githubusercontent.com/21101839/130245435-b874f19a-7785-4093-9975-81596efc42bb.png", + "author": "xxyzz", + "author_links": { + "github": "xxyzz" + }, + "category": ["standalone"] + }, + { + "id": "eng_spacysentiment", + "title": "eng_spacysentiment", + "slogan": "Simple sentiment analysis using spaCy pipelines", + "description": "Sentiment analysis for simple english sentences using pre-trained spaCy pipelines", + "github": "vishnunkumar/spacysentiment", + "pip": "eng-spacysentiment", + "code_example": [ + "import eng_spacysentiment", + "nlp = eng_spacysentiment.load()", + "text = \"Welcome to Arsenals official YouTube channel Watch as we take you closer and show you the personality of the club\"", + "doc = nlp(text)", + "print(doc.cats)", + "# {'positive': 0.29878824949264526, 'negative': 0.7012117505073547}" + ], + "thumb": "", + "image": "", + "code_language": "python", + "author": "Vishnu Nandakumar", + "author_links": { + "github": "Vishnunkumar", + "twitter": "vishnun_uchiha" + }, + "category": ["pipeline"], + "tags": ["pipeline", "nlp", "sentiment"] + } ], "categories": [ diff --git a/website/src/components/embed.js b/website/src/components/embed.js index 8d82bfaae..9f959bc99 100644 --- a/website/src/components/embed.js +++ b/website/src/components/embed.js @@ -3,6 +3,7 @@ import PropTypes from 'prop-types' import classNames from 'classnames' import Link from './link' +import Button from './button' import { InlineCode } from './code' import { markdownToReact } from './util' @@ -104,4 +105,23 @@ const Image = ({ src, alt, title, ...props }) => { ) } -export { YouTube, SoundCloud, Iframe, Image } +const GoogleSheet = ({ id, link, height, button = 'View full table' }) => { + return ( +
+