mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 15:54:13 +03:00
User fewer Vector internals (#9879)
* Use Vectors.shape rather than Vectors.data.shape * Use Vectors.size rather than Vectors.data.size * Add Vectors.to_ops to move data between different ops * Add documentation for Vector.to_ops
This commit is contained in:
parent
4dfd559e55
commit
50d2a2c930
|
@ -1285,9 +1285,9 @@ class Language:
|
|||
)
|
||||
except IOError:
|
||||
raise IOError(Errors.E884.format(vectors=I["vectors"]))
|
||||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
if self.vocab.vectors.shape[1] >= 1:
|
||||
ops = get_current_ops()
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
self.vocab.vectors.to_ops(ops)
|
||||
if hasattr(self.tokenizer, "initialize"):
|
||||
tok_settings = validate_init_settings(
|
||||
self.tokenizer.initialize, # type: ignore[union-attr]
|
||||
|
@ -1332,8 +1332,8 @@ class Language:
|
|||
DOCS: https://spacy.io/api/language#resume_training
|
||||
"""
|
||||
ops = get_current_ops()
|
||||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
if self.vocab.vectors.shape[1] >= 1:
|
||||
self.vocab.vectors.to_ops(ops)
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "_rehearsal_model"):
|
||||
proc._rehearsal_model = deepcopy(proc.model) # type: ignore[attr-defined]
|
||||
|
|
|
@ -23,7 +23,7 @@ def create_pretrain_vectors(
|
|||
maxout_pieces: int, hidden_size: int, loss: str
|
||||
) -> Callable[["Vocab", Model], Model]:
|
||||
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
|
||||
if vocab.vectors.data.shape[1] == 0:
|
||||
if vocab.vectors.shape[1] == 0:
|
||||
raise ValueError(Errors.E875)
|
||||
model = build_cloze_multi_task_model(
|
||||
vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
|
||||
|
@ -116,7 +116,7 @@ def build_multi_task_model(
|
|||
def build_cloze_multi_task_model(
|
||||
vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int
|
||||
) -> Model:
|
||||
nO = vocab.vectors.data.shape[1]
|
||||
nO = vocab.vectors.shape[1]
|
||||
output_layer = chain(
|
||||
cast(Model[List["Floats2d"], Floats2d], list2array()),
|
||||
Maxout(
|
||||
|
|
|
@ -94,7 +94,7 @@ def init(
|
|||
nM = model.get_dim("nM") if model.has_dim("nM") else None
|
||||
nO = model.get_dim("nO") if model.has_dim("nO") else None
|
||||
if X is not None and len(X):
|
||||
nM = X[0].vocab.vectors.data.shape[1]
|
||||
nM = X[0].vocab.vectors.shape[1]
|
||||
if Y is not None:
|
||||
nO = Y.data.shape[1]
|
||||
|
||||
|
|
|
@ -421,7 +421,7 @@ def test_vector_is_oov():
|
|||
def test_init_vectors_unset():
|
||||
v = Vectors(shape=(10, 10))
|
||||
assert v.is_full is False
|
||||
assert v.data.shape == (10, 10)
|
||||
assert v.shape == (10, 10)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
v = Vectors(shape=(10, 10), mode="floret")
|
||||
|
@ -514,7 +514,7 @@ def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str):
|
|||
# rows: 2 rows per ngram
|
||||
rows = OPS.xp.asarray(
|
||||
[
|
||||
h % nlp.vocab.vectors.data.shape[0]
|
||||
h % nlp.vocab.vectors.shape[0]
|
||||
for ngram in ngrams
|
||||
for h in nlp.vocab.vectors._get_ngram_hashes(ngram)
|
||||
],
|
||||
|
@ -544,17 +544,17 @@ def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str):
|
|||
# an empty key returns 0s
|
||||
assert_equal(
|
||||
OPS.to_numpy(nlp.vocab[""].vector),
|
||||
numpy.zeros((nlp.vocab.vectors.data.shape[0],)),
|
||||
numpy.zeros((nlp.vocab.vectors.shape[0],)),
|
||||
)
|
||||
# an empty batch returns 0s
|
||||
assert_equal(
|
||||
OPS.to_numpy(nlp.vocab.vectors.get_batch([""])),
|
||||
numpy.zeros((1, nlp.vocab.vectors.data.shape[0])),
|
||||
numpy.zeros((1, nlp.vocab.vectors.shape[0])),
|
||||
)
|
||||
# an empty key within a batch returns 0s
|
||||
assert_equal(
|
||||
OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]),
|
||||
numpy.zeros((nlp.vocab.vectors.data.shape[0],)),
|
||||
numpy.zeros((nlp.vocab.vectors.shape[0],)),
|
||||
)
|
||||
|
||||
# the loaded ngram vector table cannot be modified
|
||||
|
|
|
@ -616,7 +616,7 @@ cdef class Doc:
|
|||
"""
|
||||
if "has_vector" in self.user_hooks:
|
||||
return self.user_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size:
|
||||
elif self.vocab.vectors.size:
|
||||
return True
|
||||
elif self.tensor.size:
|
||||
return True
|
||||
|
@ -641,7 +641,7 @@ cdef class Doc:
|
|||
if not len(self):
|
||||
self._vector = xp.zeros((self.vocab.vectors_length,), dtype="f")
|
||||
return self._vector
|
||||
elif self.vocab.vectors.data.size > 0:
|
||||
elif self.vocab.vectors.size > 0:
|
||||
self._vector = sum(t.vector for t in self) / len(self)
|
||||
return self._vector
|
||||
elif self.tensor.size > 0:
|
||||
|
|
|
@ -497,7 +497,7 @@ cdef class Span:
|
|||
"""
|
||||
if "has_vector" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size > 0:
|
||||
elif self.vocab.vectors.size > 0:
|
||||
return any(token.has_vector for token in self)
|
||||
elif self.doc.tensor.size > 0:
|
||||
return True
|
||||
|
|
|
@ -164,7 +164,7 @@ def load_vectors_into_model(
|
|||
len(vectors_nlp.vocab.vectors.keys()) == 0
|
||||
and vectors_nlp.vocab.vectors.mode != VectorsMode.floret
|
||||
) or (
|
||||
vectors_nlp.vocab.vectors.data.shape[0] == 0
|
||||
vectors_nlp.vocab.vectors.shape[0] == 0
|
||||
and vectors_nlp.vocab.vectors.mode == VectorsMode.floret
|
||||
):
|
||||
logger.warning(Warnings.W112.format(name=name))
|
||||
|
|
|
@ -10,7 +10,7 @@ from typing import cast
|
|||
import warnings
|
||||
from enum import Enum
|
||||
import srsly
|
||||
from thinc.api import get_array_module, get_current_ops
|
||||
from thinc.api import Ops, get_array_module, get_current_ops
|
||||
from thinc.backends import get_array_ops
|
||||
from thinc.types import Floats2d
|
||||
|
||||
|
@ -146,7 +146,7 @@ cdef class Vectors:
|
|||
|
||||
DOCS: https://spacy.io/api/vectors#size
|
||||
"""
|
||||
return self.data.shape[0] * self.data.shape[1]
|
||||
return self.data.size
|
||||
|
||||
@property
|
||||
def is_full(self):
|
||||
|
@ -517,6 +517,9 @@ cdef class Vectors:
|
|||
for i in range(len(queries)) ], dtype="uint64")
|
||||
return (keys, best_rows, scores)
|
||||
|
||||
def to_ops(self, ops: Ops):
|
||||
self.data = ops.asarray(self.data)
|
||||
|
||||
def _get_cfg(self):
|
||||
if self.mode == Mode.default:
|
||||
return {
|
||||
|
|
|
@ -283,7 +283,7 @@ cdef class Vocab:
|
|||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
return self.vectors.data.shape[1]
|
||||
return self.vectors.shape[1]
|
||||
|
||||
def reset_vectors(self, *, width=None, shape=None):
|
||||
"""Drop the current vector table. Because all vectors must be the same
|
||||
|
@ -294,7 +294,7 @@ cdef class Vocab:
|
|||
elif shape is not None:
|
||||
self.vectors = Vectors(strings=self.strings, shape=shape)
|
||||
else:
|
||||
width = width if width is not None else self.vectors.data.shape[1]
|
||||
width = width if width is not None else self.vectors.shape[1]
|
||||
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
|
||||
|
||||
def prune_vectors(self, nr_row, batch_size=1024):
|
||||
|
|
|
@ -371,6 +371,23 @@ Get the vectors for the provided keys efficiently as a batch.
|
|||
| ------ | --------------------------------------- |
|
||||
| `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
|
||||
|
||||
## Vectors.to_ops {#to_ops tag="method"}
|
||||
|
||||
Change the embedding matrix to use different Thinc ops.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from thinc.api import NumpyOps
|
||||
>
|
||||
> vectors.to_ops(NumpyOps())
|
||||
>
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
|-------|----------------------------------------------------------|
|
||||
| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ |
|
||||
|
||||
## Vectors.to_disk {#to_disk tag="method"}
|
||||
|
||||
Save the current state to a directory.
|
||||
|
|
Loading…
Reference in New Issue
Block a user