diff --git a/examples/experiments/onto-joint/defaults.cfg b/examples/experiments/onto-joint/defaults.cfg index 337fe0379..873457db8 100644 --- a/examples/experiments/onto-joint/defaults.cfg +++ b/examples/experiments/onto-joint/defaults.cfg @@ -5,7 +5,7 @@ # data is passed in sentence-by-sentence via some prior preprocessing. gold_preproc = false # Limitations on training document length or number of examples. -max_length = 0 +max_length = 5000 limit = 0 # Data augmentation orth_variant_level = 0.0 @@ -14,7 +14,7 @@ dropout = 0.1 patience = 1600 max_epochs = 0 max_steps = 20000 -eval_frequency = 400 +eval_frequency = 50 # Other settings seed = 0 accumulate_gradient = 1 @@ -57,8 +57,6 @@ vectors = null [nlp.pipeline.tok2vec] factory = "tok2vec" -[nlp.pipeline.senter] -factory = "senter" [nlp.pipeline.ner] factory = "ner" @@ -73,17 +71,10 @@ factory = "tagger" [nlp.pipeline.parser] factory = "parser" learn_tokens = false -min_action_freq = 1 +min_action_freq = 30 beam_width = 1 beam_update_prob = 1.0 -[nlp.pipeline.senter.model] -@architectures = "spacy.Tagger.v1" - -[nlp.pipeline.senter.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - [nlp.pipeline.tagger.model] @architectures = "spacy.Tagger.v1" @@ -116,10 +107,10 @@ width = ${nlp.pipeline.tok2vec.model:width} [nlp.pipeline.tok2vec.model] @architectures = "spacy.HashEmbedCNN.v1" pretrained_vectors = ${nlp:vectors} -width = 256 -depth = 6 +width = 128 +depth = 4 window_size = 1 -embed_size = 10000 +embed_size = 7000 maxout_pieces = 3 subword_features = true -dropout = null +dropout = ${training:dropout}