mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
add types of Tok2Vec embedding layers
This commit is contained in:
parent
64d90039a1
commit
5121972930
|
@ -93,7 +93,7 @@ def build_Tok2Vec_model(
|
|||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||
def MultiHashEmbed(
|
||||
width: int, rows: int, also_embed_subwords: bool, also_use_static_vectors: bool
|
||||
):
|
||||
) -> Model[List[Doc], List[Floats2d]]:
|
||||
"""Construct an embedding layer that separately embeds a number of lexical
|
||||
attributes using hash embedding, concatenates the results, and passes it
|
||||
through a feed-forward subnetwork to build a mixed representations.
|
||||
|
@ -166,7 +166,7 @@ def MultiHashEmbed(
|
|||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||
def CharacterEmbed(
|
||||
width: int, rows: int, nM: int, nC: int, also_use_static_vectors: bool
|
||||
):
|
||||
) -> Model[List[Doc], List[Floats2d]]:
|
||||
"""Construct an embedded representation based on character embeddings, using
|
||||
a feed-forward network. A fixed number of UTF-8 byte characters are used for
|
||||
each word, taken from the beginning and end of the word equally. Padding is
|
||||
|
|
Loading…
Reference in New Issue
Block a user