mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 00:04:15 +03:00
Tidy up Vectors and docs
This commit is contained in:
parent
7946464742
commit
5167a0cce2
|
@ -1,5 +1,6 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
from libc.stdint cimport int32_t, uint64_t
|
||||
|
||||
import numpy
|
||||
from collections import OrderedDict
|
||||
import msgpack
|
||||
|
@ -9,23 +10,20 @@ cimport numpy as np
|
|||
from thinc.neural.util import get_array_module
|
||||
from thinc.neural._classes.model import Model
|
||||
|
||||
from .typedefs cimport attr_t
|
||||
from .strings cimport StringStore
|
||||
from . import util
|
||||
from .compat import basestring_, path2str
|
||||
from . import util
|
||||
|
||||
|
||||
cdef class Vectors:
|
||||
'''Store, save and load word vectors.
|
||||
"""Store, save and load word vectors.
|
||||
|
||||
Vectors data is kept in the vectors.data attribute, which should be an
|
||||
instance of numpy.ndarray (for CPU vectors)
|
||||
or cupy.ndarray (for GPU vectors).
|
||||
|
||||
vectors.key2row is a dictionary mapping word hashes to rows
|
||||
in the vectors.data table. The array `vectors.keys` keeps
|
||||
the keys in order, such that keys[vectors.key2row[key]] == key.
|
||||
'''
|
||||
instance of numpy.ndarray (for CPU vectors) or cupy.ndarray
|
||||
(for GPU vectors). `vectors.key2row` is a dictionary mapping word hashes to
|
||||
rows in the vectors.data table. The array `vectors.keys` keeps the keys in
|
||||
order, such that `keys[vectors.key2row[key]] == key`.
|
||||
"""
|
||||
cdef public object data
|
||||
cdef readonly StringStore strings
|
||||
cdef public object key2row
|
||||
|
@ -33,6 +31,16 @@ cdef class Vectors:
|
|||
cdef public int i
|
||||
|
||||
def __init__(self, strings, width=0, data=None):
|
||||
"""Create a new vector store. To keep the vector table empty, pass
|
||||
`width=0`. You can also create the vector table and add vectors one by
|
||||
one, or set the vector values directly on initialisation.
|
||||
|
||||
strings (StringStore or list): List of strings or StringStore that maps
|
||||
strings to hash values, and vice versa.
|
||||
width (int): Number of dimensions.
|
||||
data (numpy.ndarray): The vector data.
|
||||
RETURNS (Vectors): The newly created object.
|
||||
"""
|
||||
if isinstance(strings, StringStore):
|
||||
self.strings = strings
|
||||
else:
|
||||
|
@ -55,11 +63,13 @@ cdef class Vectors:
|
|||
return (Vectors, (self.strings, self.data))
|
||||
|
||||
def __getitem__(self, key):
|
||||
'''Get a vector by key. If key is a string, it is hashed
|
||||
to an integer ID using the vectors.strings table.
|
||||
"""Get a vector by key. If key is a string, it is hashed to an integer
|
||||
ID using the vectors.strings table. If the integer key is not found in
|
||||
the table, a KeyError is raised.
|
||||
|
||||
If the integer key is not found in the table, a KeyError is raised.
|
||||
'''
|
||||
key (unicode / int): The key to get the vector for.
|
||||
RETURNS (numpy.ndarray): The vector for the key.
|
||||
"""
|
||||
if isinstance(key, basestring):
|
||||
key = self.strings[key]
|
||||
i = self.key2row[key]
|
||||
|
@ -69,30 +79,47 @@ cdef class Vectors:
|
|||
return self.data[i]
|
||||
|
||||
def __setitem__(self, key, vector):
|
||||
'''Set a vector for the given key. If key is a string, it is hashed
|
||||
"""Set a vector for the given key. If key is a string, it is hashed
|
||||
to an integer ID using the vectors.strings table.
|
||||
'''
|
||||
|
||||
key (unicode / int): The key to set the vector for.
|
||||
vector (numpy.ndarray): The vector to set.
|
||||
"""
|
||||
if isinstance(key, basestring):
|
||||
key = self.strings.add(key)
|
||||
i = self.key2row[key]
|
||||
self.data[i] = vector
|
||||
|
||||
def __iter__(self):
|
||||
'''Yield vectors from the table.'''
|
||||
"""Yield vectors from the table.
|
||||
|
||||
YIELDS (numpy.ndarray): A vector.
|
||||
"""
|
||||
yield from self.data
|
||||
|
||||
def __len__(self):
|
||||
'''Return the number of vectors that have been assigned.'''
|
||||
"""Return the number of vectors that have been assigned.
|
||||
|
||||
RETURNS (int): The number of vectors in the data.
|
||||
"""
|
||||
return self.i
|
||||
|
||||
def __contains__(self, key):
|
||||
'''Check whether a key has a vector entry in the table.'''
|
||||
"""Check whether a key has a vector entry in the table.
|
||||
|
||||
key (unicode / int): The key to check.
|
||||
RETURNS (bool): Whether the key has a vector entry.
|
||||
"""
|
||||
if isinstance(key, basestring_):
|
||||
key = self.strings[key]
|
||||
return key in self.key2row
|
||||
|
||||
def add(self, key, vector=None):
|
||||
'''Add a key to the table, optionally setting a vector value as well.'''
|
||||
"""Add a key to the table, optionally setting a vector value as well.
|
||||
|
||||
key (unicode / int): The key to add.
|
||||
vector (numpy.ndarray): An optional vector to add.
|
||||
"""
|
||||
if isinstance(key, basestring_):
|
||||
key = self.strings.add(key)
|
||||
if key not in self.key2row:
|
||||
|
@ -110,24 +137,36 @@ cdef class Vectors:
|
|||
return i
|
||||
|
||||
def items(self):
|
||||
'''Iterate over (string key, vector) pairs, in order.'''
|
||||
"""Iterate over `(string key, vector)` pairs, in order.
|
||||
|
||||
YIELDS (tuple): A key/vector pair.
|
||||
"""
|
||||
for i, key in enumerate(self.keys):
|
||||
string = self.strings[key]
|
||||
yield string, self.data[i]
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""Get `(rows, dims)` tuples of number of rows and number of dimensions
|
||||
in the vector table.
|
||||
|
||||
RETURNS (tuple): A `(rows, dims)` pair.
|
||||
"""
|
||||
return self.data.shape
|
||||
|
||||
def most_similar(self, key):
|
||||
# TODO: implement
|
||||
raise NotImplementedError
|
||||
|
||||
def from_glove(self, path):
|
||||
'''Load GloVe vectors from a directory. Assumes binary format,
|
||||
"""Load GloVe vectors from a directory. Assumes binary format,
|
||||
that the vocab is in a vocab.txt, and that vectors are named
|
||||
vectors.{size}.[fd].bin, e.g. vectors.128.f.bin for 128d float32
|
||||
vectors, vectors.300.d.bin for 300d float64 (double) vectors, etc.
|
||||
By default GloVe outputs 64-bit vectors.'''
|
||||
By default GloVe outputs 64-bit vectors.
|
||||
|
||||
path (unicode / Path): The path to load the GloVe vectors from.
|
||||
"""
|
||||
path = util.ensure_path(path)
|
||||
for name in path.iterdir():
|
||||
if name.parts[-1].startswith('vectors'):
|
||||
|
@ -150,9 +189,15 @@ cdef class Vectors:
|
|||
self.data
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
"""Save the current state to a directory.
|
||||
|
||||
path (unicode / Path): A path to a directory, which will be created if
|
||||
it doesn't exists. Either a string or a Path-like object.
|
||||
"""
|
||||
xp = get_array_module(self.data)
|
||||
if xp is numpy:
|
||||
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
||||
save_array = lambda arr, file_: xp.save(file_, arr,
|
||||
allow_pickle=False)
|
||||
else:
|
||||
save_array = lambda arr, file_: xp.save(file_, arr)
|
||||
serializers = OrderedDict((
|
||||
|
@ -162,6 +207,12 @@ cdef class Vectors:
|
|||
return util.to_disk(path, serializers, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
"""Loads state from a directory. Modifies the object in place and
|
||||
returns it.
|
||||
|
||||
path (unicode / Path): Directory path, string or Path-like object.
|
||||
RETURNS (Vectors): The modified object.
|
||||
"""
|
||||
def load_keys(path):
|
||||
if path.exists():
|
||||
self.keys = numpy.load(path2str(path))
|
||||
|
@ -182,6 +233,11 @@ cdef class Vectors:
|
|||
return self
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
"""Serialize the current state to a binary string.
|
||||
|
||||
**exclude: Named attributes to prevent from being serialized.
|
||||
RETURNS (bytes): The serialized form of the `Vectors` object.
|
||||
"""
|
||||
def serialize_weights():
|
||||
if hasattr(self.data, 'to_bytes'):
|
||||
return self.data.to_bytes()
|
||||
|
@ -194,6 +250,12 @@ cdef class Vectors:
|
|||
return util.to_bytes(serializers, exclude)
|
||||
|
||||
def from_bytes(self, data, **exclude):
|
||||
"""Load state from a binary string.
|
||||
|
||||
data (bytes): The data to load from.
|
||||
**exclude: Named attributes to prevent from being loaded.
|
||||
RETURNS (Vectors): The `Vectors` object.
|
||||
"""
|
||||
def deserialize_weights(b):
|
||||
if hasattr(self.data, 'from_bytes'):
|
||||
self.data.from_bytes()
|
||||
|
|
118
spacy/vocab.pyx
118
spacy/vocab.pyx
|
@ -1,32 +1,23 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import bz2
|
||||
import ujson
|
||||
import re
|
||||
import numpy
|
||||
import dill
|
||||
|
||||
from libc.string cimport memset, memcpy
|
||||
from libc.stdint cimport int32_t
|
||||
from libc.math cimport sqrt
|
||||
from cymem.cymem cimport Address
|
||||
from collections import OrderedDict
|
||||
from .lexeme cimport EMPTY_LEXEME
|
||||
from .lexeme cimport Lexeme
|
||||
from .strings cimport hash_string
|
||||
from .typedefs cimport attr_t
|
||||
from .tokens.token cimport Token
|
||||
from .attrs cimport PROB, LANG
|
||||
from .attrs cimport PROB, LANG, ORTH, TAG
|
||||
from .structs cimport SerializedLexemeC
|
||||
|
||||
from .compat import copy_reg, pickle, basestring_
|
||||
from .compat import copy_reg, basestring_
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .attrs import intify_attrs
|
||||
from .vectors import Vectors
|
||||
from . import util
|
||||
from . import attrs
|
||||
from . import symbols
|
||||
from ._ml import link_vectors_to_models
|
||||
|
||||
|
||||
|
@ -36,23 +27,22 @@ cdef class Vocab:
|
|||
C-data that is shared between `Doc` objects.
|
||||
"""
|
||||
def __init__(self, lex_attr_getters=None, tag_map=None, lemmatizer=None,
|
||||
strings=tuple(), **deprecated_kwargs):
|
||||
strings=tuple(), **deprecated_kwargs):
|
||||
"""Create the vocabulary.
|
||||
|
||||
lex_attr_getters (dict): A dictionary mapping attribute IDs to functions
|
||||
to compute them. Defaults to `None`.
|
||||
tag_map (dict): A dictionary mapping fine-grained tags to coarse-grained
|
||||
lex_attr_getters (dict): A dictionary mapping attribute IDs to
|
||||
functions to compute them. Defaults to `None`.
|
||||
tag_map (dict): Dictionary mapping fine-grained tags to coarse-grained
|
||||
parts-of-speech, and optionally morphological attributes.
|
||||
lemmatizer (object): A lemmatizer. Defaults to `None`.
|
||||
strings (StringStore): StringStore that maps strings to integers, and
|
||||
vice versa.
|
||||
RETURNS (Vocab): The newly constructed vocab object.
|
||||
RETURNS (Vocab): The newly constructed object.
|
||||
"""
|
||||
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
||||
tag_map = tag_map if tag_map is not None else {}
|
||||
if lemmatizer in (None, True, False):
|
||||
lemmatizer = Lemmatizer({}, {}, {})
|
||||
|
||||
self.mem = Pool()
|
||||
self._by_hash = PreshMap()
|
||||
self._by_orth = PreshMap()
|
||||
|
@ -84,19 +74,20 @@ cdef class Vocab:
|
|||
|
||||
The flag_getter function will be called over the words currently in the
|
||||
vocab, and then applied to new words as they occur. You'll then be able
|
||||
to access the flag value on each token, using token.check_flag(flag_id).
|
||||
to access the flag value on each token using token.check_flag(flag_id).
|
||||
See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
|
||||
`Token.check_flag`.
|
||||
|
||||
flag_getter (callable): A function `f(unicode) -> bool`, to get the flag
|
||||
value.
|
||||
flag_getter (callable): A function `f(unicode) -> bool`, to get the
|
||||
flag value.
|
||||
flag_id (int): An integer between 1 and 63 (inclusive), specifying
|
||||
the bit at which the flag will be stored. If -1, the lowest
|
||||
available bit will be chosen.
|
||||
RETURNS (int): The integer ID by which the flag value can be checked.
|
||||
|
||||
EXAMPLE:
|
||||
>>> MY_PRODUCT = nlp.vocab.add_flag(lambda text: text in ['spaCy', 'dislaCy'])
|
||||
>>> my_product_getter = lambda text: text in ['spaCy', 'dislaCy']
|
||||
>>> MY_PRODUCT = nlp.vocab.add_flag(my_product_getter)
|
||||
>>> doc = nlp(u'I like spaCy')
|
||||
>>> assert doc[2].check_flag(MY_PRODUCT) == True
|
||||
"""
|
||||
|
@ -107,9 +98,10 @@ cdef class Vocab:
|
|||
break
|
||||
else:
|
||||
raise ValueError(
|
||||
"Cannot find empty bit for new lexical flag. All bits between "
|
||||
"0 and 63 are occupied. You can replace one by specifying the "
|
||||
"flag_id explicitly, e.g. nlp.vocab.add_flag(your_func, flag_id=IS_ALPHA")
|
||||
"Cannot find empty bit for new lexical flag. All bits "
|
||||
"between 0 and 63 are occupied. You can replace one by "
|
||||
"specifying the flag_id explicitly, e.g. "
|
||||
"`nlp.vocab.add_flag(your_func, flag_id=IS_ALPHA`.")
|
||||
elif flag_id >= 64 or flag_id < 1:
|
||||
raise ValueError(
|
||||
"Invalid value for flag_id: %d. Flag IDs must be between "
|
||||
|
@ -120,9 +112,9 @@ cdef class Vocab:
|
|||
return flag_id
|
||||
|
||||
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme`
|
||||
if necessary, using memory acquired from the given pool. If the pool
|
||||
is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
||||
`Lexeme` if necessary using memory acquired from the given pool. If the
|
||||
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
"""
|
||||
if string == u'':
|
||||
return &EMPTY_LEXEME
|
||||
|
@ -139,9 +131,9 @@ cdef class Vocab:
|
|||
return self._new_lexeme(mem, string)
|
||||
|
||||
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme`
|
||||
if necessary, using memory acquired from the given pool. If the pool
|
||||
is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
||||
`Lexeme` if necessary using memory acquired from the given pool. If the
|
||||
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
||||
"""
|
||||
if orth == 0:
|
||||
return &EMPTY_LEXEME
|
||||
|
@ -203,8 +195,8 @@ cdef class Vocab:
|
|||
for orth, addr in self._by_orth.items():
|
||||
yield Lexeme(self, orth)
|
||||
|
||||
def __getitem__(self, id_or_string):
|
||||
"""Retrieve a lexeme, given an int ID or a unicode string. If a
|
||||
def __getitem__(self, id_or_string):
|
||||
"""Retrieve a lexeme, given an int ID or a unicode string. If a
|
||||
previously unseen unicode string is given, a new lexeme is created and
|
||||
stored.
|
||||
|
||||
|
@ -229,13 +221,14 @@ cdef class Vocab:
|
|||
cdef int i
|
||||
tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
|
||||
for i, props in enumerate(substrings):
|
||||
props = intify_attrs(props, strings_map=self.strings, _do_deprecated=True)
|
||||
props = intify_attrs(props, strings_map=self.strings,
|
||||
_do_deprecated=True)
|
||||
token = &tokens[i]
|
||||
# Set the special tokens up to have arbitrary attributes
|
||||
lex = <LexemeC*>self.get_by_orth(self.mem, props[attrs.ORTH])
|
||||
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
|
||||
token.lex = lex
|
||||
if attrs.TAG in props:
|
||||
self.morphology.assign_tag(token, props[attrs.TAG])
|
||||
if TAG in props:
|
||||
self.morphology.assign_tag(token, props[TAG])
|
||||
for attr_id, value in props.items():
|
||||
Token.set_struct_attr(token, attr_id, value)
|
||||
Lexeme.set_struct_attr(lex, attr_id, value)
|
||||
|
@ -254,16 +247,13 @@ cdef class Vocab:
|
|||
self.vectors = Vectors(self.strings, width=new_dim)
|
||||
|
||||
def get_vector(self, orth):
|
||||
"""Retrieve a vector for a word in the vocabulary.
|
||||
"""Retrieve a vector for a word in the vocabulary. Words can be looked
|
||||
up by string or int ID. If no vectors data is loaded, ValueError is
|
||||
raised.
|
||||
|
||||
Words can be looked up by string or int ID.
|
||||
|
||||
RETURNS:
|
||||
A word vector. Size and shape determined by the
|
||||
vocab.vectors instance. Usually, a numpy ndarray
|
||||
of shape (300,) and dtype float32.
|
||||
|
||||
RAISES: If no vectors data is loaded, ValueError is raised.
|
||||
RETURNS (numpy.ndarray): A word vector. Size
|
||||
and shape determined by the `vocab.vectors` instance. Usually, a
|
||||
numpy ndarray of shape (300,) and dtype float32.
|
||||
"""
|
||||
if isinstance(orth, basestring_):
|
||||
orth = self.strings.add(orth)
|
||||
|
@ -273,21 +263,16 @@ cdef class Vocab:
|
|||
return numpy.zeros((self.vectors_length,), dtype='f')
|
||||
|
||||
def set_vector(self, orth, vector):
|
||||
"""Set a vector for a word in the vocabulary.
|
||||
|
||||
Words can be referenced by string or int ID.
|
||||
|
||||
RETURNS:
|
||||
None
|
||||
"""Set a vector for a word in the vocabulary. Words can be referenced
|
||||
by string or int ID.
|
||||
"""
|
||||
if not isinstance(orth, basestring_):
|
||||
orth = self.strings[orth]
|
||||
self.vectors.add(orth, vector=vector)
|
||||
|
||||
def has_vector(self, orth):
|
||||
"""Check whether a word has a vector. Returns False if no
|
||||
vectors have been loaded. Words can be looked up by string
|
||||
or int ID."""
|
||||
"""Check whether a word has a vector. Returns False if no vectors have
|
||||
been loaded. Words can be looked up by string or int ID."""
|
||||
if isinstance(orth, basestring_):
|
||||
orth = self.strings.add(orth)
|
||||
return orth in self.vectors
|
||||
|
@ -296,7 +281,7 @@ cdef class Vocab:
|
|||
"""Save the current state to a directory.
|
||||
|
||||
path (unicode or Path): A path to a directory, which will be created if
|
||||
it doesn't exist. Paths may be either strings or `Path`-like objects.
|
||||
it doesn't exist. Paths may be either strings or Path-like objects.
|
||||
"""
|
||||
path = util.ensure_path(path)
|
||||
if not path.exists():
|
||||
|
@ -421,16 +406,13 @@ def pickle_vocab(vocab):
|
|||
length = vocab.length
|
||||
data_dir = vocab.data_dir
|
||||
lex_attr_getters = dill.dumps(vocab.lex_attr_getters)
|
||||
|
||||
lexemes_data = vocab.lexemes_to_bytes()
|
||||
|
||||
return (unpickle_vocab,
|
||||
(sstore, morph, data_dir, lex_attr_getters,
|
||||
lexemes_data, length))
|
||||
(sstore, morph, data_dir, lex_attr_getters, lexemes_data, length))
|
||||
|
||||
|
||||
def unpickle_vocab(sstore, morphology, data_dir,
|
||||
lex_attr_getters, bytes lexemes_data, int length):
|
||||
lex_attr_getters, bytes lexemes_data, int length):
|
||||
cdef Vocab vocab = Vocab()
|
||||
vocab.length = length
|
||||
vocab.strings = sstore
|
||||
|
@ -450,12 +432,10 @@ class LookupError(Exception):
|
|||
@classmethod
|
||||
def mismatched_strings(cls, id_, id_string, original_string):
|
||||
return cls(
|
||||
"Error fetching a Lexeme from the Vocab. When looking up a string, "
|
||||
"the lexeme returned had an orth ID that did not match the query string. "
|
||||
"This means that the cached lexeme structs are mismatched to the "
|
||||
"string encoding table. The mismatched:\n"
|
||||
"Query string: {query}\n"
|
||||
"Orth cached: {orth_str}\n"
|
||||
"ID of orth: {orth_id}".format(
|
||||
query=repr(original_string), orth_str=repr(id_string), orth_id=id_)
|
||||
)
|
||||
"Error fetching a Lexeme from the Vocab. When looking up a "
|
||||
"string, the lexeme returned had an orth ID that did not match "
|
||||
"the query string. This means that the cached lexeme structs are "
|
||||
"mismatched to the string encoding table. The mismatched:\n"
|
||||
"Query string: {}\n"
|
||||
"Orth cached: {}\n"
|
||||
"Orth ID: {}".format(repr(original_string), repr(id_string), id_))
|
||||
|
|
|
@ -36,12 +36,14 @@ p
|
|||
| that maps strings to hash values, and vice versa.
|
||||
|
||||
+row
|
||||
+cell #[code data]
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell #[code width]
|
||||
+cell int
|
||||
+cell Number of dimensions.
|
||||
|
||||
+row
|
||||
+cell #[code width]
|
||||
+cell Number of dimensions.
|
||||
+cell #[code data]
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell The vector data.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
|
@ -208,7 +210,7 @@ p
|
|||
+row("foot")
|
||||
+cell returns
|
||||
+cell tuple
|
||||
+cell #[code (rows, dims)] pairs.
|
||||
+cell A #[code (rows, dims)] pair.
|
||||
|
||||
+h(2, "from_glove") Vectors.from_glove
|
||||
+tag method
|
||||
|
@ -238,11 +240,16 @@ p Save the current state to a directory.
|
|||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code path]
|
||||
+cell unicode or #[code Path]
|
||||
+cell unicode / #[code Path]
|
||||
+cell
|
||||
| A path to a directory, which will be created if it doesn't exist.
|
||||
| Paths may be either strings or #[code Path]-like objects.
|
||||
|
||||
+row
|
||||
+cell #[code **exclude]
|
||||
+cell -
|
||||
+cell Named attributes to prevent from being saved.
|
||||
|
||||
+h(2, "from_disk") Vectors.from_disk
|
||||
+tag method
|
||||
|
||||
|
@ -255,7 +262,7 @@ p Loads state from a directory. Modifies the object in place and returns it.
|
|||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code path]
|
||||
+cell unicode or #[code Path]
|
||||
+cell unicode / #[code Path]
|
||||
+cell
|
||||
| A path to a directory. Paths may be either strings or
|
||||
| #[code Path]-like objects.
|
||||
|
@ -297,7 +304,7 @@ p Load state from a binary string.
|
|||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code bytes_data]
|
||||
+cell #[code data]
|
||||
+cell bytes
|
||||
+cell The data to load from.
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user