diff --git a/spacy/_ml.py b/spacy/_ml.py index bea6a3251..4ca3a8f84 100644 --- a/spacy/_ml.py +++ b/spacy/_ml.py @@ -135,7 +135,7 @@ def Tok2Vec(width, embed_size, preprocess=None): >> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)) >> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)) ) - if preprocess is not None: + if preprocess not in (False, None): tok2vec = preprocess >> tok2vec # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width diff --git a/spacy/cli/train.py b/spacy/cli/train.py index cc3698b49..e1a77a029 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -41,8 +41,7 @@ def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ne gold_train = list(read_gold_json(train_path)) gold_dev = list(read_gold_json(dev_path)) if dev_path else None - train_model(lang, gold_train, gold_dev, output_path, tagger_cfg, parser_cfg, - entity_cfg, n_iter) + train_model(lang, gold_train, gold_dev, output_path, n_iter) if gold_dev: scorer = evaluate(lang, gold_dev, output_path) print_results(scorer) @@ -58,24 +57,30 @@ def train_config(config): prints("%s not found in config file." % setting, title="Missing setting") -def train_model(Language, train_data, dev_data, output_path, tagger_cfg, parser_cfg, - entity_cfg, n_iter): +def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg): print("Itn.\tN weight\tN feats\tUAS\tNER F.\tTag %\tToken %") - with Language.train(output_path, train_data, - pos=tagger_cfg, deps=parser_cfg, ner=entity_cfg) as trainer: + nlp = Language(pipeline=['tensor', 'dependencies', 'entities']) - for itn, epoch in enumerate(trainer.epochs(n_iter, augment_data=None)): - for docs, golds in partition_all(12, epoch): - trainer.update(docs, golds) + # TODO: Get spaCy using Thinc's trainer and optimizer + with nlp.begin_training(train_data, **cfg) as (trainer, optimizer): + for itn, epoch in enumerate(trainer.epochs(n_iter)): + losses = defaultdict(float) + for docs, golds in epoch: + grads = {} + def get_grads(W, dW, key=None): + grads[key] = (W, dW) + for proc in nlp.pipeline: + loss = proc.update(docs, golds, drop=0.0, sgd=get_grads) + losses[proc.name] += loss + for key, (W, dW) in grads.items(): + optimizer(W, dW, key=key) if dev_data: dev_scores = trainer.evaluate(dev_data).scores else: defaultdict(float) - print_progress(itn, trainer.nlp.parser.model.nr_weight, - trainer.nlp.parser.model.nr_active_feat, - **dev_scores) + print_progress(itn, losses['dep'], **dev_scores) def evaluate(Language, gold_tuples, output_path): diff --git a/spacy/language.py b/spacy/language.py index 7f7d2c745..c3854ce2a 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -11,7 +11,8 @@ from .lemmatizer import Lemmatizer from .train import Trainer from .syntax.parser import get_templates from .syntax.nonproj import PseudoProjectivity -from .pipeline import DependencyParser, EntityRecognizer +from .pipeline import DependencyParser, NeuralDependencyParser, EntityRecognizer +from .pipeline import TokenVectorEncoder, NeuralEntityRecognizer from .syntax.arc_eager import ArcEager from .syntax.ner import BiluoPushDown from .compat import json_dumps @@ -31,111 +32,49 @@ class BaseDefaults(object): @classmethod def create_vocab(cls, nlp=None): lemmatizer = cls.create_lemmatizer(nlp) - if nlp is None or nlp.path is None: - lex_attr_getters = dict(cls.lex_attr_getters) - # This is very messy, but it's the minimal working fix to Issue #639. - # This defaults stuff needs to be refactored (again) - lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words - vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map, - lemmatizer=lemmatizer) - else: - vocab = Vocab.load(nlp.path, lex_attr_getters=cls.lex_attr_getters, - tag_map=cls.tag_map, lemmatizer=lemmatizer) + lex_attr_getters = dict(cls.lex_attr_getters) + # This is messy, but it's the minimal working fix to Issue #639. + lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words + vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map, + lemmatizer=lemmatizer) for tag_str, exc in cls.morph_rules.items(): for orth_str, attrs in exc.items(): vocab.morphology.add_special_case(tag_str, orth_str, attrs) return vocab - @classmethod - def add_vectors(cls, nlp=None): - if nlp is None or nlp.path is None: - return False - else: - vec_path = nlp.path / 'vocab' / 'vec.bin' - if vec_path.exists(): - return lambda vocab: vocab.load_vectors_from_bin_loc(vec_path) - @classmethod def create_tokenizer(cls, nlp=None): rules = cls.tokenizer_exceptions - if cls.token_match: - token_match = cls.token_match - if cls.prefixes: - prefix_search = util.compile_prefix_regex(cls.prefixes).search - else: - prefix_search = None - if cls.suffixes: - suffix_search = util.compile_suffix_regex(cls.suffixes).search - else: - suffix_search = None - if cls.infixes: - infix_finditer = util.compile_infix_regex(cls.infixes).finditer - else: - infix_finditer = None + token_match = cls.token_match + prefix_search = util.compile_prefix_regex(cls.prefixes).search \ + if cls.prefixes else None + suffix_search = util.compile_suffix_regex(cls.suffixes).search \ + if cls.suffixes else None + infix_finditer = util.compile_infix_regex(cls.infixes).finditer \ + if cls.infixes else None vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp) return Tokenizer(vocab, rules=rules, prefix_search=prefix_search, suffix_search=suffix_search, infix_finditer=infix_finditer, token_match=token_match) @classmethod - def create_tagger(cls, nlp=None): - if nlp is None: - return Tagger(cls.create_vocab(), features=cls.tagger_features) - elif nlp.path is False: - return Tagger(nlp.vocab, features=cls.tagger_features) - elif nlp.path is None or not (nlp.path / 'pos').exists(): - return None - else: - return Tagger.load(nlp.path / 'pos', nlp.vocab) - - @classmethod - def create_parser(cls, nlp=None, **cfg): - if nlp is None: - return DependencyParser(cls.create_vocab(), features=cls.parser_features, - **cfg) - elif nlp.path is False: - return DependencyParser(nlp.vocab, features=cls.parser_features, **cfg) - elif nlp.path is None or not (nlp.path / 'deps').exists(): - return None - else: - return DependencyParser.load(nlp.path / 'deps', nlp.vocab, **cfg) - - @classmethod - def create_entity(cls, nlp=None, **cfg): - if nlp is None: - return EntityRecognizer(cls.create_vocab(), features=cls.entity_features, **cfg) - elif nlp.path is False: - return EntityRecognizer(nlp.vocab, features=cls.entity_features, **cfg) - elif nlp.path is None or not (nlp.path / 'ner').exists(): - return None - else: - return EntityRecognizer.load(nlp.path / 'ner', nlp.vocab, **cfg) - - @classmethod - def create_matcher(cls, nlp=None): - if nlp is None: - return Matcher(cls.create_vocab()) - elif nlp.path is False: - return Matcher(nlp.vocab) - elif nlp.path is None or not (nlp.path / 'vocab').exists(): - return None - else: - return Matcher.load(nlp.path / 'vocab', nlp.vocab) - - @classmethod - def create_pipeline(self, nlp=None): + def create_pipeline(cls, nlp=None): + meta = nlp.meta if nlp is not None else {} + # Resolve strings, like "cnn", "lstm", etc pipeline = [] - if nlp is None: - return [] - if nlp.tagger: - pipeline.append(nlp.tagger) - if nlp.parser: - pipeline.append(nlp.parser) - pipeline.append(PseudoProjectivity.deprojectivize) - if nlp.entity: - pipeline.append(nlp.entity) + for entry in cls.pipeline: + factory = cls.Defaults.factories[entry] + pipeline.append(factory(self, **meta.get(entry, {}))) return pipeline + factories = { + 'make_doc': create_tokenizer, + 'tensor': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg), + 'tags': lambda nlp, **cfg: Tagger(nlp.vocab, **cfg), + 'dependencies': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg), + 'entities': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg), + } + token_match = TOKEN_MATCH prefixes = tuple(TOKENIZER_PREFIXES) suffixes = tuple(TOKENIZER_SUFFIXES) @@ -161,120 +100,30 @@ class Language(object): Defaults = BaseDefaults lang = None - @classmethod - def setup_directory(cls, path, **configs): - """ - Initialise a model directory. - """ - for name, config in configs.items(): - directory = path / name - if directory.exists(): - shutil.rmtree(str(directory)) - directory.mkdir() - with (directory / 'config.json').open('w') as file_: - data = json_dumps(config) - file_.write(data) - if not (path / 'vocab').exists(): - (path / 'vocab').mkdir() + def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}): + self.meta = dict(meta) - @classmethod - @contextmanager - def train(cls, path, gold_tuples, **configs): - parser_cfg = configs.get('deps', {}) - if parser_cfg.get('pseudoprojective'): - # preprocess training data here before ArcEager.get_labels() is called - gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) - - for subdir in ('deps', 'ner', 'pos'): - if subdir not in configs: - configs[subdir] = {} - if parser_cfg: - configs['deps']['actions'] = ArcEager.get_actions(gold_parses=gold_tuples) - if 'ner' in configs: - configs['ner']['actions'] = BiluoPushDown.get_actions(gold_parses=gold_tuples) - - cls.setup_directory(path, **configs) - - self = cls( - path=path, - vocab=False, - tokenizer=False, - tagger=False, - parser=False, - entity=False, - matcher=False, - vectors=False, - pipeline=False) - - self.vocab = self.Defaults.create_vocab(self) - self.tokenizer = self.Defaults.create_tokenizer(self) - self.tagger = self.Defaults.create_tagger(self) - self.parser = self.Defaults.create_parser(self) - self.entity = self.Defaults.create_entity(self) - self.pipeline = self.Defaults.create_pipeline(self) - yield Trainer(self, gold_tuples) - self.end_training() - self.save_to_directory(path) - - def __init__(self, **overrides): - """ - Create or load the pipeline. - - Arguments: - **overrides: Keyword arguments indicating which defaults to override. - - Returns: - Language: The newly constructed object. - """ - if 'data_dir' in overrides and 'path' not in overrides: - raise ValueError("The argument 'data_dir' has been renamed to 'path'") - path = util.ensure_path(overrides.get('path', True)) - if path is True: - path = util.get_data_path() / self.lang - if not path.exists() and 'path' not in overrides: - path = None - self.meta = overrides.get('meta', {}) - self.path = path - - self.vocab = self.Defaults.create_vocab(self) \ - if 'vocab' not in overrides \ - else overrides['vocab'] - add_vectors = self.Defaults.add_vectors(self) \ - if 'add_vectors' not in overrides \ - else overrides['add_vectors'] - if self.vocab and add_vectors: - add_vectors(self.vocab) - self.tokenizer = self.Defaults.create_tokenizer(self) \ - if 'tokenizer' not in overrides \ - else overrides['tokenizer'] - - self.tagger = self.Defaults.create_tagger(self) \ - if 'tagger' not in overrides \ - else overrides['tagger'] - self.parser = self.Defaults.create_parser(self) \ - if 'parser' not in overrides \ - else overrides['parser'] - self.entity = self.Defaults.create_entity(self) \ - if 'entity' not in overrides \ - else overrides['entity'] - self.matcher = self.Defaults.create_matcher(self) \ - if 'matcher' not in overrides \ - else overrides['matcher'] - - if 'make_doc' in overrides: - self.make_doc = overrides['make_doc'] - elif 'create_make_doc' in overrides: - self.make_doc = overrides['create_make_doc'](self) - elif not hasattr(self, 'make_doc'): - self.make_doc = lambda text: self.tokenizer(text) - if 'pipeline' in overrides: - self.pipeline = overrides['pipeline'] - elif 'create_pipeline' in overrides: - self.pipeline = overrides['create_pipeline'](self) + if vocab is True: + factory = self.Defaults.create_vocab + vocab = factory(self, **meta.get('vocab', {})) + self.vocab = vocab + if make_doc is True: + factory = self.Defaults.create_tokenizer + make_doc = factory(self, **meta.get('tokenizer', {})) + self.make_doc = make_doc + if pipeline is True: + self.pipeline = self.Defaults.create_pipeline(self) + elif pipeline: + self.pipeline = list(pipeline) + # Resolve strings, like "cnn", "lstm", etc + for i, entry in enumerate(self.pipeline): + if entry in self.Defaults.factories: + factory = self.Defaults.factories[entry] + self.pipeline[i] = factory(self, **meta.get(entry, {})) else: - self.pipeline = [self.tagger, self.parser, self.matcher, self.entity] + self.pipeline = [] - def __call__(self, text, tag=True, parse=True, entity=True): + def __call__(self, text, **disabled): """ Apply the pipeline to some text. The text can span multiple sentences, and can contain arbtrary whitespace. Alignment into the original string @@ -294,18 +143,24 @@ class Language(object): ('An', 'NN') """ doc = self.make_doc(text) - if self.entity and entity: - # Add any of the entity labels already set, in case we don't have them. - for token in doc: - if token.ent_type != 0: - self.entity.add_label(token.ent_type) - skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} for proc in self.pipeline: - if proc and not skip.get(proc): - proc(doc) + name = getattr(proc, 'name', None) + if name in disabled and not disabled[named]: + continue + proc(doc) return doc - def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000): + @contextmanager + def begin_training(self, gold_tuples, **cfg): + contexts = [] + for proc in self.pipeline: + if hasattr(proc, 'begin_training'): + context = proc.begin_training(gold_tuples, pipeline=self.pipeline) + contexts.append(context) + trainer = Trainer(self, gold_tuples, **cfg) + yield trainer, trainer.optimizer + + def pipe(self, texts, n_threads=2, batch_size=1000, **disabled): """ Process texts as a stream, and yield Doc objects in order. @@ -317,55 +172,28 @@ class Language(object): parse (bool) entity (bool) """ - skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} stream = (self.make_doc(text) for text in texts) for proc in self.pipeline: - if proc and not skip.get(proc): - if hasattr(proc, 'pipe'): - stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size) - else: - stream = (proc(item) for item in stream) + name = getattr(proc, 'name', None) + if name in disabled and not disabled[named]: + continue + + if hasattr(proc, 'pipe'): + stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size) + else: + stream = (proc(item) for item in stream) for doc in stream: yield doc - def save_to_directory(self, path): - """ - Save the Vocab, StringStore and pipeline to a directory. + def to_disk(self, path): + raise NotImplemented - Arguments: - path (string or pathlib path): Path to save the model. - """ - configs = { - 'pos': self.tagger.cfg if self.tagger else {}, - 'deps': self.parser.cfg if self.parser else {}, - 'ner': self.entity.cfg if self.entity else {}, - } + def from_disk(self, path): + raise NotImplemented - path = util.ensure_path(path) - if not path.exists(): - path.mkdir() - self.setup_directory(path, **configs) + def to_bytes(self, path): + raise NotImplemented - strings_loc = path / 'vocab' / 'strings.json' - with strings_loc.open('w', encoding='utf8') as file_: - self.vocab.strings.dump(file_) - self.vocab.dump(path / 'vocab' / 'lexemes.bin') - # TODO: Word vectors? - if self.tagger: - self.tagger.model.dump(str(path / 'pos' / 'model')) - if self.parser: - self.parser.model.dump(str(path / 'deps' / 'model')) - if self.entity: - self.entity.model.dump(str(path / 'ner' / 'model')) + def from_bytes(self, path): + raise NotImplemented - def end_training(self, path=None): - if self.tagger: - self.tagger.model.end_training() - if self.parser: - self.parser.model.end_training() - if self.entity: - self.entity.model.end_training() - # NB: This is slightly different from before --- we no longer default - # to taking nlp.path - if path is not None: - self.save_to_directory(path) diff --git a/spacy/pipeline.pyx b/spacy/pipeline.pyx index 4976ff317..e3a6fdfea 100644 --- a/spacy/pipeline.pyx +++ b/spacy/pipeline.pyx @@ -9,7 +9,8 @@ import numpy cimport numpy as np from .tokens.doc cimport Doc -from .syntax.parser cimport Parser +from .syntax.parser cimport Parser as LinearParser +from .syntax.nn_parser cimport Parser as NeuralParser from .syntax.parser import get_templates as get_feature_templates from .syntax.beam_parser cimport BeamParser from .syntax.ner cimport BiluoPushDown @@ -30,13 +31,13 @@ from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP from ._ml import Tok2Vec, flatten, get_col, doc2feats - class TokenVectorEncoder(object): '''Assign position-sensitive vectors to tokens, using a CNN or RNN.''' + name = 'tok2vec' @classmethod def Model(cls, width=128, embed_size=5000, **cfg): - return Tok2Vec(width, embed_size, preprocess=False) + return Tok2Vec(width, embed_size, preprocess=doc2feats()) def __init__(self, vocab, model=True, **cfg): self.vocab = vocab @@ -76,10 +77,11 @@ class TokenVectorEncoder(object): doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id) idx += 1 - def update(self, docs_feats, golds, drop=0., sgd=None): + def update(self, docs, golds, drop=0., sgd=None): + return 0.0 cdef int i, j, idx cdef GoldParse gold - docs, feats = docs_feats + feats = self.doc2feats(docs) scores, finish_update = self.tagger.begin_update(feats, drop=drop) tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)} @@ -95,7 +97,7 @@ class TokenVectorEncoder(object): finish_update(d_scores, sgd) -cdef class EntityRecognizer(Parser): +cdef class EntityRecognizer(LinearParser): """ Annotate named entities on Doc objects. """ @@ -104,7 +106,7 @@ cdef class EntityRecognizer(Parser): feature_templates = get_feature_templates('ner') def add_label(self, label): - Parser.add_label(self, label) + LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] @@ -118,21 +120,31 @@ cdef class BeamEntityRecognizer(BeamParser): feature_templates = get_feature_templates('ner') def add_label(self, label): - Parser.add_label(self, label) + LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] -cdef class DependencyParser(Parser): +cdef class DependencyParser(LinearParser): TransitionSystem = ArcEager feature_templates = get_feature_templates('basic') def add_label(self, label): - Parser.add_label(self, label) + LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] +cdef class NeuralDependencyParser(NeuralParser): + name = 'parser' + TransitionSystem = ArcEager + + +cdef class NeuralEntityRecognizer(NeuralParser): + name = 'entity' + TransitionSystem = BiluoPushDown + + cdef class BeamDependencyParser(BeamParser): TransitionSystem = ArcEager diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index b3a5e9ca1..db770a452 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -238,11 +238,7 @@ cdef class Parser: upper.begin_training(upper.ops.allocate((500, hidden_width))) return tok2vec, lower, upper - @classmethod - def Moves(cls): - return TransitionSystem() - - def __init__(self, Vocab vocab, moves=True, model=True, **cfg): + def __init__(self, Vocab vocab, model=True, **cfg): """ Create a Parser. @@ -262,9 +258,13 @@ cdef class Parser: Arbitrary configuration parameters. Set to the .cfg attribute """ self.vocab = vocab - self.moves = self.Moves(self.vocab) if moves is True else moves - self.model = self.Model(self.moves.n_moves) if model is True else model + self.moves = self.TransitionSystem(self.vocab.strings, {}) self.cfg = cfg + if 'actions' in self.cfg: + for action, labels in self.cfg.get('actions', {}).items(): + for label in labels: + self.moves.add_action(action, label) + self.model = model def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model, self.cfg), None, None) @@ -440,6 +440,17 @@ cdef class Parser: # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) + def begin_training(self, gold_tuples, **cfg): + if 'model' in cfg: + self.model = cfg['model'] + actions = self.moves.get_actions(gold_parses=gold_tuples) + for action, labels in actions.items(): + for label in labels: + self.moves.add_action(action, label) + if self.model is True: + tok2vec = cfg['pipeline'][0].model + self.model = self.Model(self.moves.n_moves, tok2vec=tok2vec, **cfg) + class ParserStateError(ValueError): def __init__(self, doc): diff --git a/spacy/train.py b/spacy/train.py index 87b262333..bd509c5f4 100644 --- a/spacy/train.py +++ b/spacy/train.py @@ -3,12 +3,14 @@ from __future__ import absolute_import, unicode_literals import random import tqdm +from cytoolz import partition_all from thinc.neural.optimizers import Adam from thinc.neural.ops import NumpyOps, CupyOps from .gold import GoldParse, merge_sents from .scorer import Scorer +from .tokens.doc import Doc class Trainer(object): @@ -19,6 +21,7 @@ class Trainer(object): self.nlp = nlp self.gold_tuples = gold_tuples self.nr_epoch = 0 + self.optimizer = Adam(NumpyOps(), 0.001) def epochs(self, nr_epoch, augment_data=None, gold_preproc=False): cached_golds = {} @@ -75,9 +78,9 @@ class Trainer(object): def make_docs(self, raw_text, paragraph_tuples): if raw_text is not None: - return [self.nlp.tokenizer(raw_text)] + return [self.nlp.make_doc(raw_text)] else: - return [self.nlp.tokenizer.tokens_from_list(sent_tuples[0][1]) + return [Doc(self.nlp.vocab, words=sent_tuples[0][1]) for sent_tuples in paragraph_tuples] def make_golds(self, docs, paragraph_tuples):