mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop"
This reverts commitea8de11ad5
, reversing changes made to08e443e083
.
This commit is contained in:
parent
ea8de11ad5
commit
52c180ecf5
1
setup.py
1
setup.py
|
@ -36,7 +36,6 @@ MOD_NAMES = [
|
|||
'spacy.syntax.transition_system',
|
||||
'spacy.syntax.arc_eager',
|
||||
'spacy.syntax._parse_features',
|
||||
'spacy.syntax._beam_utils',
|
||||
'spacy.gold',
|
||||
'spacy.tokens.doc',
|
||||
'spacy.tokens.span',
|
||||
|
|
114
spacy/_ml.py
114
spacy/_ml.py
|
@ -5,12 +5,10 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
|||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
import random
|
||||
import cytoolz
|
||||
|
||||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
from thinc.neural._classes.batchnorm import BatchNorm
|
||||
from thinc.neural._classes.layernorm import LayerNorm as LN
|
||||
from thinc.neural._classes.resnet import Residual
|
||||
from thinc.neural import ReLu
|
||||
from thinc.neural._classes.selu import SELU
|
||||
|
@ -21,12 +19,10 @@ from thinc.api import FeatureExtracter, with_getitem
|
|||
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
|
||||
from thinc.neural._classes.attention import ParametricAttention
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.api import uniqued, wrap, flatten_add_lengths
|
||||
|
||||
from thinc.api import uniqued, wrap
|
||||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from .tokens.doc import Doc
|
||||
from . import util
|
||||
|
||||
import numpy
|
||||
import io
|
||||
|
@ -57,27 +53,6 @@ def _logistic(X, drop=0.):
|
|||
return Y, logistic_bwd
|
||||
|
||||
|
||||
@layerize
|
||||
def add_tuples(X, drop=0.):
|
||||
"""Give inputs of sequence pairs, where each sequence is (vals, length),
|
||||
sum the values, returning a single sequence.
|
||||
|
||||
If input is:
|
||||
((vals1, length), (vals2, length)
|
||||
Output is:
|
||||
(vals1+vals2, length)
|
||||
|
||||
vals are a single tensor for the whole batch.
|
||||
"""
|
||||
(vals1, length1), (vals2, length2) = X
|
||||
assert length1 == length2
|
||||
|
||||
def add_tuples_bwd(dY, sgd=None):
|
||||
return (dY, dY)
|
||||
|
||||
return (vals1+vals2, length), add_tuples_bwd
|
||||
|
||||
|
||||
def _zero_init(model):
|
||||
def _zero_init_impl(self, X, y):
|
||||
self.W.fill(0)
|
||||
|
@ -86,7 +61,6 @@ def _zero_init(model):
|
|||
model.W.fill(0.)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.):
|
||||
keys = [doc.to_array([LOWER]) for doc in docs]
|
||||
|
@ -98,6 +72,7 @@ def _preprocess_doc(docs, drop=0.):
|
|||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
|
||||
def _init_for_precomputed(W, ops):
|
||||
if (W**2).sum() != 0.:
|
||||
return
|
||||
|
@ -105,7 +80,6 @@ def _init_for_precomputed(W, ops):
|
|||
ops.xavier_uniform_init(reshaped)
|
||||
W[:] = reshaped.reshape(W.shape)
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
|
@ -210,36 +184,25 @@ class PrecomputableMaxouts(Model):
|
|||
return Yfp, backward
|
||||
|
||||
|
||||
def drop_layer(layer, factor=2.):
|
||||
def drop_layer_fwd(X, drop=0.):
|
||||
drop *= factor
|
||||
mask = layer.ops.get_dropout_mask((1,), drop)
|
||||
if mask is None or mask > 0:
|
||||
return layer.begin_update(X, drop=drop)
|
||||
else:
|
||||
return X, lambda dX, sgd=None: dX
|
||||
return wrap(drop_layer_fwd, layer)
|
||||
|
||||
|
||||
def Tok2Vec(width, embed_size, preprocess=None):
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
|
||||
|
||||
embed = (norm | prefix | suffix | shape ) >> Maxout(width, width*4, pieces=3)
|
||||
embed = (norm | prefix | suffix | shape )
|
||||
tok2vec = (
|
||||
with_flatten(
|
||||
asarray(Model.ops, dtype='uint64')
|
||||
>> uniqued(embed, column=5)
|
||||
>> drop_layer(
|
||||
Residual(
|
||||
(ExtractWindow(nW=1) >> ReLu(width, width*3))
|
||||
)
|
||||
) ** 4, pad=4
|
||||
)
|
||||
>> embed
|
||||
>> Maxout(width, width*4, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
||||
pad=4)
|
||||
)
|
||||
if preprocess not in (False, None):
|
||||
tok2vec = preprocess >> tok2vec
|
||||
|
@ -334,8 +297,7 @@ def zero_init(model):
|
|||
|
||||
|
||||
def doc2feats(cols=None):
|
||||
if cols is None:
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
def forward(docs, drop=0.):
|
||||
feats = []
|
||||
for doc in docs:
|
||||
|
@ -361,37 +323,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
return vectors, backward
|
||||
|
||||
|
||||
def fine_tune(embedding, combine=None):
|
||||
if combine is not None:
|
||||
raise NotImplementedError(
|
||||
"fine_tune currently only supports addition. Set combine=None")
|
||||
def fine_tune_fwd(docs_tokvecs, drop=0.):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
|
||||
|
||||
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
||||
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
||||
flat_vecs = embedding.ops.flatten(vecs)
|
||||
output = embedding.ops.unflatten(
|
||||
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
|
||||
lengths)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_vecs(d_output, sgd=sgd)
|
||||
flat_grad = model.ops.flatten(d_output)
|
||||
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
|
||||
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
|
||||
if sgd is not None:
|
||||
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
||||
return d_output
|
||||
return output, fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd, embedding)
|
||||
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
||||
model.mix.fill(1.)
|
||||
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
if isinstance(seqs[0], numpy.ndarray):
|
||||
|
@ -438,27 +369,6 @@ def preprocess_doc(docs, drop=0.):
|
|||
vals = ops.allocate(keys.shape[0]) + 1
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.):
|
||||
return X[i], None
|
||||
return layerize(getitem_fwd)
|
||||
|
||||
def build_tagger_model(nr_class, token_vector_width, **cfg):
|
||||
embed_size = util.env_opt('embed_size', 7500)
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
# Input: (doc, tensor) tuples
|
||||
private_tok2vec = Tok2Vec(token_vector_width, embed_size, preprocess=doc2feats())
|
||||
|
||||
model = (
|
||||
fine_tune(private_tok2vec)
|
||||
>> with_flatten(
|
||||
Maxout(token_vector_width, token_vector_width)
|
||||
>> Softmax(nr_class, token_vector_width)
|
||||
)
|
||||
)
|
||||
model.nI = None
|
||||
return model
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
nr_vector = cfg.get('nr_vector', 200)
|
||||
|
|
|
@ -21,10 +21,10 @@ CONVERTERS = {
|
|||
@plac.annotations(
|
||||
input_file=("input file", "positional", None, str),
|
||||
output_dir=("output directory for converted file", "positional", None, str),
|
||||
n_sents=("Number of sentences per doc", "option", "n", int),
|
||||
n_sents=("Number of sentences per doc", "option", "n", float),
|
||||
morphology=("Enable appending morphology to tags", "flag", "m", bool)
|
||||
)
|
||||
def convert(cmd, input_file, output_dir, n_sents=1, morphology=False):
|
||||
def convert(cmd, input_file, output_dir, n_sents, morphology):
|
||||
"""
|
||||
Convert files into JSON format for use with train command and other
|
||||
experiment management functions.
|
||||
|
|
|
@ -91,14 +91,15 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
for batch in minibatch(train_docs, size=batch_sizes):
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(docs, golds, sgd=optimizer,
|
||||
drop=next(dropout_rates), losses=losses,
|
||||
update_tensors=True)
|
||||
drop=next(dropout_rates), losses=losses)
|
||||
pbar.update(sum(len(doc) for doc in docs))
|
||||
|
||||
with nlp.use_params(optimizer.averages):
|
||||
util.set_env_log(False)
|
||||
epoch_model_path = output_path / ('model%d' % i)
|
||||
nlp.to_disk(epoch_model_path)
|
||||
with (output_path / ('model%d.pickle' % i)).open('wb') as file_:
|
||||
dill.dump(nlp, file_, -1)
|
||||
nlp_loaded = lang_class(pipeline=pipeline)
|
||||
nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
|
||||
scorer = nlp_loaded.evaluate(
|
||||
|
|
|
@ -277,8 +277,7 @@ class Language(object):
|
|||
def make_doc(self, text):
|
||||
return self.tokenizer(text)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None,
|
||||
update_tensors=False):
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
"""Update the models in the pipeline.
|
||||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
|
@ -305,17 +304,14 @@ class Language(object):
|
|||
grads[key] = (W, dW)
|
||||
pipes = list(self.pipeline[1:])
|
||||
random.shuffle(pipes)
|
||||
tokvecses, bp_tokvecses = tok2vec.model.begin_update(feats, drop=drop)
|
||||
all_d_tokvecses = [tok2vec.model.ops.allocate(tv.shape) for tv in tokvecses]
|
||||
for proc in pipes:
|
||||
if not hasattr(proc, 'update'):
|
||||
continue
|
||||
tokvecses, bp_tokvecses = tok2vec.model.begin_update(feats, drop=drop)
|
||||
d_tokvecses = proc.update((docs, tokvecses), golds,
|
||||
drop=drop, sgd=get_grads, losses=losses)
|
||||
if update_tensors and d_tokvecses is not None:
|
||||
for i, d_tv in enumerate(d_tokvecses):
|
||||
all_d_tokvecses[i] += d_tv
|
||||
bp_tokvecses(all_d_tokvecses, sgd=sgd)
|
||||
if d_tokvecses is not None:
|
||||
bp_tokvecses(d_tokvecses, sgd=sgd)
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
# Clear the tensor variable, to free GPU memory.
|
||||
|
@ -385,18 +381,9 @@ class Language(object):
|
|||
return optimizer
|
||||
|
||||
def evaluate(self, docs_golds):
|
||||
scorer = Scorer()
|
||||
docs, golds = zip(*docs_golds)
|
||||
docs = list(docs)
|
||||
golds = list(golds)
|
||||
for pipe in self.pipeline:
|
||||
if not hasattr(pipe, 'pipe'):
|
||||
for doc in docs:
|
||||
pipe(doc)
|
||||
else:
|
||||
docs = list(pipe.pipe(docs))
|
||||
assert len(docs) == len(golds)
|
||||
for doc, gold in zip(docs, golds):
|
||||
scorer = Scorer()
|
||||
for doc, gold in zip(self.pipe(docs, batch_size=32), golds):
|
||||
scorer.score(doc, gold)
|
||||
doc.tensor = None
|
||||
return scorer
|
||||
|
|
|
@ -42,7 +42,7 @@ from .compat import json_dumps
|
|||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
||||
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
||||
from ._ml import build_text_classifier, build_tagger_model
|
||||
from ._ml import build_text_classifier
|
||||
from .parts_of_speech import X
|
||||
|
||||
|
||||
|
@ -138,7 +138,7 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
name = 'tensorizer'
|
||||
|
||||
@classmethod
|
||||
def Model(cls, width=128, embed_size=4000, **cfg):
|
||||
def Model(cls, width=128, embed_size=7500, **cfg):
|
||||
"""Create a new statistical model for the class.
|
||||
|
||||
width (int): Output size of the model.
|
||||
|
@ -253,25 +253,23 @@ class NeuralTagger(BaseThincComponent):
|
|||
self.cfg = dict(cfg)
|
||||
|
||||
def __call__(self, doc):
|
||||
tags = self.predict(([doc], [doc.tensor]))
|
||||
tags = self.predict([doc.tensor])
|
||||
self.set_annotations([doc], tags)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
tag_ids = self.predict((docs, tokvecs))
|
||||
tag_ids = self.predict(tokvecs)
|
||||
self.set_annotations(docs, tag_ids)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs_tokvecs):
|
||||
scores = self.model(docs_tokvecs)
|
||||
def predict(self, tokvecs):
|
||||
scores = self.model(tokvecs)
|
||||
scores = self.model.ops.flatten(scores)
|
||||
guesses = scores.argmax(axis=1)
|
||||
if not isinstance(guesses, numpy.ndarray):
|
||||
guesses = guesses.get()
|
||||
tokvecs = docs_tokvecs[1]
|
||||
guesses = self.model.ops.unflatten(guesses,
|
||||
[tv.shape[0] for tv in tokvecs])
|
||||
return guesses
|
||||
|
@ -284,8 +282,6 @@ class NeuralTagger(BaseThincComponent):
|
|||
cdef Vocab vocab = self.vocab
|
||||
for i, doc in enumerate(docs):
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, 'get'):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
# Don't clobber preset POS tags
|
||||
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
|
||||
|
@ -298,7 +294,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
|
||||
if self.model.nI is None:
|
||||
self.model.nI = tokvecs[0].shape[1]
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop)
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
|
||||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
||||
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
|
@ -349,7 +346,9 @@ class NeuralTagger(BaseThincComponent):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
|
@ -433,7 +432,7 @@ class NeuralLabeller(NeuralTagger):
|
|||
|
||||
@property
|
||||
def labels(self):
|
||||
return self.cfg.setdefault('labels', {})
|
||||
return self.cfg.get('labels', {})
|
||||
|
||||
@labels.setter
|
||||
def labels(self, value):
|
||||
|
@ -456,7 +455,9 @@ class NeuralLabeller(NeuralTagger):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
|
|
|
@ -1,273 +0,0 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
cimport numpy as np
|
||||
import numpy
|
||||
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||
from thinc.extra.search cimport Beam
|
||||
from thinc.extra.search import MaxViolation
|
||||
from thinc.typedefs cimport hash_t, class_t
|
||||
|
||||
from .transition_system cimport TransitionSystem, Transition
|
||||
from .stateclass cimport StateClass
|
||||
from ..gold cimport GoldParse
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
|
||||
# These are passed as callbacks to thinc.search.Beam
|
||||
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
|
||||
dest = <StateClass>_dest
|
||||
src = <StateClass>_src
|
||||
moves = <const Transition*>_moves
|
||||
dest.clone(src)
|
||||
moves[clas].do(dest.c, moves[clas].label)
|
||||
|
||||
|
||||
cdef int _check_final_state(void* _state, void* extra_args) except -1:
|
||||
return (<StateClass>_state).is_final()
|
||||
|
||||
|
||||
def _cleanup(Beam beam):
|
||||
for i in range(beam.width):
|
||||
Py_XDECREF(<PyObject*>beam._states[i].content)
|
||||
Py_XDECREF(<PyObject*>beam._parents[i].content)
|
||||
|
||||
|
||||
cdef hash_t _hash_state(void* _state, void* _) except 0:
|
||||
state = <StateClass>_state
|
||||
if state.c.is_final():
|
||||
return 1
|
||||
else:
|
||||
return state.c.hash()
|
||||
|
||||
|
||||
cdef class ParserBeam(object):
|
||||
cdef public TransitionSystem moves
|
||||
cdef public object states
|
||||
cdef public object golds
|
||||
cdef public object beams
|
||||
|
||||
def __init__(self, TransitionSystem moves, states, golds,
|
||||
int width=4, float density=0.001):
|
||||
self.moves = moves
|
||||
self.states = states
|
||||
self.golds = golds
|
||||
self.beams = []
|
||||
cdef Beam beam
|
||||
cdef StateClass state, st
|
||||
for state in states:
|
||||
beam = Beam(self.moves.n_moves, width, density)
|
||||
beam.initialize(self.moves.init_beam_state, state.c.length, state.c._sent)
|
||||
for i in range(beam.width):
|
||||
st = <StateClass>beam.at(i)
|
||||
st.c.offset = state.c.offset
|
||||
self.beams.append(beam)
|
||||
|
||||
def __dealloc__(self):
|
||||
if self.beams is not None:
|
||||
for beam in self.beams:
|
||||
if beam is not None:
|
||||
_cleanup(beam)
|
||||
|
||||
@property
|
||||
def is_done(self):
|
||||
return all(b.is_done for b in self.beams)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.beams[i]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.beams)
|
||||
|
||||
def advance(self, scores, follow_gold=False):
|
||||
cdef Beam beam
|
||||
for i, beam in enumerate(self.beams):
|
||||
if beam.is_done or not scores[i].size:
|
||||
continue
|
||||
self._set_scores(beam, scores[i])
|
||||
if self.golds is not None:
|
||||
self._set_costs(beam, self.golds[i], follow_gold=follow_gold)
|
||||
if follow_gold:
|
||||
assert self.golds is not None
|
||||
beam.advance(_transition_state, NULL, <void*>self.moves.c)
|
||||
else:
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
if beam.is_done:
|
||||
for j in range(beam.size):
|
||||
if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings):
|
||||
beam._states[j].loss = 0.0
|
||||
elif beam._states[j].loss == 0.0:
|
||||
beam._states[j].loss = 1.0
|
||||
|
||||
def _set_scores(self, Beam beam, float[:, ::1] scores):
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
for i in range(beam.size):
|
||||
state = <StateClass>beam.at(i)
|
||||
if not state.is_final():
|
||||
for j in range(beam.nr_class):
|
||||
beam.scores[i][j] = c_scores[i * beam.nr_class + j]
|
||||
self.moves.set_valid(beam.is_valid[i], state.c)
|
||||
|
||||
def _set_costs(self, Beam beam, GoldParse gold, int follow_gold=False):
|
||||
for i in range(beam.size):
|
||||
state = <StateClass>beam.at(i)
|
||||
if not state.c.is_final():
|
||||
self.moves.set_costs(beam.is_valid[i], beam.costs[i], state, gold)
|
||||
if follow_gold:
|
||||
for j in range(beam.nr_class):
|
||||
if beam.costs[i][j] >= 1:
|
||||
beam.is_valid[i][j] = 0
|
||||
|
||||
|
||||
def is_gold(StateClass state, GoldParse gold, strings):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
for i in range(gold.length):
|
||||
if gold.cand_to_gold[i] is None:
|
||||
continue
|
||||
if state.safe_get(i).dep:
|
||||
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
|
||||
else:
|
||||
predicted.add((i, state.H(i), 'ROOT'))
|
||||
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
|
||||
truth.add((id_, head, dep))
|
||||
return truth == predicted
|
||||
|
||||
|
||||
def get_token_ids(states, int n_tokens):
|
||||
cdef StateClass state
|
||||
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
|
||||
dtype='int32', order='C')
|
||||
c_ids = <int*>ids.data
|
||||
for i, state in enumerate(states):
|
||||
if not state.is_final():
|
||||
state.c.set_context_tokens(c_ids, n_tokens)
|
||||
else:
|
||||
ids[i] = -1
|
||||
c_ids += ids.shape[1]
|
||||
return ids
|
||||
|
||||
nr_update = 0
|
||||
def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores, drop=0., sgd=None,
|
||||
losses=None, int width=4, float density=0.001):
|
||||
global nr_update
|
||||
nr_update += 1
|
||||
pbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=density)
|
||||
gbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=0.0)
|
||||
cdef StateClass state
|
||||
beam_maps = []
|
||||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
for t in range(max_steps):
|
||||
# The beam maps let us find the right row in the flattened scores
|
||||
# arrays for each state. States are identified by (example id, history).
|
||||
# We keep a different beam map for each step (since we'll have a flat
|
||||
# scores array for each step). The beam map will let us take the per-state
|
||||
# losses, and compute the gradient for each (step, state, class).
|
||||
beam_maps.append({})
|
||||
# Gather all states from the two beams in a list. Some stats may occur
|
||||
# in both beams. To figure out which beam each state belonged to,
|
||||
# we keep two lists of indices, p_indices and g_indices
|
||||
states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1], nr_update)
|
||||
if not states:
|
||||
break
|
||||
# Now that we have our flat list of states, feed them through the model
|
||||
token_ids = get_token_ids(states, nr_feature)
|
||||
vectors, bp_vectors = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vectors, drop=drop)
|
||||
|
||||
# Store the callbacks for the backward pass
|
||||
backprops.append((token_ids, bp_vectors, bp_scores))
|
||||
|
||||
# Unpack the flat scores into lists for the two beams. The indices arrays
|
||||
# tell us which example and state the scores-row refers to.
|
||||
p_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in p_indices]
|
||||
g_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in g_indices]
|
||||
# Now advance the states in the beams. The gold beam is contrained to
|
||||
# to follow only gold analyses.
|
||||
pbeam.advance(p_scores)
|
||||
gbeam.advance(g_scores, follow_gold=True)
|
||||
# Track the "maximum violation", to use in the update.
|
||||
for i, violn in enumerate(violns):
|
||||
violn.check_crf(pbeam[i], gbeam[i])
|
||||
|
||||
# Only make updates if we have non-gold states
|
||||
histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns]
|
||||
losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns]
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_maps,
|
||||
histories, losses)
|
||||
assert len(states_d_scores) == len(backprops), (len(states_d_scores), len(backprops))
|
||||
return states_d_scores, backprops
|
||||
|
||||
|
||||
def get_states(pbeams, gbeams, beam_map, nr_update):
|
||||
seen = {}
|
||||
states = []
|
||||
p_indices = []
|
||||
g_indices = []
|
||||
cdef Beam pbeam, gbeam
|
||||
assert len(pbeams) == len(gbeams)
|
||||
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
|
||||
p_indices.append([])
|
||||
g_indices.append([])
|
||||
if pbeam.loss > 0 and pbeam.min_score > gbeam.score:
|
||||
continue
|
||||
for i in range(pbeam.size):
|
||||
state = <StateClass>pbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + pbeam.histories[i])
|
||||
seen[key] = len(states)
|
||||
p_indices[-1].append(len(states))
|
||||
states.append(state)
|
||||
beam_map.update(seen)
|
||||
for i in range(gbeam.size):
|
||||
state = <StateClass>gbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + gbeam.histories[i])
|
||||
if key in seen:
|
||||
g_indices[-1].append(seen[key])
|
||||
else:
|
||||
g_indices[-1].append(len(states))
|
||||
beam_map[key] = len(states)
|
||||
states.append(state)
|
||||
p_idx = [numpy.asarray(idx, dtype='i') for idx in p_indices]
|
||||
g_idx = [numpy.asarray(idx, dtype='i') for idx in g_indices]
|
||||
return states, p_idx, g_idx
|
||||
|
||||
|
||||
def get_gradient(nr_class, beam_maps, histories, losses):
|
||||
"""
|
||||
The global model assigns a loss to each parse. The beam scores
|
||||
are additive, so the same gradient is applied to each action
|
||||
in the history. This gives the gradient of a single *action*
|
||||
for a beam state -- so we have "the gradient of loss for taking
|
||||
action i given history H."
|
||||
|
||||
Histories: Each hitory is a list of actions
|
||||
Each candidate has a history
|
||||
Each beam has multiple candidates
|
||||
Each batch has multiple beams
|
||||
So history is list of lists of lists of ints
|
||||
"""
|
||||
nr_step = len(beam_maps)
|
||||
grads = []
|
||||
for beam_map in beam_maps:
|
||||
if beam_map:
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
assert len(histories) == len(losses)
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
key = tuple([eg_id])
|
||||
for j, clas in enumerate(hist):
|
||||
i = beam_maps[j][key]
|
||||
# In step j, at state i action clas
|
||||
# resulted in loss
|
||||
grads[j][i, clas] += loss / len(histories)
|
||||
key = key + tuple([clas])
|
||||
return grads
|
||||
|
||||
|
|
@ -37,7 +37,6 @@ cdef cppclass StateC:
|
|||
this.shifted = <bint*>calloc(length + (PADDING * 2), sizeof(bint))
|
||||
this._sent = <TokenC*>calloc(length + (PADDING * 2), sizeof(TokenC))
|
||||
this._ents = <Entity*>calloc(length + (PADDING * 2), sizeof(Entity))
|
||||
this.offset = 0
|
||||
cdef int i
|
||||
for i in range(length + (PADDING * 2)):
|
||||
this._ents[i].end = -1
|
||||
|
|
|
@ -385,7 +385,6 @@ cdef class ArcEager(TransitionSystem):
|
|||
for i in range(self.n_moves):
|
||||
if self.c[i].move == move and self.c[i].label == label:
|
||||
return self.c[i]
|
||||
return Transition(clas=0, move=MISSING, label=0)
|
||||
|
||||
def move_name(self, int move, attr_t label):
|
||||
label_str = self.strings[label]
|
||||
|
|
|
@ -34,7 +34,6 @@ from ._parse_features cimport CONTEXT_SIZE
|
|||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from .parser cimport Parser
|
||||
from ._beam_utils import is_gold
|
||||
|
||||
|
||||
DEBUG = False
|
||||
|
@ -238,3 +237,16 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
|
|||
raise Exception("Gold parse is not gold-standard")
|
||||
|
||||
|
||||
def is_gold(StateClass state, GoldParse gold, StringStore strings):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
for i in range(gold.length):
|
||||
if gold.cand_to_gold[i] is None:
|
||||
continue
|
||||
if state.safe_get(i).dep:
|
||||
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
|
||||
else:
|
||||
predicted.add((i, state.H(i), 'ROOT'))
|
||||
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
|
||||
truth.add((id_, head, dep))
|
||||
return truth == predicted
|
||||
|
|
|
@ -14,4 +14,8 @@ cdef class Parser:
|
|||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -37,17 +37,14 @@ from preshed.maps cimport MapStruct
|
|||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain, noop, clone
|
||||
from thinc.neural import Model, Affine, ReLu, Maxout
|
||||
from thinc.neural._classes.selu import SELU
|
||||
from thinc.neural._classes.layernorm import LayerNorm
|
||||
from thinc.neural import Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
|
||||
from .. import util
|
||||
from ..util import get_async, get_cuda_stream
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune
|
||||
from .._ml import Residual, drop_layer
|
||||
from .._ml import Tok2Vec, doc2feats, rebatch
|
||||
from ..compat import json_dumps
|
||||
|
||||
from . import _parse_features
|
||||
|
@ -62,11 +59,8 @@ from ..structs cimport TokenC
|
|||
from ..tokens.doc cimport Doc
|
||||
from ..strings cimport StringStore
|
||||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
|
||||
from . import _beam_utils
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
USE_FINE_TUNE = True
|
||||
BEAM_PARSE = True
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
@ -238,14 +232,11 @@ cdef class Parser:
|
|||
Base class of the DependencyParser and EntityRecognizer.
|
||||
"""
|
||||
@classmethod
|
||||
def Model(cls, nr_class, token_vector_width=128, hidden_width=300, depth=1, **cfg):
|
||||
def Model(cls, nr_class, token_vector_width=128, hidden_width=128, depth=1, **cfg):
|
||||
depth = util.env_opt('parser_hidden_depth', depth)
|
||||
token_vector_width = util.env_opt('token_vector_width', token_vector_width)
|
||||
hidden_width = util.env_opt('hidden_width', hidden_width)
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2)
|
||||
embed_size = util.env_opt('embed_size', 4000)
|
||||
tensors = fine_tune(Tok2Vec(token_vector_width, embed_size,
|
||||
preprocess=doc2feats()))
|
||||
if parser_maxout_pieces == 1:
|
||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature,
|
||||
|
@ -257,10 +248,15 @@ cdef class Parser:
|
|||
nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
if depth == 0:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
else:
|
||||
upper = chain(
|
||||
clone(Residual(ReLu(hidden_width)), (depth-1)),
|
||||
clone(Maxout(hidden_width), (depth-1)),
|
||||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
|
@ -272,7 +268,7 @@ cdef class Parser:
|
|||
'hidden_width': hidden_width,
|
||||
'maxout_pieces': parser_maxout_pieces
|
||||
}
|
||||
return (tensors, lower, upper), cfg
|
||||
return (lower, upper), cfg
|
||||
|
||||
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
|
||||
"""
|
||||
|
@ -348,21 +344,17 @@ cdef class Parser:
|
|||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
if BEAM_PARSE:
|
||||
beam_width = 8
|
||||
cdef StateClass parse_state
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
queue = []
|
||||
for docs in cytoolz.partition_all(batch_size, docs):
|
||||
docs = list(docs)
|
||||
tokvecs = [doc.tensor for doc in docs]
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(docs, tokvecs)
|
||||
else:
|
||||
beams = self.beam_parse(docs, tokvecs,
|
||||
parse_states = self.beam_parse(docs, tokvecs,
|
||||
beam_width=beam_width, beam_density=beam_density)
|
||||
parse_states = []
|
||||
for beam in beams:
|
||||
parse_states.append(<StateClass>beam.at(0))
|
||||
self.set_annotations(docs, parse_states)
|
||||
yield from docs
|
||||
|
||||
|
@ -377,12 +369,8 @@ cdef class Parser:
|
|||
int nr_class, nr_feat, nr_piece, nr_dim, nr_state
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
if isinstance(tokvecses, np.ndarray):
|
||||
tokvecses = [tokvecses]
|
||||
|
||||
tokvecs = self.model[0].ops.flatten(tokvecses)
|
||||
if USE_FINE_TUNE:
|
||||
tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses)))
|
||||
|
||||
nr_state = len(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
|
@ -406,7 +394,14 @@ cdef class Parser:
|
|||
cdef np.ndarray scores
|
||||
c_token_ids = <int*>token_ids.data
|
||||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
while not next_step.empty():
|
||||
if not has_hidden:
|
||||
for i in cython.parallel.prange(
|
||||
next_step.size(), num_threads=6, nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, nr_class, nr_feat, nr_piece)
|
||||
else:
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
|
@ -434,15 +429,11 @@ cdef class Parser:
|
|||
cdef int nr_class = self.moves.n_moves
|
||||
cdef StateClass stcls, output
|
||||
tokvecs = self.model[0].ops.flatten(tokvecses)
|
||||
if USE_FINE_TUNE:
|
||||
tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses)))
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs,
|
||||
cuda_stream, 0.0)
|
||||
beams = []
|
||||
cdef int offset = 0
|
||||
cdef int j = 0
|
||||
cdef int k
|
||||
for doc in docs:
|
||||
beam = Beam(nr_class, beam_width, min_density=beam_density)
|
||||
beam.initialize(self.moves.init_beam_state, doc.length, doc.c)
|
||||
|
@ -455,31 +446,44 @@ cdef class Parser:
|
|||
states = []
|
||||
for i in range(beam.size):
|
||||
stcls = <StateClass>beam.at(i)
|
||||
# This way we avoid having to score finalized states
|
||||
# We do have to take care to keep indexes aligned, though
|
||||
if not stcls.is_final():
|
||||
states.append(stcls)
|
||||
token_ids = self.get_token_ids(states)
|
||||
vectors = state2vec(token_ids)
|
||||
scores = vec2scores(vectors)
|
||||
j = 0
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(beam.size):
|
||||
stcls = <StateClass>beam.at(i)
|
||||
if not stcls.is_final():
|
||||
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
||||
for k in range(nr_class):
|
||||
beam.scores[i][k] = c_scores[j * scores.shape[1] + k]
|
||||
j += 1
|
||||
for j in range(nr_class):
|
||||
beam.scores[i][j] = scores[i, j]
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
beams.append(beam)
|
||||
return beams
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil:
|
||||
'''This only works with no hidden layers -- fast but inaccurate'''
|
||||
#for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
|
||||
# self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(scores,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
if BEAM_PARSE:
|
||||
return self.update_beam(docs_tokvecs, golds, drop=drop, sgd=sgd,
|
||||
losses=losses)
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvec_lists = docs_tokvecs
|
||||
|
@ -487,10 +491,6 @@ cdef class Parser:
|
|||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
if USE_FINE_TUNE:
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
|
||||
|
@ -517,13 +517,13 @@ cdef class Parser:
|
|||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
||||
d_scores = self.get_batch_loss(states, golds, scores)
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
d_vector = bp_scores(d_scores / d_scores.shape[0], sgd=sgd)
|
||||
if drop != 0:
|
||||
d_vector *= mask
|
||||
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
and not isinstance(token_ids, state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
# Move token_ids and d_vector to CPU, asynchronously
|
||||
backprops.append((
|
||||
get_async(cuda_stream, token_ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
|
@ -540,55 +540,7 @@ cdef class Parser:
|
|||
break
|
||||
self._make_updates(d_tokvecs,
|
||||
backprops, sgd, cuda_stream)
|
||||
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
if USE_FINE_TUNE:
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
|
||||
def update_beam(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = [len(d) for d in docs]
|
||||
assert min(lengths) >= 1
|
||||
tokvecs = self.model[0].ops.flatten(tokvecs)
|
||||
if USE_FINE_TUNE:
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
|
||||
states = self.moves.init_batch(docs)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0)
|
||||
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores,
|
||||
drop, sgd, losses,
|
||||
width=8)
|
||||
backprop_lower = []
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
if losses is not None:
|
||||
losses[self.name] += (d_scores**2).sum()
|
||||
ids, bp_vectors, bp_scores = backprops[i]
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
and not isinstance(ids, state2vec.ops.xp.ndarray):
|
||||
backprop_lower.append((
|
||||
get_async(cuda_stream, ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vectors))
|
||||
else:
|
||||
backprop_lower.append((ids, d_vector, bp_vectors))
|
||||
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
|
||||
self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream)
|
||||
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, lengths)
|
||||
if USE_FINE_TUNE:
|
||||
bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
|
||||
def _init_gold_batch(self, whole_docs, whole_golds):
|
||||
"""Make a square batch, of length equal to the shortest doc. A long
|
||||
|
@ -633,10 +585,14 @@ cdef class Parser:
|
|||
xp = get_array_module(d_tokvecs)
|
||||
for ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
mask = ids >= 0
|
||||
indices = xp.nonzero(mask)
|
||||
self.model[0].ops.scatter_add(d_tokvecs, ids[indices],
|
||||
d_state_features[indices])
|
||||
active_feats = ids * (ids >= 0)
|
||||
active_feats = active_feats.reshape((ids.shape[0], ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
|
||||
@property
|
||||
def move_names(self):
|
||||
|
@ -647,7 +603,7 @@ cdef class Parser:
|
|||
return names
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
_, lower, upper = self.model
|
||||
lower, upper = self.model
|
||||
state2vec = precompute_hiddens(batch_size, tokvecs,
|
||||
lower, stream, drop=dropout)
|
||||
return state2vec, upper
|
||||
|
@ -737,12 +693,10 @@ cdef class Parser:
|
|||
|
||||
def to_disk(self, path, **exclude):
|
||||
serializers = {
|
||||
'tok2vec_model': lambda p: p.open('wb').write(
|
||||
self.model[0].to_bytes()),
|
||||
'lower_model': lambda p: p.open('wb').write(
|
||||
self.model[1].to_bytes()),
|
||||
self.model[0].to_bytes()),
|
||||
'upper_model': lambda p: p.open('wb').write(
|
||||
self.model[2].to_bytes()),
|
||||
self.model[1].to_bytes()),
|
||||
'vocab': lambda p: self.vocab.to_disk(p),
|
||||
'moves': lambda p: self.moves.to_disk(p, strings=False),
|
||||
'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
|
||||
|
@ -763,29 +717,24 @@ cdef class Parser:
|
|||
self.model, cfg = self.Model(**self.cfg)
|
||||
else:
|
||||
cfg = {}
|
||||
with (path / 'tok2vec_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[0].from_bytes(bytes_data)
|
||||
with (path / 'lower_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[1].from_bytes(bytes_data)
|
||||
self.model[0].from_bytes(bytes_data)
|
||||
with (path / 'upper_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[2].from_bytes(bytes_data)
|
||||
self.model[1].from_bytes(bytes_data)
|
||||
self.cfg.update(cfg)
|
||||
return self
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
serializers = OrderedDict((
|
||||
('tok2vec_model', lambda: self.model[0].to_bytes()),
|
||||
('lower_model', lambda: self.model[1].to_bytes()),
|
||||
('upper_model', lambda: self.model[2].to_bytes()),
|
||||
('lower_model', lambda: self.model[0].to_bytes()),
|
||||
('upper_model', lambda: self.model[1].to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes()),
|
||||
('moves', lambda: self.moves.to_bytes(strings=False)),
|
||||
('cfg', lambda: ujson.dumps(self.cfg))
|
||||
))
|
||||
if 'model' in exclude:
|
||||
exclude['tok2vec_model'] = True
|
||||
exclude['lower_model'] = True
|
||||
exclude['upper_model'] = True
|
||||
exclude.pop('model')
|
||||
|
@ -796,7 +745,6 @@ cdef class Parser:
|
|||
('vocab', lambda b: self.vocab.from_bytes(b)),
|
||||
('moves', lambda b: self.moves.from_bytes(b, strings=False)),
|
||||
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
|
||||
('tok2vec_model', lambda b: None),
|
||||
('lower_model', lambda b: None),
|
||||
('upper_model', lambda b: None)
|
||||
))
|
||||
|
@ -806,12 +754,10 @@ cdef class Parser:
|
|||
self.model, cfg = self.Model(self.moves.n_moves)
|
||||
else:
|
||||
cfg = {}
|
||||
if 'tok2vec_model' in msg:
|
||||
self.model[0].from_bytes(msg['tok2vec_model'])
|
||||
if 'lower_model' in msg:
|
||||
self.model[1].from_bytes(msg['lower_model'])
|
||||
self.model[0].from_bytes(msg['lower_model'])
|
||||
if 'upper_model' in msg:
|
||||
self.model[2].from_bytes(msg['upper_model'])
|
||||
self.model[1].from_bytes(msg['upper_model'])
|
||||
self.cfg.update(cfg)
|
||||
return self
|
||||
|
||||
|
|
|
@ -107,8 +107,6 @@ cdef class TransitionSystem:
|
|||
|
||||
def is_valid(self, StateClass stcls, move_name):
|
||||
action = self.lookup_transition(move_name)
|
||||
if action.move == 0:
|
||||
return False
|
||||
return action.is_valid(stcls.c, action.label)
|
||||
|
||||
cdef int set_valid(self, int* is_valid, const StateC* st) nogil:
|
||||
|
|
|
@ -78,16 +78,3 @@ def test_predict_doc_beam(parser, tok2vec, model, doc):
|
|||
parser(doc, beam_width=32, beam_density=0.001)
|
||||
for word in doc:
|
||||
print(word.text, word.head, word.dep_)
|
||||
|
||||
|
||||
def test_update_doc_beam(parser, tok2vec, model, doc, gold):
|
||||
parser.model = model
|
||||
tokvecs, bp_tokvecs = tok2vec.begin_update([doc])
|
||||
d_tokvecs = parser.update_beam(([doc], tokvecs), [gold])
|
||||
assert d_tokvecs[0].shape == tokvecs[0].shape
|
||||
def optimize(weights, gradient, key=None):
|
||||
weights -= 0.001 * gradient
|
||||
bp_tokvecs(d_tokvecs, sgd=optimize)
|
||||
assert d_tokvecs[0].sum() == 0.
|
||||
|
||||
|
||||
|
|
|
@ -1,87 +0,0 @@
|
|||
from __future__ import unicode_literals
|
||||
import pytest
|
||||
import numpy
|
||||
from thinc.api import layerize
|
||||
|
||||
from ...vocab import Vocab
|
||||
from ...syntax.arc_eager import ArcEager
|
||||
from ...tokens import Doc
|
||||
from ...gold import GoldParse
|
||||
from ...syntax._beam_utils import ParserBeam, update_beam
|
||||
from ...syntax.stateclass import StateClass
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vocab():
|
||||
return Vocab()
|
||||
|
||||
@pytest.fixture
|
||||
def moves(vocab):
|
||||
aeager = ArcEager(vocab.strings, {})
|
||||
aeager.add_action(2, 'nsubj')
|
||||
aeager.add_action(3, 'dobj')
|
||||
aeager.add_action(2, 'aux')
|
||||
return aeager
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def docs(vocab):
|
||||
return [Doc(vocab, words=['Rats', 'bite', 'things'])]
|
||||
|
||||
@pytest.fixture
|
||||
def states(docs):
|
||||
return [StateClass(doc) for doc in docs]
|
||||
|
||||
@pytest.fixture
|
||||
def tokvecs(docs, vector_size):
|
||||
output = []
|
||||
for doc in docs:
|
||||
vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
|
||||
output.append(numpy.asarray(vec))
|
||||
return output
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def golds(docs):
|
||||
return [GoldParse(doc) for doc in docs]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def batch_size(docs):
|
||||
return len(docs)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def beam_width():
|
||||
return 4
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_size():
|
||||
return 6
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def beam(moves, states, golds, beam_width):
|
||||
return ParserBeam(moves, states, golds, width=beam_width)
|
||||
|
||||
@pytest.fixture
|
||||
def scores(moves, batch_size, beam_width):
|
||||
return [
|
||||
numpy.asarray(
|
||||
numpy.random.uniform(-0.1, 0.1, (batch_size, moves.n_moves)),
|
||||
dtype='f')
|
||||
for _ in range(batch_size)]
|
||||
|
||||
|
||||
def test_create_beam(beam):
|
||||
pass
|
||||
|
||||
|
||||
def test_beam_advance(beam, scores):
|
||||
beam.advance(scores)
|
||||
|
||||
|
||||
def test_beam_advance_too_few_scores(beam, scores):
|
||||
with pytest.raises(IndexError):
|
||||
beam.advance(scores[:-1])
|
Loading…
Reference in New Issue
Block a user