Updated Russian Language, added lemmatizer, norm exceptions and lex

attrs
This commit is contained in:
Vadim Mazaev 2017-11-21 11:44:46 +03:00
parent a0739a06d4
commit 52ee1f9bf9
6 changed files with 323 additions and 88 deletions

View File

@ -1,64 +1,36 @@
# encoding: utf8 # encoding: utf8
from __future__ import unicode_literals, print_function from __future__ import unicode_literals, print_function
from ..language import Language from .stop_words import STOP_WORDS
from ..attrs import LANG from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ..tokens import Doc from .norm_exceptions import NORM_EXCEPTIONS
from .language_data import * from .lex_attrs import LEX_ATTRS
from .lemmatizer import RussianLemmatizer
from ..tokenizer_exceptions import BASE_EXCEPTIONS
class RussianTokenizer(object): from ..norm_exceptions import BASE_NORMS
_morph = None from ...util import update_exc, add_lookups
from ...language import Language
def __init__(self, spacy_tokenizer, cls, nlp=None): from ...attrs import LANG, LIKE_NUM, NORM
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
raise ImportError(
"The Russian tokenizer requires the pymorphy2 library: "
"try to fix it with "
"pip install pymorphy2==0.8")
RussianTokenizer._morph = RussianTokenizer._create_morph(MorphAnalyzer)
self.vocab = nlp.vocab if nlp else cls.create_vocab(nlp)
self._spacy_tokenizer = spacy_tokenizer
def __call__(self, text):
words = [self._normalize(RussianTokenizer._get_word(token))
for token in self._spacy_tokenizer(text)]
return Doc(self.vocab, words, [False] * len(words))
@staticmethod
def _get_word(token):
return token.lemma_ if len(token.lemma_) > 0 else token.text
@classmethod
def _normalize(cls, word):
return cls._morph.parse(word)[0].normal_form
@classmethod
def _create_morph(cls, morph_analyzer_class):
if not cls._morph:
cls._morph = morph_analyzer_class()
return cls._morph
class RussianDefaults(Language.Defaults): class RussianDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters) lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters.update(LEX_ATTRS)
lex_attr_getters[LANG] = lambda text: 'ru' lex_attr_getters[LANG] = lambda text: 'ru'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM],
tokenizer_exceptions = TOKENIZER_EXCEPTIONS BASE_NORMS, NORM_EXCEPTIONS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = STOP_WORDS stop_words = STOP_WORDS
@classmethod @classmethod
def create_tokenizer(cls, nlp=None): def create_lemmatizer(cls, nlp=None):
tokenizer = super(RussianDefaults, cls).create_tokenizer(nlp) return RussianLemmatizer()
return RussianTokenizer(tokenizer, cls, nlp)
class Russian(Language): class Russian(Language):
lang = 'ru' lang = 'ru'
Defaults = RussianDefaults Defaults = RussianDefaults
__all__ = ['Russian']

View File

@ -1,18 +0,0 @@
# encoding: utf8
from __future__ import unicode_literals
from .. import language_data as base
from ..language_data import update_exc, strings_to_exc
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
STOP_WORDS = set(STOP_WORDS)
TOKENIZER_EXCEPTIONS = dict(TOKENIZER_EXCEPTIONS)
update_exc(TOKENIZER_EXCEPTIONS, strings_to_exc(base.EMOTICONS))
__all__ = ["STOP_WORDS", "TOKENIZER_EXCEPTIONS"]

232
spacy/lang/ru/lemmatizer.py Normal file
View File

@ -0,0 +1,232 @@
# coding: utf8
from ...symbols import (
ADJ, DET, NOUN, NUM, PRON, PROPN, VERB
)
from ...lemmatizer import Lemmatizer
class RussianLemmatizer(Lemmatizer):
_morph = None
def __init__(self):
super().__init__()
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
raise ImportError(
'The Russian lemmatizer requires the pymorphy2 library: '
'try to fix it with "pip install pymorphy2"')
if RussianLemmatizer._morph is None:
RussianLemmatizer._morph = MorphAnalyzer()
def __call__(self, string, univ_pos, morphology=None):
univ_pos = self.normalize_univ_pos(univ_pos)
if univ_pos not in ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'):
# Skip unchangeable pos
return [string.lower()]
analyses = self._morph.parse(string)
filtered_analyses = []
for analysis in analyses:
if not analysis.is_known:
# Skip suggested parse variant for unknown word for pymorphy
continue
analysis_pos, _ = oc2ud(str(analysis.tag))
if analysis_pos == univ_pos \
or (analysis_pos in ('NOUN', 'PROPN') and univ_pos in ('NOUN', 'PROPN')):
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
if morphology is None:
return list(set([analysis.normal_form for analysis in filtered_analyses]))
if univ_pos in ('ADJ', 'DET', 'NOUN', 'PROPN'):
features_to_compare = ['Case', 'Number', 'Gender']
elif univ_pos == 'NUM':
features_to_compare = ['Case', 'Gender']
elif univ_pos == 'PRON':
features_to_compare = ['Case', 'Number', 'Gender', 'Person']
else: # VERB
features_to_compare = ['Aspect', 'Gender', 'Mood', 'Number', 'Tense', 'VerbForm', 'Voice']
analyses, filtered_analyses = filtered_analyses, []
for analysis in analyses:
_, analysis_morph = oc2ud(str(analysis.tag))
for feature in features_to_compare:
if feature in morphology and morphology[feature] != analysis_morph[feature]:
break
else:
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
return list(set([analysis.normal_form for analysis in filtered_analyses]))
@staticmethod
def normalize_univ_pos(univ_pos):
if isinstance(univ_pos, str):
return univ_pos.upper()
symbols_to_str = {
ADJ: 'ADJ',
DET: 'DET',
NOUN: 'NOUN',
NUM: 'NUM',
PRON: 'PRON',
PROPN: 'PROPN',
VERB: 'VERB'
}
if univ_pos in symbols_to_str:
return symbols_to_str[univ_pos]
return None
def is_base_form(self, univ_pos, morphology=None):
# TODO
raise NotImplementedError
# ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'):
def det(self, string, morphology=None):
return self(string, 'det', morphology)
def num(self, string, morphology=None):
return self(string, 'num', morphology)
def pron(self, string, morphology=None):
return self(string, 'pron', morphology)
def lookup(self, string):
analyses = self._morph.parse(string)
if len(analyses) == 1:
return analyses[0].normal_form
return string
def oc2ud(oc_tag):
gram_map = {
'_POS': {
'ADJF': 'ADJ',
'ADJS': 'ADJ',
'ADVB': 'ADV',
'Apro': 'DET',
'COMP': 'ADJ', # Can also be an ADV - unchangeable
'CONJ': 'CCONJ', # Can also be a SCONJ - both unchangeable ones
'GRND': 'VERB',
'INFN': 'VERB',
'INTJ': 'INTJ',
'NOUN': 'NOUN',
'NPRO': 'PRON',
'NUMR': 'NUM',
'NUMB': 'NUM',
'PNCT': 'PUNCT',
'PRCL': 'PART',
'PREP': 'ADP',
'PRTF': 'VERB',
'PRTS': 'VERB',
'VERB': 'VERB',
},
'Animacy': {
'anim': 'Anim',
'inan': 'Inan',
},
'Aspect': {
'impf': 'Imp',
'perf': 'Perf',
},
'Case': {
'ablt': 'Ins',
'accs': 'Acc',
'datv': 'Dat',
'gen1': 'Gen',
'gen2': 'Gen',
'gent': 'Gen',
'loc2': 'Loc',
'loct': 'Loc',
'nomn': 'Nom',
'voct': 'Voc',
},
'Degree': {
'COMP': 'Cmp',
'Supr': 'Sup',
},
'Gender': {
'femn': 'Fem',
'masc': 'Masc',
'neut': 'Neut',
},
'Mood': {
'impr': 'Imp',
'indc': 'Ind',
},
'Number': {
'plur': 'Plur',
'sing': 'Sing',
},
'NumForm': {
'NUMB': 'Digit',
},
'Person': {
'1per': '1',
'2per': '2',
'3per': '3',
'excl': '2',
'incl': '1',
},
'Tense': {
'futr': 'Fut',
'past': 'Past',
'pres': 'Pres',
},
'Variant': {
'ADJS': 'Brev',
'PRTS': 'Brev',
},
'VerbForm': {
'GRND': 'Conv',
'INFN': 'Inf',
'PRTF': 'Part',
'PRTS': 'Part',
'VERB': 'Fin',
},
'Voice': {
'actv': 'Act',
'pssv': 'Pass',
},
'Abbr': {
'Abbr': 'Yes'
}
}
pos = 'X'
morphology = dict()
unmatched = set()
grams = oc_tag.replace(' ', ',').split(',')
for gram in grams:
match = False
for categ, gmap in sorted(gram_map.items()):
if gram in gmap:
match = True
if categ == '_POS':
pos = gmap[gram]
else:
morphology[categ] = gmap[gram]
if not match:
unmatched.add(gram)
while len(unmatched) > 0:
gram = unmatched.pop()
if gram in ('Name', 'Patr', 'Surn', 'Geox', 'Orgn'):
pos = 'PROPN'
elif gram == 'Auxt':
pos = 'AUX'
elif gram == 'Pltm':
morphology['Number'] = 'Ptan'
return pos, morphology
if __name__ == '__main__':
l = RussianLemmatizer()
print(l.noun('гвоздики', {'Gender': 'Fem'}))

View File

@ -0,0 +1,35 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
_num_words = [
'ноль', 'один', 'два', 'три', 'четыре', 'пять', 'шесть', 'семь', 'восемь', 'девять',
'десять', 'одиннадцать', 'двенадцать', 'тринадцать', 'четырнадцать',
'пятнадцать', 'шестнадцать', 'семнадцать', 'восемнадцать', 'девятнадцать',
'двадцать', 'тридцать', 'сорок', 'пятдесят', 'шестдесят', 'семдесят', 'восемдесят', 'девяносто',
'сто', 'двести', 'триста', 'четыреста', 'пятсот', 'шестсот', 'семсот', 'восемсот', 'девятсот',
'тысяча', 'миллион', 'миллиад', 'триллион', 'квадриллион', 'квинтиллион']
def like_num(text):
text = text.replace(',', '').replace('.', '')
if text.isdigit():
return True
if text.count('/') == 1:
num, denom = text.split('/')
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
return False
LEX_ATTRS = {
LIKE_NUM: like_num
}

View File

@ -0,0 +1,34 @@
# coding: utf8
from __future__ import unicode_literals
_exc = {
# Slang
'прив': 'привет',
# Weekdays abbreviations
"пн.": "понедельник",
"вт.": "вторник",
"ср.": "среда",
"чт.": "четверг",
"пт.": "пятница",
"сб.": "суббота",
"вс.": "воскресенье",
# Months abbreviations
"янв.": "январь",
"фев.": "февраль",
"мар.": "март",
"апр.": "апрель",
}
NORM_EXCEPTIONS = {}
for string, norm in _exc.items():
NORM_EXCEPTIONS[string] = norm
NORM_EXCEPTIONS[string.title()] = norm
if string.endswith('.'):
NORM_EXCEPTIONS[string[:-1]] = norm
NORM_EXCEPTIONS[string.title()[:-1]] = norm

View File

@ -1,29 +1,9 @@
# encoding: utf8 # encoding: utf8
from __future__ import unicode_literals from __future__ import unicode_literals
from ..symbols import * from ...symbols import ORTH, LEMMA
TOKENIZER_EXCEPTIONS = { TOKENIZER_EXCEPTIONS = {
"Пн.": [
{ORTH: "Пн.", LEMMA: "Понедельник"}
],
"Вт.": [
{ORTH: "Вт.", LEMMA: "Вторник"}
],
"Ср.": [
{ORTH: "Ср.", LEMMA: "Среда"}
],
"Чт.": [
{ORTH: "Чт.", LEMMA: "Четверг"}
],
"Пт.": [
{ORTH: "Пт.", LEMMA: "Пятница"}
],
"Сб.": [
{ORTH: "Сб.", LEMMA: "Суббота"}
],
"Вс.": [
{ORTH: "Вс.", LEMMA: "Воскресенье"}
],
} }