Merge branch 'develop' into feature/doc-ents-v3-2

This commit is contained in:
Adriane Boyd 2020-09-22 13:45:50 +02:00 committed by GitHub
commit 535842e483
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
62 changed files with 990 additions and 1009 deletions

View File

@ -224,7 +224,7 @@ for that particular code. Here's an example:
```python
# fmt: off
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
heads = [1, 1, 1, 1, 3, 4, 1, 6, 11, 11, 11, 11, 14, 14, 11, 16, 17, 14, 11]
deps = ["nsubj", "ROOT", "advmod", "prep", "pcomp", "dobj", "punct", "",
"nsubjpass", "aux", "auxpass", "ROOT", "nsubj", "aux", "ccomp",
"poss", "nsubj", "ccomp", "punct"]
@ -421,7 +421,7 @@ Tests that require the model to be loaded should be marked with
`@pytest.mark.models`. Loading the models is expensive and not necessary if
you're not actually testing the model performance. If all you need is a `Doc`
object with annotations like heads, POS tags or the dependency parse, you can
use the `get_doc()` utility function to construct it manually.
use the `Doc` constructor to construct it manually.
📖 **For more guidelines and information on how to add tests, check out the [tests README](spacy/tests/README.md).**

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy-nightly"
__version__ = "3.0.0a19"
__version__ = "3.0.0a21"
__release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -7,13 +7,15 @@ import srsly
import hashlib
import typer
from click import NoSuchOption
from click.parser import split_arg_string
from typer.main import get_command
from contextlib import contextmanager
from thinc.config import Config, ConfigValidationError
from configparser import InterpolationError
import os
from ..schemas import ProjectConfigSchema, validate
from ..util import import_file, run_command, make_tempdir, registry
from ..util import import_file, run_command, make_tempdir, registry, logger
if TYPE_CHECKING:
from pathy import Pathy # noqa: F401
@ -37,6 +39,7 @@ commands to check and validate your config files, training and evaluation data,
and custom model implementations.
"""
INIT_HELP = """Commands for initializing configs and pipeline packages."""
OVERRIDES_ENV_VAR = "SPACY_CONFIG_OVERRIDES"
# Wrappers for Typer's annotations. Initially created to set defaults and to
# keep the names short, but not needed at the moment.
@ -61,24 +64,41 @@ def setup_cli() -> None:
command(prog_name=COMMAND)
def parse_config_overrides(args: List[str]) -> Dict[str, Any]:
def parse_config_overrides(
args: List[str], env_var: Optional[str] = OVERRIDES_ENV_VAR
) -> Dict[str, Any]:
"""Generate a dictionary of config overrides based on the extra arguments
provided on the CLI, e.g. --training.batch_size to override
"training.batch_size". Arguments without a "." are considered invalid,
since the config only allows top-level sections to exist.
args (List[str]): The extra arguments from the command line.
env_vars (Optional[str]): Optional environment variable to read from.
RETURNS (Dict[str, Any]): The parsed dict, keyed by nested config setting.
"""
env_string = os.environ.get(env_var, "") if env_var else ""
env_overrides = _parse_overrides(split_arg_string(env_string))
cli_overrides = _parse_overrides(args, is_cli=True)
if cli_overrides:
keys = [k for k in cli_overrides if k not in env_overrides]
logger.debug(f"Config overrides from CLI: {keys}")
if env_overrides:
logger.debug(f"Config overrides from env variables: {list(env_overrides)}")
return {**cli_overrides, **env_overrides}
def _parse_overrides(args: List[str], is_cli: bool = False) -> Dict[str, Any]:
result = {}
while args:
opt = args.pop(0)
err = f"Invalid CLI argument '{opt}'"
err = f"Invalid config override '{opt}'"
if opt.startswith("--"): # new argument
orig_opt = opt
opt = opt.replace("--", "")
if "." not in opt:
raise NoSuchOption(orig_opt)
if is_cli:
raise NoSuchOption(orig_opt)
else:
msg.fail(f"{err}: can't override top-level sections", exits=1)
if "=" in opt: # we have --opt=value
opt, value = opt.split("=", 1)
opt = opt.replace("-", "_")
@ -97,7 +117,7 @@ def parse_config_overrides(args: List[str]) -> Dict[str, Any]:
except ValueError:
result[opt] = str(value)
else:
msg.fail(f"{err}: override option should start with --", exits=1)
msg.fail(f"{err}: name should start with --", exits=1)
return result
@ -286,7 +306,7 @@ def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False)
if dest.exists() and not force:
return None
src = str(src)
with smart_open.open(src, mode="rb") as input_file:
with smart_open.open(src, mode="rb", ignore_ext=True) as input_file:
with dest.open(mode="wb") as output_file:
output_file.write(input_file.read())

View File

@ -2,7 +2,7 @@ from typing import Optional, Dict, Any, Union, List
from pathlib import Path
from wasabi import msg, table
from thinc.api import Config
from thinc.config import VARIABLE_RE
from thinc.config import VARIABLE_RE, ConfigValidationError
import typer
from ._util import Arg, Opt, show_validation_error, parse_config_overrides
@ -51,7 +51,10 @@ def debug_config(
msg.divider("Config validation")
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
nlp, _ = util.load_model_from_config(config)
nlp, resolved = util.load_model_from_config(config)
# Use the resolved config here in case user has one function returning
# a dict of corpora etc.
check_section_refs(resolved, ["training.dev_corpus", "training.train_corpus"])
msg.good("Config is valid")
if show_vars:
variables = get_variables(config)
@ -93,3 +96,23 @@ def get_variables(config: Config) -> Dict[str, Any]:
value = util.dot_to_object(config, path)
result[variable] = repr(value)
return result
def check_section_refs(config: Config, fields: List[str]) -> None:
"""Validate fields in the config that refer to other sections or values
(e.g. in the corpora) and make sure that those references exist.
"""
errors = []
for field in fields:
# If the field doesn't exist in the config, we ignore it
try:
value = util.dot_to_object(config, field)
except KeyError:
continue
try:
util.dot_to_object(config, value)
except KeyError:
msg = f"not a valid section reference: {value}"
errors.append({"loc": field.split("."), "msg": msg})
if errors:
raise ConfigValidationError(config, errors)

View File

@ -1,5 +1,9 @@
from typing import Dict, Any, Optional
import warnings
from typing import Dict, Any, Optional, Iterable
from pathlib import Path
from spacy.training import Example
from spacy.util import dot_to_object
from wasabi import msg
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
from thinc.api import Model, data_validation, set_gpu_allocator
@ -59,23 +63,24 @@ def debug_model_cli(
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
nlp, config = util.load_model_from_config(config_path)
nlp, config = util.load_model_from_config(config)
seed = config["training"]["seed"]
if seed is not None:
msg.info(f"Fixing random seed: {seed}")
fix_random_seed(seed)
pipe = nlp.get_pipe(component)
if hasattr(pipe, "model"):
model = pipe.model
else:
if not hasattr(pipe, "model"):
msg.fail(
f"The component '{component}' does not specify an object that holds a Model.",
exits=1,
)
debug_model(model, print_settings=print_settings)
model = pipe.model
debug_model(config, nlp, model, print_settings=print_settings)
def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None):
def debug_model(
config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None
):
if not isinstance(model, Model):
msg.fail(
f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
@ -92,10 +97,23 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
# STEP 1: Initializing the model and printing again
X = _get_docs()
Y = _get_output(model.ops.xp)
# The output vector might differ from the official type of the output layer
with data_validation(False):
model.initialize(X=X, Y=Y)
try:
train_corpus = dot_to_object(config, config["training"]["train_corpus"])
nlp.begin_training(lambda: train_corpus(nlp))
msg.info("Initialized the model with the training corpus.")
except ValueError:
try:
_set_output_dim(nO=7, model=model)
nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X])
msg.info("Initialized the model with dummy data.")
except:
msg.fail(
"Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
exits=1,
)
if print_settings.get("print_after_init"):
msg.divider(f"STEP 1 - after initialization")
_print_model(model, print_settings)
@ -103,9 +121,18 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
# STEP 2: Updating the model and printing again
optimizer = Adam(0.001)
set_dropout_rate(model, 0.2)
# ugly hack to deal with Tok2Vec listeners
tok2vec = None
if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener":
tok2vec = nlp.get_pipe("tok2vec")
goldY = None
for e in range(3):
Y, get_dX = model.begin_update(_get_docs())
dY = get_gradient(model, Y)
if tok2vec:
tok2vec.predict(X)
Y, get_dX = model.begin_update(X)
if goldY is None:
goldY = _simulate_gold(Y)
dY = get_gradient(goldY, Y, model.ops)
get_dX(dY)
model.finish_update(optimizer)
if print_settings.get("print_after_training"):
@ -113,15 +140,25 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
_print_model(model, print_settings)
# STEP 3: the final prediction
prediction = model.predict(_get_docs())
prediction = model.predict(X)
if print_settings.get("print_prediction"):
msg.divider(f"STEP 3 - prediction")
msg.info(str(prediction))
msg.good(f"Succesfully ended analysis - model looks good.")
def get_gradient(model, Y):
goldY = _get_output(model.ops.xp)
return Y - goldY
def get_gradient(goldY, Y, ops):
return ops.asarray(Y) - ops.asarray(goldY)
def _simulate_gold(element, counter=1):
if isinstance(element, Iterable):
for i in range(len(element)):
element[i] = _simulate_gold(element[i], counter + i)
return element
else:
return 1 / counter
def _sentences():
@ -138,8 +175,13 @@ def _get_docs(lang: str = "en"):
return list(nlp.pipe(_sentences()))
def _get_output(xp):
return xp.asarray([i + 10 for i, _ in enumerate(_get_docs())], dtype="float32")
def _set_output_dim(model, nO):
# simulating dim inference by directly setting the nO argument of the model
if model.has_dim("nO") is None:
model.set_dim("nO", nO)
if model.has_ref("output_layer"):
if model.get_ref("output_layer").has_dim("nO") is None:
model.get_ref("output_layer").set_dim("nO", nO)
def _print_model(model, print_settings):

View File

@ -66,6 +66,7 @@ def project_assets(project_dir: Path, *, sparse_checkout: bool = False) -> None:
branch=asset["git"].get("branch"),
sparse=sparse_checkout,
)
msg.good(f"Downloaded asset {dest}")
else:
url = asset.get("url")
if not url:

View File

@ -59,7 +59,7 @@ def project_run(
for dep in cmd.get("deps", []):
if not (project_dir / dep).exists():
err = f"Missing dependency specified by command '{subcommand}': {dep}"
err_help = "Maybe you forgot to run the 'project assets' command?"
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
err_kwargs = {"exits": 1} if not dry else {}
msg.fail(err, err_help, **err_kwargs)
with working_dir(project_dir) as current_dir:

View File

@ -57,7 +57,10 @@ class Warnings:
"incorrect. Modify PhraseMatcher._terminal_hash to fix.")
W024 = ("Entity '{entity}' - Alias '{alias}' combination already exists in "
"the Knowledge Base.")
W026 = ("Unable to set all sentence boundaries from dependency parses.")
W026 = ("Unable to set all sentence boundaries from dependency parses. If "
"you are constructing a parse tree incrementally by setting "
"token.head values, you can probably ignore this warning. Consider "
"using Doc(words, ..., heads=heads, deps=deps) instead.")
W027 = ("Found a large training file of {size} bytes. Note that it may "
"be more efficient to split your training data into multiple "
"smaller JSON files instead.")
@ -452,7 +455,7 @@ class Errors:
"{obj}.{attr}\nAttribute '{attr}' does not exist on {obj}.")
E186 = ("'{tok_a}' and '{tok_b}' are different texts.")
E187 = ("Only unicode strings are supported as labels.")
E189 = ("Each argument to `get_doc` should be of equal length.")
E189 = ("Each argument to Doc.__init__ should be of equal length.")
E190 = ("Token head out of range in `Doc.from_array()` for token index "
"'{index}' with value '{value}' (equivalent to relative head "
"index: '{rel_head_index}'). The head indices should be relative "
@ -542,7 +545,8 @@ class Errors:
E949 = ("Can only create an alignment when the texts are the same.")
E952 = ("The section '{name}' is not a valid section in the provided config.")
E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}")
E954 = ("The Tok2Vec listener did not receive a valid input.")
E954 = ("The Tok2Vec listener did not receive any valid input from an upstream "
"component.")
E955 = ("Can't find table(s) '{table}' for language '{lang}' in spacy-lookups-data.")
E956 = ("Can't find component '{name}' in [components] block in the config. "
"Available components: {opts}")

View File

@ -17,7 +17,6 @@ Tests for spaCy modules and classes live in their own directories of the same na
5. [Helpers and utilities](#helpers-and-utilities)
6. [Contributing to the tests](#contributing-to-the-tests)
## Running the tests
To show print statements, run the tests with `py.test -s`. To abort after the
@ -39,19 +38,17 @@ py.test spacy/tests/tokenizer/test_exceptions.py::test_tokenizer_handles_emoji #
## Dos and don'ts
To keep the behaviour of the tests consistent and predictable, we try to follow a few basic conventions:
* **Test names** should follow a pattern of `test_[module]_[tested behaviour]`. For example: `test_tokenizer_keeps_email` or `test_spans_override_sentiment`.
* If you're testing for a bug reported in a specific issue, always create a **regression test**. Regression tests should be named `test_issue[ISSUE NUMBER]` and live in the [`regression`](regression) directory.
* Only use `@pytest.mark.xfail` for tests that **should pass, but currently fail**. To test for desired negative behaviour, use `assert not` in your test.
* Very **extensive tests** that take a long time to run should be marked with `@pytest.mark.slow`. If your slow test is testing important behaviour, consider adding an additional simpler version.
* If tests require **loading the models**, they should be added to the [`spacy-models`](https://github.com/explosion/spacy-models) tests.
* Before requiring the models, always make sure there is no other way to test the particular behaviour. In a lot of cases, it's sufficient to simply create a `Doc` object manually. See the section on [helpers and utility functions](#helpers-and-utilities) for more info on this.
* **Avoid unnecessary imports.** There should never be a need to explicitly import spaCy at the top of a file, and many components are available as [fixtures](#fixtures). You should also avoid wildcard imports (`from module import *`).
* If you're importing from spaCy, **always use absolute imports**. For example: `from spacy.language import Language`.
* Don't forget the **unicode declarations** at the top of each file. This way, unicode strings won't have to be prefixed with `u`.
* Try to keep the tests **readable and concise**. Use clear and descriptive variable names (`doc`, `tokens` and `text` are great), keep it short and only test for one behaviour at a time.
To keep the behavior of the tests consistent and predictable, we try to follow a few basic conventions:
- **Test names** should follow a pattern of `test_[module]_[tested behaviour]`. For example: `test_tokenizer_keeps_email` or `test_spans_override_sentiment`.
- If you're testing for a bug reported in a specific issue, always create a **regression test**. Regression tests should be named `test_issue[ISSUE NUMBER]` and live in the [`regression`](regression) directory.
- Only use `@pytest.mark.xfail` for tests that **should pass, but currently fail**. To test for desired negative behavior, use `assert not` in your test.
- Very **extensive tests** that take a long time to run should be marked with `@pytest.mark.slow`. If your slow test is testing important behavior, consider adding an additional simpler version.
- If tests require **loading the models**, they should be added to the [`spacy-models`](https://github.com/explosion/spacy-models) tests.
- Before requiring the models, always make sure there is no other way to test the particular behavior. In a lot of cases, it's sufficient to simply create a `Doc` object manually. See the section on [helpers and utility functions](#helpers-and-utilities) for more info on this.
- **Avoid unnecessary imports.** There should never be a need to explicitly import spaCy at the top of a file, and many components are available as [fixtures](#fixtures). You should also avoid wildcard imports (`from module import *`).
- If you're importing from spaCy, **always use absolute imports**. For example: `from spacy.language import Language`.
- Try to keep the tests **readable and concise**. Use clear and descriptive variable names (`doc`, `tokens` and `text` are great), keep it short and only test for one behavior at a time.
## Parameters
@ -64,7 +61,7 @@ def test_tokenizer_keep_urls(tokenizer, text):
assert len(tokens) == 1
```
This will run the test once for each `text` value. Even if you're only testing one example, it's usually best to specify it as a parameter. This will later make it easier for others to quickly add additional test cases without having to modify the test.
This will run the test once for each `text` value. Even if you're only testing one example, it's usually best to specify it as a parameter. This will later make it easier for others to quickly add additional test cases without having to modify the test.
You can also specify parameters as tuples to test with multiple values per test:
@ -79,8 +76,7 @@ To test for combinations of parameters, you can add several `parametrize` marker
@pytest.mark.parametrize('punct', ['.', '!', '?'])
```
This will run the test with all combinations of the two parameters `text` and `punct`. **Use this feature sparingly**, though, as it can easily cause unneccessary or undesired test bloat.
This will run the test with all combinations of the two parameters `text` and `punct`. **Use this feature sparingly**, though, as it can easily cause unnecessary or undesired test bloat.
## Fixtures
@ -88,11 +84,11 @@ Fixtures to create instances of spaCy objects and other components should only b
These are the main fixtures that are currently available:
| Fixture | Description |
| --- | --- |
| `tokenizer` | Basic, language-independent tokenizer. Identical to the `xx` language class. |
| `en_tokenizer`, `de_tokenizer`, ... | Creates an English, German etc. tokenizer. |
| `en_vocab` | Creates an instance of the English `Vocab`. |
| Fixture | Description |
| ----------------------------------- | ---------------------------------------------------------------------------- |
| `tokenizer` | Basic, language-independent tokenizer. Identical to the `xx` language class. |
| `en_tokenizer`, `de_tokenizer`, ... | Creates an English, German etc. tokenizer. |
| `en_vocab` | Creates an instance of the English `Vocab`. |
The fixtures can be used in all tests by simply setting them as an argument, like this:
@ -107,59 +103,32 @@ If all tests in a file require a specific configuration, or use the same complex
Our new test setup comes with a few handy utility functions that can be imported from [`util.py`](util.py).
### Constructing a `Doc` object manually
### Constructing a `Doc` object manually with `get_doc()`
Loading the models is expensive and not necessary if you're not actually testing the model performance. If all you need ia a `Doc` object with annotations like heads, POS tags or the dependency parse, you can use `get_doc()` to construct it manually.
Loading the models is expensive and not necessary if you're not actually testing the model performance. If all you need is a `Doc` object with annotations like heads, POS tags or the dependency parse, you can construct it manually.
```python
def test_doc_token_api_strings(en_tokenizer):
def test_doc_token_api_strings(en_vocab):
text = "Give it back! He pleaded."
pos = ['VERB', 'PRON', 'PART', 'PUNCT', 'PRON', 'VERB', 'PUNCT']
heads = [0, -1, -2, -3, 1, 0, -1]
heads = [0, 0, 0, 0, 5, 5, 5]
deps = ['ROOT', 'dobj', 'prt', 'punct', 'nsubj', 'ROOT', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], pos=pos, heads=heads, deps=deps)
doc = Doc(en_vocab, [t.text for t in tokens], pos=pos, heads=heads, deps=deps)
assert doc[0].text == 'Give'
assert doc[0].lower_ == 'give'
assert doc[0].pos_ == 'VERB'
assert doc[0].dep_ == 'ROOT'
```
You can construct a `Doc` with the following arguments:
| Argument | Description |
| --- | --- |
| `vocab` | `Vocab` instance to use. If you're tokenizing before creating a `Doc`, make sure to use the tokenizer's vocab. Otherwise, you can also use the `en_vocab` fixture. **(required)** |
| `words` | List of words, for example `[t.text for t in tokens]`. **(required)** |
| `heads` | List of heads as integers. |
| `pos` | List of POS tags as text values. |
| `tag` | List of tag names as text values. |
| `dep` | List of dependencies as text values. |
| `ents` | List of entity tuples with `start`, `end`, `label` (for example `(0, 2, 'PERSON')`). The `label` will be looked up in `vocab.strings[label]`. |
Here's how to quickly get these values from within spaCy:
```python
doc = nlp(u'Some text here')
print([token.head.i-token.i for token in doc])
print([token.tag_ for token in doc])
print([token.pos_ for token in doc])
print([token.dep_ for token in doc])
print([(ent.start, ent.end, ent.label_) for ent in doc.ents])
```
**Note:** There's currently no way of setting the serializer data for the parser without loading the models. If this is relevant to your test, constructing the `Doc` via `get_doc()` won't work.
### Other utilities
| Name | Description |
| --- | --- |
| `apply_transition_sequence(parser, doc, sequence)` | Perform a series of pre-specified transitions, to put the parser in a desired state. |
| `add_vecs_to_vocab(vocab, vectors)` | Add list of vector tuples (`[("text", [1, 2, 3])]`) to given vocab. All vectors need to have the same length. |
| `get_cosine(vec1, vec2)` | Get cosine for two given vectors. |
| `assert_docs_equal(doc1, doc2)` | Compare two `Doc` objects and `assert` that they're equal. Tests for tokens, tags, dependencies and entities. |
| Name | Description |
| -------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
| `apply_transition_sequence(parser, doc, sequence)` | Perform a series of pre-specified transitions, to put the parser in a desired state. |
| `add_vecs_to_vocab(vocab, vectors)` | Add list of vector tuples (`[("text", [1, 2, 3])]`) to given vocab. All vectors need to have the same length. |
| `get_cosine(vec1, vec2)` | Get cosine for two given vectors. |
| `assert_docs_equal(doc1, doc2)` | Compare two `Doc` objects and `assert` that they're equal. Tests for tokens, tags, dependencies and entities. |
## Contributing to the tests

View File

@ -59,6 +59,11 @@ def de_tokenizer():
return get_lang_class("de")().tokenizer
@pytest.fixture(scope="session")
def de_vocab():
return get_lang_class("de")().vocab
@pytest.fixture(scope="session")
def el_tokenizer():
return get_lang_class("el")().tokenizer

View File

@ -1,12 +1,10 @@
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.training import Example
from spacy.pipeline import EntityRecognizer
from spacy.tokens import Span, Doc
from spacy import registry
import pytest
from ..util import get_doc
from spacy.pipeline.ner import DEFAULT_NER_MODEL
def _ner_example(ner):
doc = Doc(
@ -19,7 +17,7 @@ def _ner_example(ner):
def test_doc_add_entities_set_ents_iob(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
doc = Doc(en_vocab, words=text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
@ -41,7 +39,7 @@ def test_doc_add_entities_set_ents_iob(en_vocab):
def test_ents_reset(en_vocab):
"""Ensure that resetting doc.ents does not change anything"""
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
doc = Doc(en_vocab, words=text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
@ -59,7 +57,7 @@ def test_ents_reset(en_vocab):
def test_add_overlapping_entities(en_vocab):
text = ["Louisiana", "Office", "of", "Conservation"]
doc = get_doc(en_vocab, text)
doc = Doc(en_vocab, words=text)
entity = Span(doc, 0, 4, label=391)
doc.ents = [entity]

View File

@ -2,8 +2,6 @@ import pytest
from spacy.tokens import Doc
from spacy.attrs import ORTH, SHAPE, POS, DEP, MORPH
from ..util import get_doc
def test_doc_array_attr_of_token(en_vocab):
doc = Doc(en_vocab, words=["An", "example", "sentence"])
@ -35,7 +33,7 @@ def test_doc_scalar_attr_of_token(en_vocab):
def test_doc_array_tag(en_vocab):
words = ["A", "nice", "sentence", "."]
pos = ["DET", "ADJ", "NOUN", "PUNCT"]
doc = get_doc(en_vocab, words=words, pos=pos)
doc = Doc(en_vocab, words=words, pos=pos)
assert doc[0].pos != doc[1].pos != doc[2].pos != doc[3].pos
feats_array = doc.to_array((ORTH, POS))
assert feats_array[0][1] == doc[0].pos
@ -47,7 +45,7 @@ def test_doc_array_tag(en_vocab):
def test_doc_array_morph(en_vocab):
words = ["Eat", "blue", "ham"]
morph = ["Feat=V", "Feat=J", "Feat=N"]
doc = get_doc(en_vocab, words=words, morphs=morph)
doc = Doc(en_vocab, words=words, morphs=morph)
assert morph[0] == doc[0].morph_
assert morph[1] == doc[1].morph_
assert morph[2] == doc[2].morph_
@ -61,7 +59,7 @@ def test_doc_array_morph(en_vocab):
def test_doc_array_dep(en_vocab):
words = ["A", "nice", "sentence", "."]
deps = ["det", "amod", "ROOT", "punct"]
doc = get_doc(en_vocab, words=words, deps=deps)
doc = Doc(en_vocab, words=words, deps=deps)
feats_array = doc.to_array((ORTH, DEP))
assert feats_array[0][1] == doc[0].dep
assert feats_array[1][1] == doc[1].dep

View File

@ -6,7 +6,22 @@ from spacy.lexeme import Lexeme
from spacy.lang.en import English
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
from ..util import get_doc
def test_doc_api_init(en_vocab):
words = ["a", "b", "c", "d"]
heads = [0, 0, 2, 2]
# set sent_start by sent_starts
doc = Doc(en_vocab, words=words, sent_starts=[True, False, True, False])
assert [t.is_sent_start for t in doc] == [True, False, True, False]
# set sent_start by heads
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * 4)
assert [t.is_sent_start for t in doc] == [True, False, True, False]
# heads override sent_starts
doc = Doc(
en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4,
)
assert [t.is_sent_start for t in doc] == [True, False, True, False]
@pytest.mark.parametrize("text", [["one", "two", "three"]])
@ -158,7 +173,7 @@ def test_doc_api_runtime_error(en_tokenizer):
"", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
nps = []
for np in doc.noun_chunks:
while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"):
@ -175,17 +190,19 @@ def test_doc_api_runtime_error(en_tokenizer):
retokenizer.merge(np, attrs=attrs)
def test_doc_api_right_edge(en_tokenizer):
def test_doc_api_right_edge(en_vocab):
"""Test for bug occurring from Unshift action, causing incorrect right edge"""
# fmt: off
text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue."
heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1,
-2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26]
words = [
"I", "have", "proposed", "to", "myself", ",", "for", "the", "sake",
"of", "such", "as", "live", "under", "the", "government", "of", "the",
"Romans", ",", "to", "translate", "those", "books", "into", "the",
"Greek", "tongue", "."
]
heads = [2, 2, 2, 2, 3, 2, 21, 8, 6, 8, 11, 8, 11, 12, 15, 13, 15, 18, 16, 12, 21, 2, 23, 21, 21, 27, 27, 24, 2]
deps = ["dep"] * len(heads)
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert doc[6].text == "for"
subtree = [w.text for w in doc[6].subtree]
# fmt: off
@ -213,16 +230,16 @@ def test_doc_api_similarity_match():
@pytest.mark.parametrize(
"sentence,heads,lca_matrix",
"words,heads,lca_matrix",
[
(
"the lazy dog slept",
[2, 1, 1, 0],
["the", "lazy", "dog", "slept"],
[2, 2, 3, 3],
numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]),
),
(
"The lazy dog slept. The quick fox jumped",
[2, 1, 1, 0, -1, 2, 1, 1, 0],
["The", "lazy", "dog", "slept", ".", "The", "quick", "fox", "jumped"],
[2, 2, 3, 3, 3, 7, 7, 8, 8],
numpy.array(
[
[0, 2, 2, 3, 3, -1, -1, -1, -1],
@ -239,11 +256,8 @@ def test_doc_api_similarity_match():
),
],
)
def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix):
tokens = en_tokenizer(sentence)
doc = get_doc(
tokens.vocab, [t.text for t in tokens], heads=heads, deps=["dep"] * len(heads)
)
def test_lowest_common_ancestor(en_vocab, words, heads, lca_matrix):
doc = Doc(en_vocab, words, heads=heads, deps=["dep"] * len(heads))
lca = doc.get_lca_matrix()
assert (lca == lca_matrix).all()
assert lca[1, 1] == 1
@ -267,26 +281,23 @@ def test_doc_is_nered(en_vocab):
def test_doc_from_array_sent_starts(en_vocab):
words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
heads = [0, -1, -2, -3, -4, -5, 0, -1, -2, -3]
# fmt: off
words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
heads = [0, 0, 0, 0, 0, 0, 6, 6, 6, 6]
deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep"]
# fmt: on
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
# HEAD overrides SENT_START without warning
attrs = [SENT_START, HEAD]
arr = doc.to_array(attrs)
new_doc = Doc(en_vocab, words=words)
new_doc.from_array(attrs, arr)
# no warning using default attrs
attrs = doc._get_array_attrs()
arr = doc.to_array(attrs)
with pytest.warns(None) as record:
new_doc.from_array(attrs, arr)
assert len(record) == 0
# only SENT_START uses SENT_START
attrs = [SENT_START]
arr = doc.to_array(attrs)
@ -294,7 +305,6 @@ def test_doc_from_array_sent_starts(en_vocab):
new_doc.from_array(attrs, arr)
assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
assert not new_doc.has_annotation("DEP")
# only HEAD uses HEAD
attrs = [HEAD, DEP]
arr = doc.to_array(attrs)
@ -305,19 +315,17 @@ def test_doc_from_array_sent_starts(en_vocab):
def test_doc_from_array_morph(en_vocab):
words = ["I", "live", "in", "New", "York", "."]
# fmt: off
words = ["I", "live", "in", "New", "York", "."]
morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"]
# fmt: on
doc = Doc(en_vocab, words=words)
for i, morph in enumerate(morphs):
doc[i].morph_ = morph
attrs = [MORPH]
arr = doc.to_array(attrs)
new_doc = Doc(en_vocab, words=words)
new_doc.from_array(attrs, arr)
assert [t.morph_ for t in new_doc] == morphs
assert [t.morph_ for t in doc] == [t.morph_ for t in new_doc]
@ -329,15 +337,9 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
en_docs = [en_tokenizer(text) for text in en_texts]
docs_idx = en_texts[0].index("docs")
de_doc = de_tokenizer(de_text)
en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = (
True,
None,
None,
None,
)
expected = (True, None, None, None)
en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = expected
assert Doc.from_docs([]) is None
assert de_doc is not Doc.from_docs([de_doc])
assert str(de_doc) == str(Doc.from_docs([de_doc]))
@ -455,7 +457,7 @@ def test_is_flags_deprecated(en_tokenizer):
doc.is_sentenced
def test_set_ents(en_tokenizer):
def test_doc_set_ents(en_tokenizer):
# set ents
doc = en_tokenizer("a b c d e")
doc.set_ents([Span(doc, 0, 1, 10), Span(doc, 1, 3, 11)])
@ -520,3 +522,16 @@ def test_set_ents(en_tokenizer):
# conflicting/overlapping specifications
with pytest.raises(ValueError):
doc.set_ents([], missing=[doc[1:2]], outside=[doc[1:2]])
def test_doc_ents_setter():
"""Test that both strings and integers can be used to set entities in
tuple format via doc.ents."""
words = ["a", "b", "c", "d", "e"]
doc = Doc(Vocab(), words=words)
doc.ents = [("HELLO", 0, 2), (doc.vocab.strings.add("WORLD"), 3, 5)]
assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"]
vocab = Vocab()
ents = [("HELLO", 0, 2), (vocab.strings.add("WORLD"), 3, 5)]
doc = Doc(vocab, words=words, ents=ents)
assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"]

View File

@ -3,8 +3,6 @@ from spacy.attrs import LEMMA
from spacy.vocab import Vocab
from spacy.tokens import Doc, Token
from ..util import get_doc
def test_doc_retokenize_merge(en_tokenizer):
text = "WKRO played songs by the beach boys all night"
@ -88,9 +86,9 @@ def test_doc_retokenize_lex_attrs(en_tokenizer):
def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
text = "Los Angeles start."
heads = [1, 1, 0, -1]
heads = [1, 2, 2, 2]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert len(doc) == 4
assert doc[0].head.text == "Angeles"
assert doc[1].head.text == "start"
@ -103,17 +101,12 @@ def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
assert doc[0].ent_type_ == "GPE"
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
text = "The players start."
heads = [1, 1, 0, -1]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
tags=["DT", "NN", "VBZ", "."],
pos=["DET", "NOUN", "VERB", "PUNCT"],
heads=heads,
)
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_vocab):
words = ["The", "players", "start", "."]
heads = [1, 2, 2, 2]
tags = ["DT", "NN", "VBZ", "."]
pos = ["DET", "NOUN", "VERB", "PUNCT"]
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
assert len(doc) == 4
assert doc[0].text == "The"
assert doc[0].tag_ == "DT"
@ -124,13 +117,7 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
assert doc[0].text == "The players"
assert doc[0].tag_ == "NN"
assert doc[0].pos_ == "NOUN"
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
tags=["DT", "NN", "VBZ", "."],
pos=["DET", "NOUN", "VERB", "PUNCT"],
heads=heads,
)
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
assert len(doc) == 4
assert doc[0].text == "The"
assert doc[0].tag_ == "DT"
@ -147,11 +134,10 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
assert doc[1].pos_ == "VERB"
def test_doc_retokenize_spans_merge_heads(en_tokenizer):
text = "I found a pilates class near work."
heads = [1, 0, 2, 1, -3, -1, -1, -6]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
def test_doc_retokenize_spans_merge_heads(en_vocab):
words = ["I", "found", "a", "pilates", "class", "near", "work", "."]
heads = [1, 1, 4, 6, 1, 4, 5, 1]
doc = Doc(en_vocab, words=words, heads=heads)
assert len(doc) == 8
with doc.retokenize() as retokenizer:
attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
@ -182,9 +168,9 @@ def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
def test_doc_retokenize_span_np_merges(en_tokenizer):
text = "displaCy is a parse tool built with Javascript"
heads = [1, 0, 2, 1, -3, -1, -1, -1]
heads = [1, 1, 4, 4, 1, 4, 5, 6]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert doc[4].head.i == 1
with doc.retokenize() as retokenizer:
attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
@ -192,18 +178,18 @@ def test_doc_retokenize_span_np_merges(en_tokenizer):
assert doc[2].head.i == 1
text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
heads = [1, 1, 10, 7, 3, 3, 7, 10, 9, 10, 1, 10, 11, 12, 13, 13, 1]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
with doc.retokenize() as retokenizer:
for ent in doc.ents:
attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
retokenizer.merge(ent, attrs=attrs)
text = "One test with entities like New York City so the ents list is not void"
heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
heads = [1, 1, 1, 2, 3, 6, 7, 4, 12, 11, 11, 12, 1, 12, 12]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
with doc.retokenize() as retokenizer:
for ent in doc.ents:
retokenizer.merge(ent)
@ -212,12 +198,12 @@ def test_doc_retokenize_span_np_merges(en_tokenizer):
def test_doc_retokenize_spans_entity_merge(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")]
ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(
doc = Doc(
tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
)
assert len(doc) == 17
@ -282,13 +268,13 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
# if there is a parse, span.root provides default values
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
heads = [0, -1, 1, -3, -4, -5, -1, -7, -8]
ents = [(3, 5, "ent-de"), (5, 7, "ent-fg")]
heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
ents = [("ent-de", 3, 5), ("ent-fg", 5, 7)]
deps = ["dep"] * len(words)
en_vocab.strings.add("ent-de")
en_vocab.strings.add("ent-fg")
en_vocab.strings.add("dep")
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
assert doc[2:4].root == doc[3] # root of 'c d' is d
assert doc[4:6].root == doc[4] # root is 'e f' is e
with doc.retokenize() as retokenizer:
@ -305,10 +291,10 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
# check that B is preserved if span[start] is B
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
heads = [0, -1, 1, 1, -4, -5, -1, -7, -8]
ents = [(3, 5, "ent-de"), (5, 7, "ent-de")]
heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
ents = [("ent-de", 3, 5), ("ent-de", 5, 7)]
deps = ["dep"] * len(words)
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
with doc.retokenize() as retokenizer:
retokenizer.merge(doc[3:5])
retokenizer.merge(doc[5:7])
@ -322,13 +308,13 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
heads = [1, 2, 2, 4, 2, 4, 4, 2, 9, 9, 9, 10, 9, 9, 15, 13, 9]
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
'compound', 'dobj', 'punct']
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
sent1, sent2 = list(doc.sents)
init_len = len(sent1)
init_len2 = len(sent2)
@ -343,13 +329,13 @@ def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12]
deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
"nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
"dobj"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
sent1 = list(doc.sents)[0]
init_len = len(list(sent1.root.subtree))
with doc.retokenize() as retokenizer:

View File

@ -2,13 +2,11 @@ import pytest
from spacy.vocab import Vocab
from spacy.tokens import Doc, Token
from ..util import get_doc
def test_doc_retokenize_split(en_vocab):
words = ["LosAngeles", "start", "."]
heads = [1, 1, 0]
doc = get_doc(en_vocab, words=words, heads=heads)
heads = [1, 2, 2]
doc = Doc(en_vocab, words=words, heads=heads)
assert len(doc) == 3
assert len(str(doc)) == 19
assert doc[0].head.text == "start"
@ -88,11 +86,11 @@ def test_doc_retokenize_spans_sentence_update_after_split(en_vocab):
# fmt: off
words = ["StewartLee", "is", "a", "stand", "up", "comedian", ".", "He",
"lives", "in", "England", "and", "loves", "JoePasquale", "."]
heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2]
heads = [1, 1, 3, 5, 3, 1, 1, 8, 8, 8, 9, 8, 8, 14, 12]
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
# fmt: on
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
sent1, sent2 = list(doc.sents)
init_len = len(sent1)
init_len2 = len(sent2)

View File

@ -4,19 +4,17 @@ from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
from spacy.util import filter_spans
from ..util import get_doc
@pytest.fixture
def doc(en_tokenizer):
# fmt: off
text = "This is a sentence. This is another sentence. And a third."
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
# fmt: on
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
return Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
@pytest.fixture
@ -69,10 +67,10 @@ def test_spans_string_fn(doc):
def test_spans_root2(en_tokenizer):
text = "through North and South Carolina"
heads = [0, 3, -1, -2, -4]
heads = [0, 4, 1, 1, 0]
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
assert doc[-2:].root.text == "Carolina"
@ -92,10 +90,10 @@ def test_spans_span_sent(doc, doc_not_parsed):
def test_spans_lca_matrix(en_tokenizer):
"""Test span's lca matrix generation"""
tokens = en_tokenizer("the lazy dog slept")
doc = get_doc(
doc = Doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=[2, 1, 1, 0],
heads=[2, 2, 3, 3],
deps=["dep"] * 4,
)
lca = doc[:2].get_lca_matrix()

View File

@ -1,6 +1,5 @@
import pytest
from spacy.tokens import Doc
from ..util import get_doc
@pytest.fixture()
@ -8,10 +7,10 @@ def doc(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, -1, -2]
heads = [0, 0, 0]
deps = ["ROOT", "dobj", "dobj"]
ents = [(1, 2, "ORG")]
return get_doc(
ents = [("ORG", 1, 2)]
return Doc(
en_vocab, words=words, pos=pos, tags=tags, heads=heads, deps=deps, ents=ents
)

View File

@ -5,31 +5,24 @@ from spacy.symbols import VERB
from spacy.vocab import Vocab
from spacy.tokens import Doc
from ..util import get_doc
@pytest.fixture
def doc(en_tokenizer):
def doc(en_vocab):
# fmt: off
text = "This is a sentence. This is another sentence. And a third."
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 10, 12, 10, 12]
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
# fmt: on
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
return Doc(en_vocab, words=words, heads=heads, deps=deps)
def test_doc_token_api_strings(en_tokenizer):
text = "Give it back! He pleaded."
def test_doc_token_api_strings(en_vocab):
words = ["Give", "it", "back", "!", "He", "pleaded", "."]
pos = ["VERB", "PRON", "PART", "PUNCT", "PRON", "VERB", "PUNCT"]
heads = [0, -1, -2, -3, 1, 0, -1]
heads = [0, 0, 0, 0, 5, 5, 5]
deps = ["ROOT", "dobj", "prt", "punct", "nsubj", "ROOT", "punct"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps
)
doc = Doc(en_vocab, words=words, pos=pos, heads=heads, deps=deps)
assert doc[0].orth_ == "Give"
assert doc[0].text == "Give"
assert doc[0].text_with_ws == "Give "
@ -97,88 +90,70 @@ def test_doc_token_api_vectors():
assert doc[0].similarity(doc[1]) == cosine
def test_doc_token_api_ancestors(en_tokenizer):
def test_doc_token_api_ancestors(en_vocab):
# the structure of this sentence depends on the English annotation scheme
text = "Yesterday I saw a dog that barked loudly."
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
words = ["Yesterday", "I", "saw", "a", "dog", "that", "barked", "loudly", "."]
heads = [2, 2, 2, 4, 2, 6, 4, 6, 2]
doc = Doc(en_vocab, words=words, heads=heads)
assert [t.text for t in doc[6].ancestors] == ["dog", "saw"]
assert [t.text for t in doc[1].ancestors] == ["saw"]
assert [t.text for t in doc[2].ancestors] == []
assert doc[2].is_ancestor(doc[7])
assert not doc[6].is_ancestor(doc[2])
def test_doc_token_api_head_setter(en_tokenizer):
text = "Yesterday I saw a dog that barked loudly."
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
def test_doc_token_api_head_setter(en_vocab):
words = ["Yesterday", "I", "saw", "a", "dog", "that", "barked", "loudly", "."]
heads = [2, 2, 2, 4, 2, 6, 4, 6, 2]
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert doc[6].n_lefts == 1
assert doc[6].n_rights == 1
assert doc[6].left_edge.i == 5
assert doc[6].right_edge.i == 7
assert doc[4].n_lefts == 1
assert doc[4].n_rights == 1
assert doc[4].left_edge.i == 3
assert doc[4].right_edge.i == 7
assert doc[3].n_lefts == 0
assert doc[3].n_rights == 0
assert doc[3].left_edge.i == 3
assert doc[3].right_edge.i == 3
assert doc[2].left_edge.i == 0
assert doc[2].right_edge.i == 8
doc[6].head = doc[3]
assert doc[6].n_lefts == 1
assert doc[6].n_rights == 1
assert doc[6].left_edge.i == 5
assert doc[6].right_edge.i == 7
assert doc[3].n_lefts == 0
assert doc[3].n_rights == 1
assert doc[3].left_edge.i == 3
assert doc[3].right_edge.i == 7
assert doc[4].n_lefts == 1
assert doc[4].n_rights == 0
assert doc[4].left_edge.i == 3
assert doc[4].right_edge.i == 7
assert doc[2].left_edge.i == 0
assert doc[2].right_edge.i == 8
doc[0].head = doc[5]
assert doc[5].left_edge.i == 0
assert doc[6].left_edge.i == 0
assert doc[3].left_edge.i == 0
assert doc[4].left_edge.i == 0
assert doc[2].left_edge.i == 0
# head token must be from the same document
doc2 = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
doc2 = Doc(en_vocab, words=words, heads=heads)
with pytest.raises(ValueError):
doc[0].head = doc2[0]
# test sentence starts when two sentences are joined
text = "This is one sentence. This is another sentence."
heads = [0, -1, -2, -3, -4, 0, -1, -2, -3, -4]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=heads,
deps=["dep"] * len(heads),
)
# fmt: off
words = ["This", "is", "one", "sentence", ".", "This", "is", "another", "sentence", "."]
heads = [0, 0, 0, 0, 0, 5, 5, 5, 5, 5]
# fmt: on
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * len(heads))
# initially two sentences
assert doc[0].is_sent_start
assert doc[5].is_sent_start
@ -186,7 +161,6 @@ def test_doc_token_api_head_setter(en_tokenizer):
assert doc[0].right_edge == doc[4]
assert doc[5].left_edge == doc[5]
assert doc[5].right_edge == doc[9]
# modifying with a sentence doesn't change sent starts
doc[2].head = doc[3]
assert doc[0].is_sent_start
@ -195,7 +169,6 @@ def test_doc_token_api_head_setter(en_tokenizer):
assert doc[0].right_edge == doc[4]
assert doc[5].left_edge == doc[5]
assert doc[5].right_edge == doc[9]
# attach the second sentence to the first, resulting in one sentence
doc[5].head = doc[0]
assert doc[0].is_sent_start
@ -252,28 +225,28 @@ def test_tokenlast_has_sent_end_true():
def test_token_api_conjuncts_chain(en_vocab):
words = "The boy and the girl and the man went .".split()
heads = [1, 7, -1, 1, -3, -1, 1, -3, 0, -1]
words = ["The", "boy", "and", "the", "girl", "and", "the", "man", "went", "."]
heads = [1, 8, 1, 4, 1, 4, 7, 4, 8, 8]
deps = ["det", "nsubj", "cc", "det", "conj", "cc", "det", "conj", "ROOT", "punct"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert [w.text for w in doc[1].conjuncts] == ["girl", "man"]
assert [w.text for w in doc[4].conjuncts] == ["boy", "man"]
assert [w.text for w in doc[7].conjuncts] == ["boy", "girl"]
def test_token_api_conjuncts_simple(en_vocab):
words = "They came and went .".split()
heads = [1, 0, -1, -2, -1]
words = ["They", "came", "and", "went", "."]
heads = [1, 1, 1, 1, 3]
deps = ["nsubj", "ROOT", "cc", "conj", "dep"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert [w.text for w in doc[1].conjuncts] == ["went"]
assert [w.text for w in doc[3].conjuncts] == ["came"]
def test_token_api_non_conjuncts(en_vocab):
words = "They came .".split()
heads = [1, 0, -1]
words = ["They", "came", "."]
heads = [1, 1, 1]
deps = ["nsubj", "ROOT", "punct"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert [w.text for w in doc[0].conjuncts] == []
assert [w.text for w in doc[1].conjuncts] == []

View File

@ -1,30 +1,26 @@
from ...util import get_doc
from spacy.tokens import Doc
def test_de_parser_noun_chunks_standard_de(de_tokenizer):
text = "Eine Tasse steht auf dem Tisch."
heads = [1, 1, 0, -1, 1, -2, -4]
def test_de_parser_noun_chunks_standard_de(de_vocab):
words = ["Eine", "Tasse", "steht", "auf", "dem", "Tisch", "."]
heads = [1, 2, 2, 2, 5, 3, 2]
pos = ["DET", "NOUN", "VERB", "ADP", "DET", "NOUN", "PUNCT"]
deps = ["nk", "sb", "ROOT", "mo", "nk", "nk", "punct"]
tokens = de_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(de_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 2
assert chunks[0].text_with_ws == "Eine Tasse "
assert chunks[1].text_with_ws == "dem Tisch "
def test_de_extended_chunk(de_tokenizer):
text = "Die Sängerin singt mit einer Tasse Kaffee Arien."
heads = [1, 1, 0, -1, 1, -2, -1, -5, -6]
def test_de_extended_chunk(de_vocab):
# fmt: off
words = ["Die", "Sängerin", "singt", "mit", "einer", "Tasse", "Kaffee", "Arien", "."]
heads = [1, 2, 2, 2, 5, 3, 5, 2, 2]
pos = ["DET", "NOUN", "VERB", "ADP", "DET", "NOUN", "NOUN", "NOUN", "PUNCT"]
deps = ["nk", "sb", "ROOT", "mo", "nk", "nk", "nk", "oa", "punct"]
tokens = de_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
# fmt: on
doc = Doc(de_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "Die Sängerin "

View File

@ -2,13 +2,10 @@ import numpy
from spacy.attrs import HEAD, DEP
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
from spacy.lang.en.syntax_iterators import noun_chunks
from spacy.tokens import Doc
import pytest
from ...util import get_doc
def test_noun_chunks_is_parsed(en_tokenizer):
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
"""
@ -19,9 +16,9 @@ def test_noun_chunks_is_parsed(en_tokenizer):
def test_en_noun_chunks_not_nested(en_vocab):
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
heads = [1, 0, 4, 3, -1, -2, -5]
heads = [1, 1, 6, 6, 3, 3, 1]
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
doc.from_array(
[HEAD, DEP],
numpy.asarray(

View File

@ -1,63 +1,51 @@
from ...util import get_doc
from spacy.tokens import Doc
def test_en_parser_noun_chunks_standard(en_tokenizer):
text = "A base phrase should be recognized."
heads = [2, 1, 3, 2, 1, 0, -1]
def test_en_parser_noun_chunks_standard(en_vocab):
words = ["A", "base", "phrase", "should", "be", "recognized", "."]
heads = [2, 2, 5, 5, 5, 5, 5]
pos = ["DET", "ADJ", "NOUN", "AUX", "VERB", "VERB", "PUNCT"]
deps = ["det", "amod", "nsubjpass", "aux", "auxpass", "ROOT", "punct"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 1
assert chunks[0].text_with_ws == "A base phrase "
def test_en_parser_noun_chunks_coordinated(en_tokenizer):
def test_en_parser_noun_chunks_coordinated(en_vocab):
# fmt: off
text = "A base phrase and a good phrase are often the same."
heads = [2, 1, 5, -1, 2, 1, -4, 0, -1, 1, -3, -4]
words = ["A", "base", "phrase", "and", "a", "good", "phrase", "are", "often", "the", "same", "."]
heads = [2, 2, 7, 2, 6, 6, 2, 7, 7, 10, 7, 7]
pos = ["DET", "NOUN", "NOUN", "CCONJ", "DET", "ADJ", "NOUN", "VERB", "ADV", "DET", "ADJ", "PUNCT"]
deps = ["det", "compound", "nsubj", "cc", "det", "amod", "conj", "ROOT", "advmod", "det", "attr", "punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 2
assert chunks[0].text_with_ws == "A base phrase "
assert chunks[1].text_with_ws == "a good phrase "
def test_en_parser_noun_chunks_pp_chunks(en_tokenizer):
text = "A phrase with another phrase occurs."
heads = [1, 4, -1, 1, -2, 0, -1]
def test_en_parser_noun_chunks_pp_chunks(en_vocab):
words = ["A", "phrase", "with", "another", "phrase", "occurs", "."]
heads = [1, 5, 1, 4, 2, 5, 5]
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB", "PUNCT"]
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT", "punct"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 2
assert chunks[0].text_with_ws == "A phrase "
assert chunks[1].text_with_ws == "another phrase "
def test_en_parser_noun_chunks_appositional_modifiers(en_tokenizer):
def test_en_parser_noun_chunks_appositional_modifiers(en_vocab):
# fmt: off
text = "Sam, my brother, arrived to the house."
heads = [5, -1, 1, -3, -4, 0, -1, 1, -2, -4]
words = ["Sam", ",", "my", "brother", ",", "arrived", "to", "the", "house", "."]
heads = [5, 0, 3, 0, 0, 5, 5, 8, 6, 5]
pos = ["PROPN", "PUNCT", "DET", "NOUN", "PUNCT", "VERB", "ADP", "DET", "NOUN", "PUNCT"]
deps = ["nsubj", "punct", "poss", "appos", "punct", "ROOT", "prep", "det", "pobj", "punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "Sam "
@ -65,15 +53,12 @@ def test_en_parser_noun_chunks_appositional_modifiers(en_tokenizer):
assert chunks[2].text_with_ws == "the house "
def test_en_parser_noun_chunks_dative(en_tokenizer):
text = "She gave Bob a raise."
heads = [1, 0, -1, 1, -3, -4]
def test_en_parser_noun_chunks_dative(en_vocab):
words = ["She", "gave", "Bob", "a", "raise", "."]
heads = [1, 1, 1, 4, 1, 1]
pos = ["PRON", "VERB", "PROPN", "DET", "NOUN", "PUNCT"]
deps = ["nsubj", "ROOT", "dative", "det", "dobj", "punct"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
)
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
chunks = list(doc.noun_chunks)
assert len(chunks) == 3
assert chunks[0].text_with_ws == "She "

View File

@ -1,15 +1,16 @@
import pytest
from spacy.tokens import Doc
from ...util import get_doc, apply_transition_sequence
from ...util import apply_transition_sequence
@pytest.mark.parametrize("text", ["A test sentence"])
@pytest.mark.parametrize("words", [["A", "test", "sentence"]])
@pytest.mark.parametrize("punct", [".", "!", "?", ""])
def test_en_sbd_single_punct(en_tokenizer, text, punct):
heads = [2, 1, 0, -1] if punct else [2, 1, 0]
def test_en_sbd_single_punct(en_vocab, words, punct):
heads = [2, 2, 2, 2] if punct else [2, 2, 2]
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text + punct)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
words = [*words, punct] if punct else words
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert len(doc) == 4 if punct else 3
assert len(list(doc.sents)) == 1
assert sum(len(sent) for sent in doc.sents) == len(doc)
@ -18,17 +19,16 @@ def test_en_sbd_single_punct(en_tokenizer, text, punct):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_en_sentence_breaks(en_tokenizer, en_parser):
def test_en_sentence_breaks(en_vocab, en_parser):
# fmt: off
text = "This is a sentence . This is another one ."
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3]
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "one", "."]
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6]
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
"attr", "punct"]
transition = ["L-nsubj", "S", "L-det", "R-attr", "D", "R-punct", "B-ROOT",
"L-nsubj", "S", "L-attr", "R-attr", "D", "R-punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
apply_transition_sequence(en_parser, doc, transition)
assert len(list(doc.sents)) == 2
for token in doc:

View File

@ -1,6 +1,5 @@
import pytest
from ...util import get_doc
from spacy.tokens import Doc
def test_ru_doc_lemmatization(ru_lemmatizer):
@ -11,7 +10,7 @@ def test_ru_doc_lemmatization(ru_lemmatizer):
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
]
doc = get_doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
doc = Doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
doc = ru_lemmatizer(doc)
lemmas = [token.lemma_ for token in doc]
assert lemmas == ["мама", "мыть", "рама"]
@ -28,7 +27,7 @@ def test_ru_doc_lemmatization(ru_lemmatizer):
],
)
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert sorted(result_lemmas) == lemmas
@ -51,7 +50,7 @@ def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
def test_ru_lemmatizer_works_with_different_pos_homonyms(
ru_lemmatizer, text, pos, morph, lemma
):
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert result_lemmas == [lemma]
@ -66,13 +65,13 @@ def test_ru_lemmatizer_works_with_different_pos_homonyms(
],
)
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morph, lemma):
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert result_lemmas == [lemma]
def test_ru_lemmatizer_punct(ru_lemmatizer):
doc = get_doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
doc = Doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
doc = get_doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
doc = Doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']

View File

@ -1,6 +1,5 @@
import pytest
from ...util import get_doc
from spacy.tokens import Doc
def test_noun_chunks_is_parsed_sv(sv_tokenizer):
@ -16,21 +15,21 @@ SV_NP_TEST_EXAMPLES = [
"En student läste en bok", # A student read a book
["DET", "NOUN", "VERB", "DET", "NOUN"],
["det", "nsubj", "ROOT", "det", "dobj"],
[1, 1, 0, 1, -2],
[1, 2, 2, 4, 2],
["En student", "en bok"],
),
(
"Studenten läste den bästa boken.", # The student read the best book
["NOUN", "VERB", "DET", "ADJ", "NOUN", "PUNCT"],
["nsubj", "ROOT", "det", "amod", "dobj", "punct"],
[1, 0, 2, 1, -3, -4],
[1, 1, 4, 4, 1, 1],
["Studenten", "den bästa boken"],
),
(
"De samvetslösa skurkarna hade stulit de största juvelerna på söndagen", # The remorseless crooks had stolen the largest jewels that sunday
["DET", "ADJ", "NOUN", "VERB", "VERB", "DET", "ADJ", "NOUN", "ADP", "NOUN"],
["det", "amod", "nsubj", "aux", "root", "det", "amod", "dobj", "case", "nmod"],
[2, 1, 2, 1, 0, 2, 1, -3, 1, -5],
[2, 2, 4, 4, 4, 7, 7, 4, 9, 4],
["De samvetslösa skurkarna", "de största juvelerna", "på söndagen"],
),
]
@ -41,12 +40,9 @@ SV_NP_TEST_EXAMPLES = [
)
def test_sv_noun_chunks(sv_tokenizer, text, pos, deps, heads, expected_noun_chunks):
tokens = sv_tokenizer(text)
assert len(heads) == len(pos)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps, pos=pos
)
words = [t.text for t in tokens]
doc = Doc(tokens.vocab, words=words, heads=heads, deps=deps, pos=pos)
noun_chunks = list(doc.noun_chunks)
assert len(noun_chunks) == len(expected_noun_chunks)
for i, np in enumerate(noun_chunks):

View File

@ -4,16 +4,15 @@ import re
import copy
from mock import Mock
from spacy.matcher import DependencyMatcher
from ..util import get_doc
from spacy.tokens import Doc
@pytest.fixture
def doc(en_vocab):
text = "The quick brown fox jumped over the lazy fox"
heads = [3, 2, 1, 1, 0, -1, 2, 1, -3]
words = ["The", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "fox"]
heads = [3, 3, 3, 4, 4, 4, 8, 8, 5]
deps = ["det", "amod", "amod", "nsubj", "ROOT", "prep", "pobj", "det", "amod"]
doc = get_doc(en_vocab, text.split(), heads=heads, deps=deps)
return doc
return Doc(en_vocab, words=words, heads=heads, deps=deps)
@pytest.fixture
@ -236,10 +235,10 @@ def test_dependency_matcher_callback(en_vocab, doc):
@pytest.mark.parametrize("op,num_matches", [(".", 8), (".*", 20), (";", 8), (";*", 20)])
def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
# two sentences to test that all matches are within the same sentence
doc = get_doc(
doc = Doc(
en_vocab,
words=["a", "b", "c", "d", "e"] * 2,
heads=[0, -1, -2, -3, -4] * 2,
heads=[0, 0, 0, 0, 0, 5, 5, 5, 5, 5],
deps=["dep"] * 10,
)
match_count = 0

View File

@ -3,7 +3,6 @@ import srsly
from mock import Mock
from spacy.matcher import PhraseMatcher
from spacy.tokens import Doc, Span
from ..util import get_doc
def test_matcher_phrase_matcher(en_vocab):
@ -140,10 +139,10 @@ def test_phrase_matcher_string_attrs(en_vocab):
pos1 = ["PRON", "VERB", "NOUN"]
words2 = ["Yes", ",", "you", "hate", "dogs", "very", "much"]
pos2 = ["INTJ", "PUNCT", "PRON", "VERB", "NOUN", "ADV", "ADV"]
pattern = get_doc(en_vocab, words=words1, pos=pos1)
pattern = Doc(en_vocab, words=words1, pos=pos1)
matcher = PhraseMatcher(en_vocab, attr="POS")
matcher.add("TEST", [pattern])
doc = get_doc(en_vocab, words=words2, pos=pos2)
doc = Doc(en_vocab, words=words2, pos=pos2)
matches = matcher(doc)
assert len(matches) == 1
match_id, start, end = matches[0]
@ -158,10 +157,10 @@ def test_phrase_matcher_string_attrs_negative(en_vocab):
pos1 = ["PRON", "VERB", "NOUN"]
words2 = ["matcher:POS-PRON", "matcher:POS-VERB", "matcher:POS-NOUN"]
pos2 = ["X", "X", "X"]
pattern = get_doc(en_vocab, words=words1, pos=pos1)
pattern = Doc(en_vocab, words=words1, pos=pos1)
matcher = PhraseMatcher(en_vocab, attr="POS")
matcher.add("TEST", [pattern])
doc = get_doc(en_vocab, words=words2, pos=pos2)
doc = Doc(en_vocab, words=words2, pos=pos2)
matches = matcher(doc)
assert len(matches) == 0

View File

@ -2,8 +2,7 @@ import pytest
from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle
from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree, is_nonproj_arc
from spacy.pipeline._parser_internals import nonproj
from ..util import get_doc
from spacy.tokens import Doc
@pytest.fixture
@ -74,16 +73,10 @@ def test_parser_is_nonproj_tree(
assert is_nonproj_tree(multirooted_tree) is True
def test_parser_pseudoprojectivity(en_tokenizer):
def test_parser_pseudoprojectivity(en_vocab):
def deprojectivize(proj_heads, deco_labels):
tokens = en_tokenizer("whatever " * len(proj_heads))
rel_proj_heads = [head - i for i, head in enumerate(proj_heads)]
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
deps=deco_labels,
heads=rel_proj_heads,
)
words = ["whatever "] * len(proj_heads)
doc = Doc(en_vocab, words=words, deps=deco_labels, heads=proj_heads)
nonproj.deprojectivize(doc)
return [t.head.i for t in doc], [token.dep_ for token in doc]
@ -94,49 +87,39 @@ def test_parser_pseudoprojectivity(en_tokenizer):
labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj", "acl", "punct"]
labels2 = ["advmod", "root", "det", "nsubj", "advmod", "det", "dobj", "det", "nmod", "aux", "nmod", "advmod", "det", "amod", "punct"]
# fmt: on
assert nonproj.decompose("X||Y") == ("X", "Y")
assert nonproj.decompose("X") == ("X", "")
assert nonproj.is_decorated("X||Y") is True
assert nonproj.is_decorated("X") is False
nonproj._lift(0, tree)
assert tree == [2, 2, 2]
assert nonproj._get_smallest_nonproj_arc(nonproj_tree) == 7
assert nonproj._get_smallest_nonproj_arc(nonproj_tree2) == 10
# fmt: off
proj_heads, deco_labels = nonproj.projectivize(nonproj_tree, labels)
assert proj_heads == [1, 2, 2, 4, 5, 2, 7, 5, 2]
assert deco_labels == ["det", "nsubj", "root", "det", "dobj", "aux",
"nsubj", "acl||dobj", "punct"]
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
assert deproj_heads == nonproj_tree
assert undeco_labels == labels
proj_heads, deco_labels = nonproj.projectivize(nonproj_tree2, labels2)
assert proj_heads == [1, 1, 3, 1, 5, 6, 9, 8, 6, 1, 9, 12, 13, 10, 1]
assert deco_labels == ["advmod||aux", "root", "det", "nsubj", "advmod",
"det", "dobj", "det", "nmod", "aux", "nmod||dobj",
"advmod", "det", "amod", "punct"]
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
assert deproj_heads == nonproj_tree2
assert undeco_labels == labels2
# if decoration is wrong such that there is no head with the desired label
# the structure is kept and the label is undecorated
proj_heads = [1, 2, 2, 4, 5, 2, 7, 5, 2]
deco_labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj",
"acl||iobj", "punct"]
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
assert deproj_heads == proj_heads
assert undeco_labels == ["det", "nsubj", "root", "det", "dobj", "aux",
"nsubj", "acl", "punct"]
# if there are two potential new heads, the first one is chosen even if
# it"s wrong
proj_heads = [1, 1, 3, 1, 5, 6, 9, 8, 6, 1, 9, 12, 13, 10, 1]

View File

@ -1,9 +1,11 @@
import pytest
from spacy.lang.en import English
from ..util import get_doc, apply_transition_sequence, make_tempdir
from ... import util
from ...training import Example
from spacy.training import Example
from spacy.tokens import Doc
from spacy import util
from ..util import apply_transition_sequence, make_tempdir
TRAIN_DATA = [
(
@ -23,12 +25,11 @@ TRAIN_DATA = [
]
def test_parser_root(en_tokenizer):
text = "i don't have other assistance"
heads = [3, 2, 1, 0, 1, -2]
def test_parser_root(en_vocab):
words = ["i", "do", "n't", "have", "other", "assistance"]
heads = [3, 3, 3, 3, 5, 3]
deps = ["nsubj", "aux", "neg", "ROOT", "amod", "dobj"]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
for t in doc:
assert t.dep != 0, t.text
@ -36,13 +37,9 @@ def test_parser_root(en_tokenizer):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
@pytest.mark.parametrize("text", ["Hello"])
def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
)
@pytest.mark.parametrize("words", [["Hello"]])
def test_parser_parse_one_word_sentence(en_vocab, en_parser, words):
doc = Doc(en_vocab, words=words, heads=[0], deps=["ROOT"])
assert len(doc) == 1
with en_parser.step_through(doc) as _: # noqa: F841
pass
@ -52,24 +49,22 @@ def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_parser_initial(en_tokenizer, en_parser):
text = "I ate the pizza with anchovies."
# heads = [1, 0, 1, -2, -3, -1, -5]
def test_parser_initial(en_vocab, en_parser):
words = ["I", "ate", "the", "pizza", "with", "anchovies", "."]
transition = ["L-nsubj", "S", "L-det"]
tokens = en_tokenizer(text)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].head.i == 1
assert tokens[1].head.i == 1
assert tokens[2].head.i == 3
assert tokens[3].head.i == 3
doc = Doc(en_vocab, words=words)
apply_transition_sequence(en_parser, doc, transition)
assert doc[0].head.i == 1
assert doc[1].head.i == 1
assert doc[2].head.i == 3
assert doc[3].head.i == 3
def test_parser_parse_subtrees(en_tokenizer, en_parser):
text = "The four wheels on the bus turned quickly"
heads = [2, 1, 4, -1, 1, -2, 0, -1]
def test_parser_parse_subtrees(en_vocab, en_parser):
words = ["The", "four", "wheels", "on", "the", "bus", "turned", "quickly"]
heads = [2, 2, 6, 2, 5, 3, 6, 6]
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert len(list(doc[2].lefts)) == 2
assert len(list(doc[2].rights)) == 1
assert len(list(doc[2].children)) == 3
@ -79,15 +74,12 @@ def test_parser_parse_subtrees(en_tokenizer, en_parser):
assert len(list(doc[2].subtree)) == 6
def test_parser_merge_pp(en_tokenizer):
text = "A phrase with another phrase occurs"
heads = [1, 4, -1, 1, -2, 0]
def test_parser_merge_pp(en_vocab):
words = ["A", "phrase", "with", "another", "phrase", "occurs"]
heads = [1, 5, 1, 4, 2, 5]
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, pos=pos
)
doc = Doc(en_vocab, words=words, deps=deps, heads=heads, pos=pos)
with doc.retokenize() as retokenizer:
for np in doc.noun_chunks:
retokenizer.merge(np, attrs={"lemma": np.lemma_})
@ -100,12 +92,11 @@ def test_parser_merge_pp(en_tokenizer):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
text = "a b c d e"
def test_parser_arc_eager_finalize_state(en_vocab, en_parser):
words = ["a", "b", "c", "d", "e"]
# right branching
transition = ["R-nsubj", "D", "R-nsubj", "R-nsubj", "D", "R-ROOT"]
tokens = en_tokenizer(text)
tokens = Doc(en_vocab, words=words)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].n_lefts == 0
@ -140,7 +131,7 @@ def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
# left branching
transition = ["S", "S", "S", "L-nsubj", "L-nsubj", "L-nsubj", "L-nsubj"]
tokens = en_tokenizer(text)
tokens = Doc(en_vocab, words=words)
apply_transition_sequence(en_parser, tokens, transition)
assert tokens[0].n_lefts == 0
@ -177,10 +168,10 @@ def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
def test_parser_set_sent_starts(en_vocab):
# fmt: off
words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
heads = [1, 0, -1, 27, 0, -1, 1, -3, -1, 8, 4, 3, -1, 1, 3, 1, 1, -11, -1, 1, -9, -1, 4, -1, 2, 1, -6, -1, 1, 2, 1, -6, -1, -1, -17, -31, -32, -1]
heads = [1, 1, 1, 30, 4, 4, 7, 4, 7, 17, 14, 14, 11, 14, 17, 16, 17, 6, 17, 20, 11, 20, 26, 22, 26, 26, 20, 26, 29, 31, 31, 25, 31, 32, 17, 4, 4, 36]
deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
# fmt: on
doc = get_doc(en_vocab, words=words, deps=deps, heads=heads)
doc = Doc(en_vocab, words=words, deps=deps, heads=heads)
for i in range(len(words)):
if i == 0 or i == 3:
assert doc[i].is_sent_start is True
@ -201,24 +192,21 @@ def test_overfitting_IO():
for dep in annotations.get("deps", []):
parser.add_label(dep)
optimizer = nlp.begin_training()
for i in range(100):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["parser"] < 0.0001
# test the trained model
test_text = "I like securities."
doc = nlp(test_text)
assert doc[0].dep_ is "nsubj"
assert doc[2].dep_ is "dobj"
assert doc[3].dep_ is "punct"
assert doc[0].dep_ == "nsubj"
assert doc[2].dep_ == "dobj"
assert doc[3].dep_ == "punct"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert doc2[0].dep_ is "nsubj"
assert doc2[2].dep_ is "dobj"
assert doc2[3].dep_ is "punct"
assert doc2[0].dep_ == "nsubj"
assert doc2[2].dep_ == "dobj"
assert doc2[3].dep_ == "punct"

View File

@ -1,59 +1,75 @@
import pytest
from ..util import get_doc
from spacy.tokens import Doc
@pytest.fixture
def text():
return """
It was a bright cold day in April, and the clocks were striking thirteen.
Winston Smith, his chin nuzzled into his breast in an effort to escape the
vile wind, slipped quickly through the glass doors of Victory Mansions,
though not quickly enough to prevent a swirl of gritty dust from entering
along with him.
The hallway smelt of boiled cabbage and old rag mats. At one end of it a
coloured poster, too large for indoor display, had been tacked to the wall.
It depicted simply an enormous face, more than a metre wide: the face of a
man of about forty-five, with a heavy black moustache and ruggedly handsome
features. Winston made for the stairs. It was no use trying the lift. Even at
the best of times it was seldom working, and at present the electric current
was cut off during daylight hours. It was part of the economy drive in
preparation for Hate Week. The flat was seven flights up, and Winston, who
was thirty-nine and had a varicose ulcer above his right ankle, went slowly,
resting several times on the way. On each landing, opposite the lift-shaft,
the poster with the enormous face gazed from the wall. It was one of those
pictures which are so contrived that the eyes follow you about when you move.
BIG BROTHER IS WATCHING YOU, the caption beneath it ran.
"""
def words():
# fmt: off
return [
"\n", "It", "was", "a", "bright", "cold", "day", "in", "April", ",",
"and", "the", "clocks", "were", "striking", "thirteen", ".", "\n",
"Winston", "Smith", ",", "his", "chin", "nuzzled", "into", "his",
"breast", "in", "an", "effort", "to", "escape", "the", "\n", "vile",
"wind", ",", "slipped", "quickly", "through", "the", "glass", "doors",
"of", "Victory", "Mansions", ",", "\n", "though", "not", "quickly",
"enough", "to", "prevent", "a", "swirl", "of", "gritty", "dust",
"from", "entering", "\n", "along", "with", "him", ".", "\n\n", "The",
"hallway", "smelt", "of", "boiled", "cabbage", "and", "old", "rag",
"mats", ".", "At", "one", "end", "of", "it", "a", "\n", "coloured",
"poster", ",", "too", "large", "for", "indoor", "display", ",", "had",
"been", "tacked", "to", "the", "wall", ".", "\n", "It", "depicted",
"simply", "an", "enormous", "face", ",", "more", "than", "a", "metre",
"wide", ":", "the", "face", "of", "a", "\n", "man", "of", "about",
"forty", "-", "five", ",", "with", "a", "heavy", "black", "moustache",
"and", "ruggedly", "handsome", "\n", "features", ".", "Winston", "made",
"for", "the", "stairs", ".", "It", "was", "no", "use", "trying", "the",
"lift", ".", "Even", "at", "\n", "the", "best", "of", "times", "it",
"was", "seldom", "working", ",", "and", "at", "present", "the",
"electric", "current", "\n", "was", "cut", "off", "during", "daylight",
"hours", ".", "It", "was", "part", "of", "the", "economy", "drive",
"in", "\n", "preparation", "for", "Hate", "Week", ".", "The", "flat",
"was", "seven", "flights", "up", ",", "and", "Winston", ",", "who",
"\n", "was", "thirty", "-", "nine", "and", "had", "a", "varicose",
"ulcer", "above", "his", "right", "ankle", ",", "went", "slowly", ",",
"\n", "resting", "several", "times", "on", "the", "way", ".", "On",
"each", "landing", ",", "opposite", "the", "lift", "-", "shaft", ",",
"\n", "the", "poster", "with", "the", "enormous", "face", "gazed",
"from", "the", "wall", ".", "It", "was", "one", "of", "those", "\n",
"pictures", "which", "are", "so", "contrived", "that", "the", "eyes",
"follow", "you", "about", "when", "you", "move", ".", "\n", "BIG",
"BROTHER", "IS", "WATCHING", "YOU", ",", "the", "caption", "beneath",
"it", "ran", ".", "\n", ]
# fmt: on
@pytest.fixture
def heads():
# fmt: off
return [1, 1, 0, 3, 2, 1, -4, -1, -1, -7, -8, 1, 2, 1, -12, -1, -2,
-1, 1, 4, 3, 1, 1, 0, -1, 1, -2, -4, 1, -2, 1, -2, 3, -1, 1,
-4, -13, -14, -1, -2, 2, 1, -3, -1, 1, -2, -9, -1, -11, 1, 1, -14,
1, -2, 1, -2, -1, 1, -2, -6, -1, -1, -2, -1, -1, -42, -1, 1, 1,
0, -1, 1, -2, -1, 2, 1, -4, -8, 18, 1, -2, -1, -1, 3, -1, 1, 10,
9, 1, 7, -1, 1, -2, 3, 2, 1, 0, -1, 1, -2, -4, -1, 1, 0, -1,
2, 1, -4, -1, 2, 1, 1, 1, -6, -11, 1, 20, -1, 2, -1, -3, -1,
3, 2, 1, -4, -10, -11, 3, 2, 1, -4, -1, 1, -3, -1, 0, -1, 1, 0,
-1, 1, -2, -4, 1, 0, 1, -2, -1, 1, -2, -6, 1, 9, -1, 1, 6, -1,
-1, 3, 2, 1, 0, -1, -2, 7, -1, 2, 1, 3, -1, 1, -10, -1, -2, 1,
-2, -5, 1, 0, -1, -1, 1, -2, -5, -1, -1, -2, -1, 1, -2, -12, 1,
1, 0, 1, -2, -1, -4, -5, 18, -1, 2, -1, -4, 2, 1, -3, -4, -5, 2,
1, -3, -1, 2, 1, -3, -17, -24, -1, -2, -1, -4, 1, -2, -3, 1, -2,
-10, 17, 1, -2, 14, 13, 3, 2, 1, -4, 8, -1, 1, 5, -1, 2, 1, -3,
0, -1, 1, -2, -4, 1, 0, -1, -1, 2, -1, -3, 1, -2, 1, -2, 3, 1,
1, -4, -1, -2, 2, 1, -3, -19, -1, 1, 1, 0, 0, 6, 5, 1, 3, -1,
-1, 0, -1, -1]
return [
1, 2, 2, 6, 6, 6, 2, 6, 7, 2, 2, 12, 14, 14, 2, 14, 14, 16, 19, 23, 23,
22, 23, 23, 23, 26, 24, 23, 29, 27, 31, 29, 35, 32, 35, 31, 23, 23, 37,
37, 42, 42, 39, 42, 45, 43, 37, 46, 37, 50, 51, 37, 53, 51, 55, 53, 55,
58, 56, 53, 59, 60, 60, 62, 63, 23, 65, 68, 69, 69, 69, 72, 70, 72, 76,
76, 72, 69, 96, 80, 78, 80, 81, 86, 83, 86, 96, 96, 89, 96, 89, 92, 90,
96, 96, 96, 96, 96, 99, 97, 96, 100, 103, 103, 103, 107, 107, 103, 107,
111, 111, 112, 113, 107, 103, 116, 136, 116, 120, 118, 117, 120, 125,
125, 125, 121, 116, 116, 131, 131, 131, 127, 131, 134, 131, 134, 136,
136, 139, 139, 139, 142, 140, 139, 145, 145, 147, 145, 147, 150, 148,
145, 153, 162, 153, 156, 162, 156, 157, 162, 162, 162, 162, 162, 162,
172, 165, 169, 169, 172, 169, 172, 162, 172, 172, 176, 174, 172, 179,
179, 179, 180, 183, 181, 179, 184, 185, 185, 187, 190, 188, 179, 193,
194, 194, 196, 194, 196, 194, 194, 218, 200, 204, 202, 200, 207, 207,
204, 204, 204, 212, 212, 209, 212, 216, 216, 213, 200, 194, 218, 218,
220, 218, 224, 222, 222, 227, 225, 218, 246, 231, 229, 246, 246, 237,
237, 237, 233, 246, 238, 241, 246, 241, 245, 245, 242, 246, 246, 249,
247, 246, 252, 252, 252, 253, 257, 255, 254, 259, 257, 261, 259, 265,
264, 265, 261, 265, 265, 270, 270, 267, 252, 271, 274, 275, 275, 276,
283, 283, 280, 283, 280, 281, 283, 283, 284]
# fmt: on
def test_parser_parse_navigate_consistency(en_tokenizer, text, heads):
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
def test_parser_parse_navigate_consistency(en_vocab, words, heads):
doc = Doc(en_vocab, words=words, heads=heads)
for head in doc:
for child in head.lefts:
assert child.head == head
@ -61,15 +77,8 @@ def test_parser_parse_navigate_consistency(en_tokenizer, text, heads):
assert child.head == head
def test_parser_parse_navigate_child_consistency(en_tokenizer, text, heads):
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=heads,
deps=["dep"] * len(heads),
)
def test_parser_parse_navigate_child_consistency(en_vocab, words, heads):
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * len(heads))
lefts = {}
rights = {}
for head in doc:
@ -99,9 +108,8 @@ def test_parser_parse_navigate_child_consistency(en_tokenizer, text, heads):
assert not children
def test_parser_parse_navigate_edges(en_tokenizer, text, heads):
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
def test_parser_parse_navigate_edges(en_vocab, words, heads):
doc = Doc(en_vocab, words=words, heads=heads)
for token in doc:
subtree = list(token.subtree)
debug = "\t".join((token.text, token.left_edge.text, subtree[0].text))

View File

@ -1,42 +1,40 @@
import pytest
from spacy.tokens import Doc
from spacy.tokens.doc import Doc
from ..util import get_doc, apply_transition_sequence
from ..util import apply_transition_sequence
def test_parser_space_attachment(en_tokenizer):
text = "This is a test.\nTo ensure spaces are attached well."
heads = [1, 0, 1, -2, -3, -1, 1, 4, -1, 2, 1, 0, -1, -2]
def test_parser_space_attachment(en_vocab):
# fmt: off
words = ["This", "is", "a", "test", ".", "\n", "To", "ensure", " ", "spaces", "are", "attached", "well", "."]
heads = [1, 1, 3, 1, 1, 4, 7, 11, 7, 11, 11, 11, 11, 11]
# fmt: on
deps = ["dep"] * len(heads)
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
for sent in doc.sents:
if len(sent) == 1:
assert not sent[-1].is_space
def test_parser_sentence_space(en_tokenizer):
def test_parser_sentence_space(en_vocab):
# fmt: off
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
words = ["I", "look", "forward", "to", "using", "Thingamajig", ".", " ", "I", "'ve", "been", "told", "it", "will", "make", "my", "life", "easier", "..."]
heads = [1, 1, 1, 1, 3, 4, 1, 6, 11, 11, 11, 11, 14, 14, 11, 16, 17, 14, 11]
deps = ["nsubj", "ROOT", "advmod", "prep", "pcomp", "dobj", "punct", "",
"nsubjpass", "aux", "auxpass", "ROOT", "nsubj", "aux", "ccomp",
"poss", "nsubj", "ccomp", "punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert len(list(doc.sents)) == 2
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_parser_space_attachment_leading(en_tokenizer, en_parser):
text = "\t \n This is a sentence ."
heads = [1, 1, 0, 1, -2, -3]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=text.split(" "), heads=heads)
def test_parser_space_attachment_leading(en_vocab, en_parser):
words = ["\t", "\n", "This", "is", "a", "sentence", "."]
heads = [1, 2, 2, 4, 2, 2]
doc = Doc(en_vocab, words=words, heads=heads)
assert doc[0].is_space
assert doc[1].is_space
assert doc[2].text == "This"
@ -50,18 +48,16 @@ def test_parser_space_attachment_leading(en_tokenizer, en_parser):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
text = "This is \t a \t\n \n sentence . \n\n \n"
heads = [1, 0, -1, 2, -1, -4, -5, -1]
def test_parser_space_attachment_intermediate_trailing(en_vocab, en_parser):
words = ["This", "is", "\t", "a", "\t\n", "\n", "sentence", ".", "\n\n", "\n"]
heads = [1, 1, 1, 5, 3, 1, 1, 6]
transition = ["L-nsubj", "S", "L-det", "R-attr", "D", "R-punct"]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=text.split(" "), heads=heads)
doc = Doc(en_vocab, words=words, heads=heads)
assert doc[2].is_space
assert doc[4].is_space
assert doc[5].is_space
assert doc[8].is_space
assert doc[9].is_space
apply_transition_sequence(en_parser, doc, transition)
for token in doc:
assert token.dep != 0 or token.is_space
@ -72,7 +68,7 @@ def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
@pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)"
)
def test_parser_space_attachment_space(en_tokenizer, en_parser, text, length):
def test_parser_space_attachment_space(en_parser, text, length):
doc = Doc(en_parser.vocab, words=text)
assert len(doc) == length
with en_parser.step_through(doc) as _: # noqa: F841

View File

@ -4,8 +4,9 @@ from spacy.training import Example
from spacy.lang.en import English
from spacy.pipeline import AttributeRuler
from spacy import util, registry
from spacy.tokens import Doc
from ..util import get_doc, make_tempdir
from ..util import make_tempdir
@pytest.fixture
@ -66,7 +67,6 @@ def test_attributeruler_init(nlp, pattern_dicts):
a = nlp.add_pipe("attribute_ruler")
for p in pattern_dicts:
a.add(**p)
doc = nlp("This is a test.")
assert doc[2].lemma_ == "the"
assert doc[2].morph_ == "Case=Nom|Number=Plur"
@ -129,7 +129,7 @@ def test_attributeruler_rule_order(nlp):
{"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "NOUN"}},
]
a.add_patterns(patterns)
doc = get_doc(
doc = Doc(
nlp.vocab,
words=["This", "is", "a", "test", "."],
tags=["DT", "VBZ", "DT", "NN", "."],
@ -141,13 +141,12 @@ def test_attributeruler_rule_order(nlp):
def test_attributeruler_tag_map(nlp, tag_map):
a = AttributeRuler(nlp.vocab)
a.load_from_tag_map(tag_map)
doc = get_doc(
doc = Doc(
nlp.vocab,
words=["This", "is", "a", "test", "."],
tags=["DT", "VBZ", "DT", "NN", "."],
)
doc = a(doc)
for i in range(len(doc)):
if i == 4:
assert doc[i].pos_ == "PUNCT"
@ -160,13 +159,12 @@ def test_attributeruler_tag_map(nlp, tag_map):
def test_attributeruler_morph_rules(nlp, morph_rules):
a = AttributeRuler(nlp.vocab)
a.load_from_morph_rules(morph_rules)
doc = get_doc(
doc = Doc(
nlp.vocab,
words=["This", "is", "the", "test", "."],
tags=["DT", "VBZ", "DT", "NN", "."],
)
doc = a(doc)
for i in range(len(doc)):
if i != 2:
assert doc[i].pos_ == ""
@ -193,7 +191,6 @@ def test_attributeruler_indices(nlp):
text = "This is a test."
doc = nlp(text)
for i in range(len(doc)):
if i == 1:
assert doc[i].lemma_ == "was"
@ -205,12 +202,10 @@ def test_attributeruler_indices(nlp):
assert doc[i].lemma_ == "cat"
else:
assert doc[i].morph_ == ""
# raises an error when trying to modify a token outside of the match
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=2)
with pytest.raises(ValueError):
doc = nlp(text)
# raises an error when trying to modify a token outside of the match
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=10)
with pytest.raises(ValueError):
@ -220,7 +215,6 @@ def test_attributeruler_indices(nlp):
def test_attributeruler_patterns_prop(nlp, pattern_dicts):
a = nlp.add_pipe("attribute_ruler")
a.add_patterns(pattern_dicts)
for p1, p2 in zip(pattern_dicts, a.patterns):
assert p1["patterns"] == p2["patterns"]
assert p1["attrs"] == p2["attrs"]
@ -231,18 +225,15 @@ def test_attributeruler_patterns_prop(nlp, pattern_dicts):
def test_attributeruler_serialize(nlp, pattern_dicts):
a = nlp.add_pipe("attribute_ruler")
a.add_patterns(pattern_dicts)
text = "This is a test."
attrs = ["ORTH", "LEMMA", "MORPH"]
doc = nlp(text)
# bytes roundtrip
a_reloaded = AttributeRuler(nlp.vocab).from_bytes(a.to_bytes())
assert a.to_bytes() == a_reloaded.to_bytes()
doc1 = a_reloaded(nlp.make_doc(text))
numpy.array_equal(doc.to_array(attrs), doc1.to_array(attrs))
assert a.patterns == a_reloaded.patterns
# disk roundtrip
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)

View File

@ -1,57 +1,38 @@
import pytest
from spacy.pipeline.functions import merge_subtokens
from spacy.language import Language
from spacy.tokens import Span
from ..util import get_doc
from spacy.tokens import Span, Doc
@pytest.fixture
def doc(en_tokenizer):
def doc(en_vocab):
# fmt: off
text = "This is a sentence. This is another sentence. And a third."
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 1, 1, 1, 0]
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 11, 12, 13, 13]
deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT",
"subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"]
# fmt: on
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
return Doc(en_vocab, words=words, heads=heads, deps=deps)
@pytest.fixture
def doc2(en_tokenizer):
text = "I like New York in Autumn."
heads = [1, 0, 1, -2, -3, -1, -5]
def doc2(en_vocab):
words = ["I", "like", "New", "York", "in", "Autumn", "."]
heads = [1, 1, 3, 1, 1, 4, 1]
tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
heads=heads,
tags=tags,
pos=pos,
deps=deps,
)
doc.ents = [Span(doc, 2, 4, doc.vocab.strings["GPE"])]
doc = Doc(en_vocab, words=words, heads=heads, tags=tags, pos=pos, deps=deps)
doc.ents = [Span(doc, 2, 4, label="GPE")]
return doc
def test_merge_subtokens(doc):
doc = merge_subtokens(doc)
# get_doc() doesn't set spaces, so the result is "And a third ."
assert [t.text for t in doc] == [
"This",
"is",
"a sentence",
".",
"This",
"is",
"another sentence",
".",
"And a third .",
]
# Doc doesn't have spaces, so the result is "And a third ."
# fmt: off
assert [t.text for t in doc] == ["This", "is", "a sentence", ".", "This", "is", "another sentence", ".", "And a third ."]
# fmt: on
def test_factories_merge_noun_chunks(doc2):

View File

@ -9,7 +9,7 @@ from spacy.lang.en import English
from spacy.lookups import Lookups
from spacy.tokens import Doc, Span
from ..util import get_doc, make_tempdir
from ..util import make_tempdir
@pytest.mark.parametrize(
@ -88,12 +88,9 @@ def test_issue242(en_tokenizer):
doc.ents += tuple(matches)
def test_issue309(en_tokenizer):
def test_issue309(en_vocab):
"""Test Issue #309: SBD fails on empty string"""
tokens = en_tokenizer(" ")
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
)
doc = Doc(en_vocab, words=[" "], heads=[0], deps=["ROOT"])
assert len(doc) == 1
sents = list(doc.sents)
assert len(sents) == 1

View File

@ -14,7 +14,7 @@ from spacy.tokens import Doc, Span, Token
from spacy.attrs import HEAD, DEP
from spacy.matcher import Matcher
from ..util import make_tempdir, get_doc
from ..util import make_tempdir
def test_issue1506():
@ -197,32 +197,21 @@ def test_issue1807():
def test_issue1834():
"""Test that sentence boundaries & parse/tag flags are not lost
during serialization."""
string = "This is a first sentence . And another one"
words = string.split()
doc = get_doc(Vocab(), words=words)
words = ["This", "is", "a", "first", "sentence", ".", "And", "another", "one"]
doc = Doc(Vocab(), words=words)
doc[6].is_sent_start = True
new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes())
assert new_doc[6].sent_start
assert not new_doc.has_annotation("DEP")
assert not new_doc.has_annotation("TAG")
doc = get_doc(
doc = Doc(
Vocab(),
words=words,
tags=["TAG"] * len(words),
heads=[0, -1, -2, -3, -4, -5, 0, -1, -2],
heads=[0, 0, 0, 0, 0, 0, 6, 6, 6],
deps=["dep"] * len(words),
)
print(
doc.has_annotation("DEP"),
[t.head.i for t in doc],
[t.is_sent_start for t in doc],
)
new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes())
print(
new_doc.has_annotation("DEP"),
[t.head.i for t in new_doc],
[t.is_sent_start for t in new_doc],
)
assert new_doc[6].sent_start
assert new_doc.has_annotation("DEP")
assert new_doc.has_annotation("TAG")

View File

@ -7,7 +7,7 @@ from spacy.training import iob_to_biluo
from spacy.lang.it import Italian
from spacy.lang.en import English
from ..util import add_vecs_to_vocab, get_doc
from ..util import add_vecs_to_vocab
@pytest.mark.skip(
@ -69,9 +69,10 @@ def test_issue2219(en_vocab):
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
def test_issue2361(de_tokenizer):
def test_issue2361(de_vocab):
chars = ("&lt;", "&gt;", "&amp;", "&quot;")
doc = de_tokenizer('< > & " ')
words = ["<", ">", "&", '"']
doc = Doc(de_vocab, words=words, deps=["dep"] * len(words))
html = render(doc)
for char in chars:
assert char in html
@ -105,7 +106,7 @@ def test_issue2385_biluo(tags):
def test_issue2396(en_vocab):
words = ["She", "created", "a", "test", "for", "spacy"]
heads = [1, 0, 1, -2, -1, -1]
heads = [1, 1, 3, 1, 3, 4]
deps = ["dep"] * len(heads)
matrix = numpy.array(
[
@ -118,7 +119,7 @@ def test_issue2396(en_vocab):
],
dtype=numpy.int32,
)
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
span = doc[:]
assert (doc.get_lca_matrix() == matrix).all()
assert (span.get_lca_matrix() == matrix).all()

View File

@ -12,8 +12,6 @@ from spacy.compat import pickle
import numpy
import random
from ..util import get_doc
def test_issue2564():
"""Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe."""
@ -117,12 +115,14 @@ def test_issue2754(en_tokenizer):
def test_issue2772(en_vocab):
"""Test that deprojectivization doesn't mess up sentence boundaries."""
words = "When we write or communicate virtually , we can hide our true feelings .".split()
# fmt: off
words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."]
# fmt: on
# A tree with a non-projective (i.e. crossing) arc
# The arcs (0, 4) and (2, 9) cross.
heads = [4, 1, 7, -1, -2, -1, 3, 2, 1, 0, 2, 1, -3, -4]
heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9]
deps = ["dep"] * len(heads)
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
assert doc[1].is_sent_start is False

View File

@ -10,10 +10,8 @@ from spacy.vocab import Vocab
from spacy.attrs import ENT_IOB, ENT_TYPE
from spacy.compat import pickle
from spacy import displacy
import numpy
from spacy.vectors import Vectors
from ..util import get_doc
import numpy
def test_issue3002():
@ -47,7 +45,7 @@ def test_issue3009(en_vocab):
words = ["also", "has", "to", "do", "with"]
tags = ["RB", "VBZ", "TO", "VB", "IN"]
pos = ["ADV", "VERB", "ADP", "VERB", "ADP"]
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos)
doc = Doc(en_vocab, words=words, tags=tags, pos=pos)
matcher = Matcher(en_vocab)
for i, pattern in enumerate(patterns):
matcher.add(str(i), [pattern])
@ -61,19 +59,15 @@ def test_issue3012(en_vocab):
words = ["This", "is", "10", "%", "."]
tags = ["DT", "VBZ", "CD", "NN", "."]
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
ents = [(2, 4, "PERCENT")]
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
ents = [("PERCENT", 2, 4)]
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
assert doc.has_annotation("TAG")
expected = ("10", "NUM", "CD", "PERCENT")
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
header = [ENT_IOB, ENT_TYPE]
ent_array = doc.to_array(header)
doc.from_array(header, ent_array)
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
# Serializing then deserializing
doc_bytes = doc.to_bytes()
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
@ -85,12 +79,8 @@ def test_issue3199():
is available. To make this test future-proof, we're constructing a Doc
with a new Vocab here and a parse tree to make sure the noun chunks run.
"""
doc = get_doc(
Vocab(),
words=["This", "is", "a", "sentence"],
heads=[0, -1, -2, -3],
deps=["dep"] * 4,
)
words = ["This", "is", "a", "sentence"]
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
assert list(doc[0:3].noun_chunks) == []
@ -147,9 +137,9 @@ def test_issue3288(en_vocab):
"""Test that retokenization works correctly via displaCy when punctuation
is merged onto the preceeding token and tensor is resized."""
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
heads = [1, 0, -1, 1, 0, 1, -2, -3]
heads = [1, 1, 1, 4, 4, 6, 4, 4]
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
displacy.render(doc)

View File

@ -20,7 +20,7 @@ import spacy
import srsly
import numpy
from ..util import make_tempdir, get_doc
from ..util import make_tempdir
@pytest.mark.parametrize("word", ["don't", "dont", "I'd", "Id"])
@ -355,7 +355,7 @@ def test_issue3882(en_vocab):
"""Test that displaCy doesn't serialize the doc.user_data when making a
copy of the Doc.
"""
doc = Doc(en_vocab, words=["Hello", "world"])
doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"])
doc.user_data["test"] = set()
parse_deps(doc)
@ -398,10 +398,10 @@ def test_issue3962(en_vocab):
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
# fmt: off
words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."]
heads = [1, 6, -1, -1, 3, 2, 1, 0, 1, -2, -3]
heads = [1, 7, 1, 2, 7, 7, 7, 7, 9, 7, 7]
deps = ["nsubj", "ccomp", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"]
# fmt: on
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
span2 = doc[1:5] # "jests at scars ,"
doc2 = span2.as_doc()
doc2_json = doc2.to_json()
@ -436,10 +436,10 @@ def test_issue3962_long(en_vocab):
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
# fmt: off
words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."]
heads = [1, 0, -1, -1, -3, 2, 1, 0, 1, -2, -3]
heads = [1, 1, 1, 2, 1, 7, 7, 7, 9, 7, 7]
deps = ["nsubj", "ROOT", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"]
# fmt: on
two_sent_doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
two_sent_doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
span2 = two_sent_doc[1:7] # "jests at scars. They never"
doc2 = span2.as_doc()
doc2_json = doc2.to_json()

View File

@ -0,0 +1,138 @@
import numpy
from spacy.tokens import Doc, DocBin
from spacy.attrs import DEP, POS, TAG
from spacy.lang.en import English
from spacy.language import Language
from spacy.lang.en.syntax_iterators import noun_chunks
from spacy.vocab import Vocab
import spacy
import pytest
from ...util import make_tempdir
def test_issue5048(en_vocab):
words = ["This", "is", "a", "sentence"]
pos_s = ["DET", "VERB", "DET", "NOUN"]
spaces = [" ", " ", " ", ""]
deps_s = ["dep", "adj", "nn", "atm"]
tags_s = ["DT", "VBZ", "DT", "NN"]
strings = en_vocab.strings
for w in words:
strings.add(w)
deps = [strings.add(d) for d in deps_s]
pos = [strings.add(p) for p in pos_s]
tags = [strings.add(t) for t in tags_s]
attrs = [POS, DEP, TAG]
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
doc = Doc(en_vocab, words=words, spaces=spaces)
doc.from_array(attrs, array)
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
assert v1 == v2
def test_issue5082():
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
nlp = English()
vocab = nlp.vocab
array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32)
array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32)
array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32)
array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32)
array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32)
vocab.set_vector("I", array1)
vocab.set_vector("like", array2)
vocab.set_vector("David", array3)
vocab.set_vector("Bowie", array4)
text = "I like David Bowie"
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
parsed_vectors_1 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_1) == 4
numpy.testing.assert_array_equal(parsed_vectors_1[0], array1)
numpy.testing.assert_array_equal(parsed_vectors_1[1], array2)
numpy.testing.assert_array_equal(parsed_vectors_1[2], array3)
numpy.testing.assert_array_equal(parsed_vectors_1[3], array4)
nlp.add_pipe("merge_entities")
parsed_vectors_2 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_2) == 3
numpy.testing.assert_array_equal(parsed_vectors_2[0], array1)
numpy.testing.assert_array_equal(parsed_vectors_2[1], array2)
numpy.testing.assert_array_equal(parsed_vectors_2[2], array34)
def test_issue5137():
@Language.factory("my_component")
class MyComponent:
def __init__(self, nlp, name="my_component", categories="all_categories"):
self.nlp = nlp
self.categories = categories
self.name = name
def __call__(self, doc):
pass
def to_disk(self, path, **kwargs):
pass
def from_disk(self, path, **cfg):
pass
nlp = English()
my_component = nlp.add_pipe("my_component")
assert my_component.categories == "all_categories"
with make_tempdir() as tmpdir:
nlp.to_disk(tmpdir)
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
nlp2 = spacy.load(tmpdir, config=overrides)
assert nlp2.get_pipe("my_component").categories == "my_categories"
def test_issue5141(en_vocab):
""" Ensure an empty DocBin does not crash on serialization """
doc_bin = DocBin(attrs=["DEP", "HEAD"])
assert list(doc_bin.get_docs(en_vocab)) == []
doc_bin_bytes = doc_bin.to_bytes()
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
assert list(doc_bin_2.get_docs(en_vocab)) == []
def test_issue5152():
# Test that the comparison between a Span and a Token, goes well
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
nlp = English()
text = nlp("Talk about being boring!")
text_var = nlp("Talk of being boring!")
y = nlp("Let")
span = text[0:3] # Talk about being
span_2 = text[0:3] # Talk about being
span_3 = text_var[0:3] # Talk of being
token = y[0] # Let
with pytest.warns(UserWarning):
assert span.similarity(token) == 0.0
assert span.similarity(span_2) == 1.0
with pytest.warns(UserWarning):
assert span_2.similarity(span_3) < 1.0
def test_issue5458():
# Test that the noun chuncker does not generate overlapping spans
# fmt: off
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
vocab = Vocab(strings=words)
deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0]
# fmt: on
en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps)
en_doc.noun_chunks_iterator = noun_chunks
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
nlp = English()
merge_nps = nlp.create_pipe("merge_noun_chunks")
merge_nps(en_doc)

View File

@ -1,32 +0,0 @@
import numpy
from spacy.tokens import Doc
from spacy.attrs import DEP, POS, TAG
from ..util import get_doc
def test_issue5048(en_vocab):
words = ["This", "is", "a", "sentence"]
pos_s = ["DET", "VERB", "DET", "NOUN"]
spaces = [" ", " ", " ", ""]
deps_s = ["dep", "adj", "nn", "atm"]
tags_s = ["DT", "VBZ", "DT", "NN"]
strings = en_vocab.strings
for w in words:
strings.add(w)
deps = [strings.add(d) for d in deps_s]
pos = [strings.add(p) for p in pos_s]
tags = [strings.add(t) for t in tags_s]
attrs = [POS, DEP, TAG]
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
doc = Doc(en_vocab, words=words, spaces=spaces)
doc.from_array(attrs, array)
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
doc2 = get_doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
assert v1 == v2

View File

@ -1,37 +0,0 @@
import numpy as np
from spacy.lang.en import English
def test_issue5082():
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
nlp = English()
vocab = nlp.vocab
array1 = np.asarray([0.1, 0.5, 0.8], dtype=np.float32)
array2 = np.asarray([-0.2, -0.6, -0.9], dtype=np.float32)
array3 = np.asarray([0.3, -0.1, 0.7], dtype=np.float32)
array4 = np.asarray([0.5, 0, 0.3], dtype=np.float32)
array34 = np.asarray([0.4, -0.05, 0.5], dtype=np.float32)
vocab.set_vector("I", array1)
vocab.set_vector("like", array2)
vocab.set_vector("David", array3)
vocab.set_vector("Bowie", array4)
text = "I like David Bowie"
patterns = [
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
parsed_vectors_1 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_1) == 4
np.testing.assert_array_equal(parsed_vectors_1[0], array1)
np.testing.assert_array_equal(parsed_vectors_1[1], array2)
np.testing.assert_array_equal(parsed_vectors_1[2], array3)
np.testing.assert_array_equal(parsed_vectors_1[3], array4)
nlp.add_pipe("merge_entities")
parsed_vectors_2 = [t.vector for t in nlp(text)]
assert len(parsed_vectors_2) == 3
np.testing.assert_array_equal(parsed_vectors_2[0], array1)
np.testing.assert_array_equal(parsed_vectors_2[1], array2)
np.testing.assert_array_equal(parsed_vectors_2[2], array34)

View File

@ -1,32 +0,0 @@
import spacy
from spacy.language import Language
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
def test_issue5137():
@Language.factory("my_component")
class MyComponent:
def __init__(self, nlp, name="my_component", categories="all_categories"):
self.nlp = nlp
self.categories = categories
self.name = name
def __call__(self, doc):
pass
def to_disk(self, path, **kwargs):
pass
def from_disk(self, path, **cfg):
pass
nlp = English()
my_component = nlp.add_pipe("my_component")
assert my_component.categories == "all_categories"
with make_tempdir() as tmpdir:
nlp.to_disk(tmpdir)
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
nlp2 = spacy.load(tmpdir, config=overrides)
assert nlp2.get_pipe("my_component").categories == "my_categories"

View File

@ -1,11 +0,0 @@
from spacy.tokens import DocBin
def test_issue5141(en_vocab):
""" Ensure an empty DocBin does not crash on serialization """
doc_bin = DocBin(attrs=["DEP", "HEAD"])
assert list(doc_bin.get_docs(en_vocab)) == []
doc_bin_bytes = doc_bin.to_bytes()
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
assert list(doc_bin_2.get_docs(en_vocab)) == []

View File

@ -1,20 +0,0 @@
from spacy.lang.en import English
import pytest
def test_issue5152():
# Test that the comparison between a Span and a Token, goes well
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
nlp = English()
text = nlp("Talk about being boring!")
text_var = nlp("Talk of being boring!")
y = nlp("Let")
span = text[0:3] # Talk about being
span_2 = text[0:3] # Talk about being
span_3 = text_var[0:3] # Talk of being
token = y[0] # Let
with pytest.warns(UserWarning):
assert span.similarity(token) == 0.0
assert span.similarity(span_2) == 1.0
with pytest.warns(UserWarning):
assert span_2.similarity(span_3) < 1.0

View File

@ -1,23 +0,0 @@
from spacy.lang.en import English
from spacy.lang.en.syntax_iterators import noun_chunks
from spacy.tests.util import get_doc
from spacy.vocab import Vocab
def test_issue5458():
# Test that the noun chuncker does not generate overlapping spans
# fmt: off
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
vocab = Vocab(strings=words)
dependencies = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
pos_tags = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
heads = [0, 1, -2, 6, 2, 1, -4, -1, -1, -2, -10]
# fmt: on
en_doc = get_doc(vocab, words, pos_tags, heads, dependencies)
en_doc.noun_chunks_iterator = noun_chunks
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
nlp = English()
merge_nps = nlp.create_pipe("merge_noun_chunks")
merge_nps(en_doc)

View File

@ -1,5 +1,6 @@
from spacy.lang.en import English
from spacy.pipeline import merge_entities
import pytest
def test_issue5918():
@ -22,6 +23,7 @@ def test_issue5918():
assert len(doc.ents) == 3
# make it so that the third span's head is within the entity (ent_iob=I)
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
doc[29].head = doc[33]
with pytest.warns(UserWarning):
doc[29].head = doc[33]
doc = merge_entities(doc)
assert len(doc.ents) == 3

View File

@ -1,15 +1,16 @@
import pytest
from click import NoSuchOption
from spacy.training import docs_to_json, biluo_tags_from_offsets
from spacy.training.converters import iob2docs, conll_ner2docs, conllu2docs
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
from spacy.cli.init_config import init_config, RECOMMENDATIONS
from spacy.cli._util import validate_project_commands, parse_config_overrides
from spacy.cli._util import load_project_config, substitute_project_variables
from spacy.cli._util import string_to_list
from thinc.config import ConfigValidationError
from spacy.cli._util import string_to_list, OVERRIDES_ENV_VAR
from spacy.cli.debug_config import check_section_refs
from thinc.config import ConfigValidationError, Config
import srsly
import os
from .util import make_tempdir
@ -341,6 +342,24 @@ def test_parse_config_overrides_invalid_2(args):
parse_config_overrides(args)
def test_parse_cli_overrides():
os.environ[OVERRIDES_ENV_VAR] = "--x.foo bar --x.bar=12 --x.baz false --y.foo=hello"
result = parse_config_overrides([])
assert len(result) == 4
assert result["x.foo"] == "bar"
assert result["x.bar"] == 12
assert result["x.baz"] is False
assert result["y.foo"] == "hello"
os.environ[OVERRIDES_ENV_VAR] = "--x"
assert parse_config_overrides([], env_var=None) == {}
with pytest.raises(SystemExit):
parse_config_overrides([])
os.environ[OVERRIDES_ENV_VAR] = "hello world"
with pytest.raises(SystemExit):
parse_config_overrides([])
del os.environ[OVERRIDES_ENV_VAR]
@pytest.mark.parametrize("lang", ["en", "nl"])
@pytest.mark.parametrize(
"pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]]
@ -395,3 +414,15 @@ def test_string_to_list(value):
def test_string_to_list_intify(value):
assert string_to_list(value, intify=False) == ["1", "2", "3"]
assert string_to_list(value, intify=True) == [1, 2, 3]
def test_check_section_refs():
config = {"a": {"b": {"c": "a.d.e"}, "d": {"e": 1}}, "f": {"g": "d.f"}}
config = Config(config)
# Valid section reference
check_section_refs(config, ["a.b.c"])
# Section that doesn't exist in this config
check_section_refs(config, ["x.y.z"])
# Invalid section reference
with pytest.raises(ConfigValidationError):
check_section_refs(config, ["a.b.c", "f.g"])

View File

@ -1,15 +1,13 @@
import pytest
from spacy import displacy
from spacy.displacy.render import DependencyRenderer, EntityRenderer
from spacy.tokens import Span
from spacy.tokens import Span, Doc
from spacy.lang.fa import Persian
from .util import get_doc
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
@ -20,11 +18,11 @@ def test_displacy_parse_ents(en_vocab):
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 0, 1, -2]
heads = [1, 1, 3, 1]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
@ -53,7 +51,7 @@ def test_displacy_invalid_arcs():
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
@ -70,9 +68,9 @@ def test_displacy_rtl():
# These are (likely) wrong, but it's just for testing
pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map
deps = ["foo", "bar", "foo", "baz"]
heads = [1, 0, 1, -2]
heads = [1, 0, 3, 1]
nlp = Persian()
doc = get_doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
doc.ents = [Span(doc, 1, 3, label="TEST")]
html = displacy.render(doc, page=True, style="dep")
assert "direction: rtl" in html
@ -90,7 +88,7 @@ def test_displacy_render_wrapper(en_vocab):
return "TEST" + html + "TEST"
displacy.set_render_wrapper(wrapper)
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc, style="ent")
assert html.startswith("TEST<div")

View File

@ -5,7 +5,6 @@ from spacy.training import Example
from spacy.training.iob_utils import biluo_tags_from_offsets
from spacy.scorer import Scorer, ROCAUCScore
from spacy.scorer import _roc_auc_score, _roc_curve
from .util import get_doc
from spacy.lang.en import English
from spacy.tokens import Doc
@ -137,11 +136,8 @@ def test_las_per_type(en_vocab):
scorer = Scorer()
examples = []
for input_, annot in test_las_apple:
doc = get_doc(
en_vocab,
words=input_.split(" "),
heads=([h - i for i, h in enumerate(annot["heads"])]),
deps=annot["deps"],
doc = Doc(
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"],
)
gold = {"heads": annot["heads"], "deps": annot["deps"]}
example = Example.from_dict(doc, gold)
@ -161,11 +157,8 @@ def test_las_per_type(en_vocab):
scorer = Scorer()
examples = []
for input_, annot in test_las_apple:
doc = get_doc(
en_vocab,
words=input_.split(" "),
heads=([h - i for i, h in enumerate(annot["heads"])]),
deps=annot["deps"],
doc = Doc(
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"],
)
gold = {"heads": annot["heads"], "deps": annot["deps"]}
doc[0].dep_ = "compound"
@ -188,10 +181,10 @@ def test_ner_per_type(en_vocab):
scorer = Scorer()
examples = []
for input_, annot in test_ner_cardinal:
doc = get_doc(
doc = Doc(
en_vocab,
words=input_.split(" "),
ents=[[0, 1, "CARDINAL"], [2, 3, "CARDINAL"]],
ents=[("CARDINAL", 0, 1), ("CARDINAL", 2, 3)],
)
entities = biluo_tags_from_offsets(doc, annot["entities"])
example = Example.from_dict(doc, {"entities": entities})
@ -213,10 +206,10 @@ def test_ner_per_type(en_vocab):
scorer = Scorer()
examples = []
for input_, annot in test_ner_apple:
doc = get_doc(
doc = Doc(
en_vocab,
words=input_.split(" "),
ents=[[0, 1, "ORG"], [5, 6, "GPE"], [6, 7, "ORG"]],
ents=[("ORG", 0, 1), ("GPE", 5, 6), ("ORG", 6, 7)],
)
entities = biluo_tags_from_offsets(doc, annot["entities"])
example = Example.from_dict(doc, {"entities": entities})

View File

@ -12,13 +12,14 @@ from thinc.api import compounding
import pytest
import srsly
from ..util import make_tempdir, get_doc
from ..util import make_tempdir
@pytest.fixture
def doc():
def doc(en_vocab):
nlp = English() # make sure we get a new vocab every time
# fmt: off
text = "Sarah's sister flew to Silicon Valley via London."
words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
@ -26,15 +27,12 @@ def doc():
"NounType=prop|Number=sing", "PunctType=peri"]
# head of '.' is intentionally nonprojective for testing
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
heads = [head - i for i, head in enumerate(heads)]
deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
ents = ((0, 2, "PERSON"), (5, 7, "LOC"), (8, 9, "GPE"))
ents = (("PERSON", 0, 2), ("LOC", 5, 7), ("GPE", 8, 9))
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
# fmt: on
nlp = English()
words = [t.text for t in nlp.make_doc(text)]
doc = get_doc(
doc = Doc(
nlp.vocab,
words=words,
tags=tags,
@ -212,41 +210,24 @@ def test_json2docs_no_ner(en_vocab):
def test_split_sentences(en_vocab):
# fmt: off
words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
doc = Doc(en_vocab, words=words)
gold_words = [
"I",
"flew",
"to",
"San",
"Francisco",
"Valley",
"had",
"loads",
"of",
"fun",
]
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
sent_starts = [True, False, False, False, False, False, True, False, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "I flew to San Francisco Valley "
assert split_examples[1].text == "had loads of fun "
# fmt: off
words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
doc = Doc(en_vocab, words=words)
gold_words = [
"I",
"flew",
"to",
"San Francisco",
"Valley",
"had",
"loads of",
"fun",
]
gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
sent_starts = [True, False, False, False, False, True, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
@ -479,7 +460,6 @@ def test_roundtrip_docs_to_docbin(doc):
heads = [t.head.i for t in doc]
cats = doc.cats
ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
# roundtrip to DocBin
with make_tempdir() as tmpdir:
# use a separate vocab to test that all labels are added
@ -600,7 +580,6 @@ def test_tuple_format_implicit():
def test_tuple_format_implicit_invalid():
"""Test that an error is thrown for an implicit invalid field"""
train_data = [
("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
(
@ -609,7 +588,6 @@ def test_tuple_format_implicit_invalid():
),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
]
with pytest.raises(KeyError):
_train_tuples(train_data)
@ -619,11 +597,9 @@ def _train_tuples(train_data):
ner = nlp.add_pipe("ner")
ner.add_label("ORG")
ner.add_label("LOC")
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.begin_training()
for i in range(5):
losses = {}
@ -639,17 +615,14 @@ def test_split_sents(merged_dict):
merged_dict,
)
assert example.text == "Hi there everyone It is just me"
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "Hi there everyone "
assert split_examples[1].text == "It is just me"
token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
assert token_annotation_1["SENT_START"] == [1, 0, 0]
token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]

View File

@ -2,11 +2,7 @@ import numpy
import tempfile
import contextlib
import srsly
from spacy import Errors
from spacy.tokens import Doc, Span
from spacy.attrs import POS, TAG, HEAD, DEP, LEMMA, MORPH
from spacy.tokens import Doc
from spacy.vocab import Vocab
from spacy.util import make_tempdir # noqa: F401
@ -18,74 +14,6 @@ def make_tempfile(mode="r"):
f.close()
def get_doc(
vocab,
words=[],
pos=None,
heads=None,
deps=None,
tags=None,
ents=None,
lemmas=None,
morphs=None,
):
"""Create Doc object from given vocab, words and annotations."""
if deps and not heads:
heads = [0] * len(deps)
headings = []
values = []
annotations = [pos, heads, deps, lemmas, tags, morphs]
possible_headings = [POS, HEAD, DEP, LEMMA, TAG, MORPH]
for a, annot in enumerate(annotations):
if annot is not None:
if len(annot) != len(words):
raise ValueError(Errors.E189)
headings.append(possible_headings[a])
if annot is not heads:
values.extend(annot)
for value in values:
vocab.strings.add(value)
doc = Doc(vocab, words=words)
# if there are any other annotations, set them
if headings:
attrs = doc.to_array(headings)
j = 0
for annot in annotations:
if annot:
if annot is heads:
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = heads[i]
else:
attrs[i, j] = heads[i]
elif annot is morphs:
for i in range(len(words)):
morph_key = vocab.morphology.add(morphs[i])
if attrs.ndim == 1:
attrs[i] = morph_key
else:
attrs[i, j] = morph_key
else:
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = doc.vocab.strings[annot[i]]
else:
attrs[i, j] = doc.vocab.strings[annot[i]]
j += 1
doc.from_array(headings, attrs)
# finally, set the entities
if ents:
doc.ents = [
Span(doc, start, end, label=doc.vocab.strings[label])
for start, end, label in ents
]
return doc
def get_batch(batch_size):
vocab = Vocab()
docs = []

View File

@ -170,17 +170,50 @@ cdef class Doc:
raise ValueError(Errors.E046.format(name=name))
return Underscore.doc_extensions.pop(name)
def __init__(self, Vocab vocab, words=None, spaces=None, user_data=None):
def __init__(
self,
Vocab vocab,
words=None,
spaces=None,
*,
user_data=None,
tags=None,
pos=None,
morphs=None,
lemmas=None,
heads=None,
deps=None,
sent_starts=None,
ents=None,
):
"""Create a Doc object.
vocab (Vocab): A vocabulary object, which must match any models you
want to use (e.g. tokenizer, parser, entity recognizer).
words (list or None): A list of unicode strings to add to the document
words (Optional[List[str]]): A list of unicode strings to add to the document
as words. If `None`, defaults to empty list.
spaces (list or None): A list of boolean values, of the same length as
spaces (Optional[List[bool]]): A list of boolean values, of the same length as
words. True means that the word is followed by a space, False means
it is not. If `None`, defaults to `[True]*len(words)`
user_data (dict or None): Optional extra data to attach to the Doc.
tags (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.tag. Defaults to None.
pos (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.pos. Defaults to None.
morphs (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.morph. Defaults to None.
lemmas (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.lemma. Defaults to None.
heads (Optional[List[int]]): A list of values, of the same length as
words, to assign as heads. Head indices are the position of the
head in the doc. Defaults to None.
deps (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.dep. Defaults to None.
sent_starts (Optional[List[Union[bool, None]]]): A list of values, of
the same length as words, to assign as token.is_sent_start. Will be
overridden by heads if heads is provided. Defaults to None.
ents (Optional[List[Tuple[Union[str, int], int, int]]]): A list of
(label, start, end) tuples to assign as doc.ents. Defaults to None.
DOCS: https://nightly.spacy.io/api/doc#init
"""
@ -229,6 +262,63 @@ cdef class Doc:
lexeme = self.vocab.get_by_orth(self.mem, word)
self.push_back(lexeme, has_space)
if heads is not None:
heads = [head - i for i, head in enumerate(heads)]
if deps and not heads:
heads = [0] * len(deps)
if sent_starts is not None:
for i in range(len(sent_starts)):
if sent_starts[i] is True:
sent_starts[i] = 1
elif sent_starts[i] is False:
sent_starts[i] = -1
elif sent_starts[i] is None or sent_starts[i] not in [-1, 0, 1]:
sent_starts[i] = 0
headings = []
values = []
annotations = [pos, heads, deps, lemmas, tags, morphs, sent_starts]
possible_headings = [POS, HEAD, DEP, LEMMA, TAG, MORPH, SENT_START]
for a, annot in enumerate(annotations):
if annot is not None:
if len(annot) != len(words):
raise ValueError(Errors.E189)
headings.append(possible_headings[a])
if annot is not heads and annot is not sent_starts:
values.extend(annot)
for value in values:
self.vocab.strings.add(value)
# if there are any other annotations, set them
if headings:
attrs = self.to_array(headings)
j = 0
for annot in annotations:
if annot:
if annot is heads or annot is sent_starts:
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = annot[i]
else:
attrs[i, j] = annot[i]
elif annot is morphs:
for i in range(len(words)):
morph_key = vocab.morphology.add(morphs[i])
if attrs.ndim == 1:
attrs[i] = morph_key
else:
attrs[i, j] = morph_key
else:
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = self.vocab.strings[annot[i]]
else:
attrs[i, j] = self.vocab.strings[annot[i]]
j += 1
self.from_array(headings, attrs)
if ents is not None:
self.ents = ents
@property
def _(self):
"""Custom extension attributes registered via `set_extension`."""
@ -585,11 +675,14 @@ cdef class Doc:
tokens_in_ents = {}
cdef attr_t entity_type
cdef attr_t kb_id
cdef int ent_start, ent_end
cdef int ent_start, ent_end, token_index
for ent_info in ents:
entity_type, kb_id, ent_start, ent_end = get_entity_info(ent_info)
entity_type_, kb_id, ent_start, ent_end = get_entity_info(ent_info)
if isinstance(entity_type_, str):
self.vocab.strings.add(entity_type_)
entity_type = self.vocab.strings.as_int(entity_type_)
for token_index in range(ent_start, ent_end):
if token_index in tokens_in_ents.keys():
if token_index in tokens_in_ents:
raise ValueError(Errors.E103.format(
span1=(tokens_in_ents[token_index][0],
tokens_in_ents[token_index][1],

View File

@ -199,13 +199,17 @@ def doc_from_conllu_sentence(
heads.append(head)
deps.append(dep)
doc = Doc(vocab, words=words, spaces=spaces)
doc = Doc(
vocab,
words=words,
spaces=spaces,
tags=tags,
pos=poses,
deps=deps,
lemmas=lemmas,
heads=heads,
)
for i in range(len(doc)):
doc[i].tag_ = tags[i]
doc[i].pos_ = poses[i]
doc[i].dep_ = deps[i]
doc[i].lemma_ = lemmas[i]
doc[i].head = doc[heads[i]]
doc[i]._.merged_orth = words[i]
doc[i]._.merged_morph = morphs[i]
doc[i]._.merged_lemma = lemmas[i]
@ -232,14 +236,17 @@ def doc_from_conllu_sentence(
heads.append(t.head.i)
deps.append(t.dep_)
doc_x = Doc(vocab, words=words, spaces=spaces)
for i in range(len(doc)):
doc_x[i].tag_ = tags[i]
doc_x[i].morph_ = morphs[i]
doc_x[i].lemma_ = lemmas[i]
doc_x[i].pos_ = poses[i]
doc_x[i].dep_ = deps[i]
doc_x[i].head = doc_x[heads[i]]
doc_x = Doc(
vocab,
words=words,
spaces=spaces,
tags=tags,
morphs=morphs,
lemmas=lemmas,
pos=poses,
deps=deps,
heads=heads,
)
doc_x.ents = [Span(doc_x, ent.start, ent.end, label=ent.label) for ent in doc.ents]
return doc_x

View File

@ -221,7 +221,7 @@ cdef class Example:
def split_sents(self):
""" Split the token annotations into multiple Examples based on
sent_starts and return a list of the new Examples"""
if not self.reference.is_sentenced:
if not self.reference.has_annotation("SENT_START"):
return [self]
align = self.alignment.y2x

View File

@ -25,16 +25,27 @@ Construct a `Doc` object. The most common way to get a `Doc` object is via the
>
> # Construction 2
> from spacy.tokens import Doc
>
> words = ["hello", "world", "!"]
> spaces = [True, False, False]
> doc = Doc(nlp.vocab, words=words, spaces=spaces)
> ```
| Name | Description |
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
| `words` | A list of strings to add to the container. ~~Optional[List[str]]~~ |
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
| Name | Description |
| ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
| `words` | A list of strings to add to the container. ~~Optional[List[str]]~~ |
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
| _keyword-only_ | |
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
| `tags` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `pos` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `morphs` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `lemmas` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.lemma` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `heads` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as the head for each word. Head indices are the absolute position of the head in the `Doc`. Defaults to `None`. ~~Optional[List[int]]~~ |
| `deps` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.dep` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `sent_starts` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as `token.is_sent_start`. Will be overridden by heads if `heads` is provided. Defaults to `None`. ~~Optional[List[Union[bool, None]]~~ |
| `ents` <Tag variant="new">3</Tag> | A list of `(label, start, end)` tuples to assign as `doc.ents`. Note that the `start` and `end` indices here refer to the token indices. Defaults to `None`. ~~Optional[List[Tuple[Union[str, int], int, int]]]~~ |
## Doc.\_\_getitem\_\_ {#getitem tag="method"}
@ -187,8 +198,8 @@ Remove a previously registered extension.
## Doc.char_span {#char_span tag="method" new="2"}
Create a `Span` object from the slice `doc.text[start_idx:end_idx]`. Returns
`None` if the character indices don't map to a valid span using the default mode
`"strict".
`None` if the character indices don't map to a valid span using the default
alignment mode `"strict".
> #### Example
>
@ -198,15 +209,15 @@ Create a `Span` object from the slice `doc.text[start_idx:end_idx]`. Returns
> assert span.text == "New York"
> ```
| Name | Description |
| ------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `start` | The index of the first character of the span. ~~int~~ |
| `end` | The index of the last character after the span. ~int~~ |
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"inside"` (span of all tokens completely within the character span), `"outside"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `start` | The index of the first character of the span. ~~int~~ |
| `end` | The index of the last character after the span. ~int~~ |
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `alignment_mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
## Doc.similarity {#similarity tag="method" model="vectors"}
@ -271,6 +282,19 @@ ancestor is found, e.g. if span excludes a necessary ancestor.
Check whether the doc contains annotation on a token attribute.
<Infobox title="Changed in v3.0" variant="warning">
This method replaces the previous boolean attributes like `Doc.is_tagged`,
`Doc.is_parsed` or `Doc.is_sentenced`.
```diff
doc = nlp("This is a text")
- assert doc.is_parsed
+ assert doc.has_annotation("DEP")
```
</Infobox>
| Name | Description |
| ------------------ | --------------------------------------------------------------------------------------------------- |
| `attr` | The attribute string name or int ID. ~~Union[int, str]~~ |

View File

@ -187,7 +187,7 @@ more efficient than processing texts one-by-one.
> ```python
> texts = ["One document.", "...", "Lots of documents"]
> for doc in nlp.pipe(texts, batch_size=50):
> assert doc.is_parsed
> assert doc.has_annotation("DEP")
> ```
| Name | Description |

View File

@ -65,22 +65,22 @@ Matchers help you find and extract information from [`Doc`](/api/doc) objects
based on match patterns describing the sequences you're looking for. A matcher
operates on a `Doc` and gives you access to the matched tokens **in context**.
| Name | Description |
| --------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`Matcher`](/api/matcher) | Match sequences of tokens, based on pattern rules, similar to regular expressions. |
| [`PhraseMatcher`](/api/phrasematcher) | Match sequences of tokens based on phrases. |
| [`DependencyMatcher`](/api/dependencymatcher) | Match sequences of tokens based on dependency trees using the [Semgrex syntax](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html). |
| Name | Description |
| --------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`Matcher`](/api/matcher) | Match sequences of tokens, based on pattern rules, similar to regular expressions. |
| [`PhraseMatcher`](/api/phrasematcher) | Match sequences of tokens based on phrases. |
| [`DependencyMatcher`](/api/dependencymatcher) | Match sequences of tokens based on dependency trees using [Semgrex operators](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html). |
### Other classes {#architecture-other}
| Name | Description |
| ------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------- |
| [`Vocab`](/api/vocab) | The shared vocabulary that stores strings and gives you access to [`Lexeme`](/api/lexeme) objects. |
| [`StringStore`](/api/stringstore) | Map strings to and from hash values. |
| [`Vectors`](/api/vectors) | Container class for vector data keyed by string. |
| [`Lookups`](/api/lookups) | Container for convenient access to large lookup tables and dictionaries. |
| [`Morphology`](/api/morphology) | Assign linguistic features like lemmas, noun case, verb tense etc. based on the word and its part-of-speech tag. |
| [`MorphAnalysis`](/api/morphology#morphanalysis) | A morphological analysis. |
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. |
| [`Scorer`](/api/scorer) | Compute evaluation scores. |
| [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. |
| Name | Description |
| ------------------------------------------------ | -------------------------------------------------------------------------------------------------- |
| [`Vocab`](/api/vocab) | The shared vocabulary that stores strings and gives you access to [`Lexeme`](/api/lexeme) objects. |
| [`StringStore`](/api/stringstore) | Map strings to and from hash values. |
| [`Vectors`](/api/vectors) | Container class for vector data keyed by string. |
| [`Lookups`](/api/lookups) | Container for convenient access to large lookup tables and dictionaries. |
| [`Morphology`](/api/morphology) | Store morphological analyses and map them to and from hash values. |
| [`MorphAnalysis`](/api/morphology#morphanalysis) | A morphological analysis. |
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. |
| [`Scorer`](/api/scorer) | Compute evaluation scores. |
| [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. |

View File

@ -205,9 +205,10 @@ acquired from [WordNet](https://wordnet.princeton.edu/).
spaCy features a fast and accurate syntactic dependency parser, and has a rich
API for navigating the tree. The parser also powers the sentence boundary
detection, and lets you iterate over base noun phrases, or "chunks". You can
check whether a [`Doc`](/api/doc) object has been parsed with the
`doc.is_parsed` attribute, which returns a boolean value. If this attribute is
`False`, the default sentence iterator will raise an exception.
check whether a [`Doc`](/api/doc) object has been parsed by calling
`doc.has_annotation("DEP")`, which checks whether the attribute `Token.dep` has
been set returns a boolean value. If the result is `False`, the default sentence
iterator will raise an exception.
<Infobox title="Dependency label scheme" emoji="📖">
@ -1705,9 +1706,10 @@ and can still be overwritten by the parser.
<Infobox title="Important note" variant="warning">
To prevent inconsistent state, you can only set boundaries **before** a document
is parsed (and `doc.is_parsed` is `False`). To ensure that your component is
added in the right place, you can set `before='parser'` or `first=True` when
adding it to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
is parsed (and `doc.has_annotation("DEP")` is `False`). To ensure that your
component is added in the right place, you can set `before='parser'` or
`first=True` when adding it to the pipeline using
[`nlp.add_pipe`](/api/language#add_pipe).
</Infobox>

View File

@ -299,9 +299,10 @@ installed in the same environment that's it.
When you load a pipeline, spaCy will generally use its `config.cfg` to set up
the language class and construct the pipeline. The pipeline is specified as a
list of strings, e.g. `pipeline = ["tagger", "paser", "ner"]`. For each of those
strings, spaCy will call `nlp.add_pipe` and look up the name in all factories
defined by the decorators [`@Language.component`](/api/language#component) and
list of strings, e.g. `pipeline = ["tagger", "parser", "ner"]`. For each of
those strings, spaCy will call `nlp.add_pipe` and look up the name in all
factories defined by the decorators
[`@Language.component`](/api/language#component) and
[`@Language.factory`](/api/language#factory). This means that you have to import
your custom components _before_ loading the pipeline.

View File

@ -214,6 +214,24 @@ overrides. Overrides are added before [variables](#config-interpolation) are
resolved, by the way  so if you need to use a value in multiple places,
reference it across your config and override it on the CLI once.
> #### 💡 Tip: Verbose logging
>
> If you're using config overrides, you can set the `--verbose` flag on
> [`spacy train`](/api/cli#train) to make spaCy log more info, including which
> overrides were set via the CLI and environment variables.
#### Adding overrides via environment variables {#config-overrides-env}
Instead of defining the overrides as CLI arguments, you can also use the
`SPACY_CONFIG_OVERRIDES` environment variable using the same argument syntax.
This is especially useful if you're training models as part of an automated
process. Environment variables **take precedence** over CLI overrides and values
defined in the config file.
```cli
$ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.batch_size 128" ./your_script.sh
```
### Defining pipeline components {#config-components}
You typically train a [pipeline](/usage/processing-pipelines) of **one or more

View File

@ -530,6 +530,8 @@ Note that spaCy v3.0 now requires **Python 3.6+**.
[`PhraseMatcher.add`](/api/phrasematcher#add) now only accept a list of
patterns as the second argument (instead of a variable number of arguments).
The `on_match` callback becomes an optional keyword argument.
- The `Doc` flags like `Doc.is_parsed` or `Doc.is_tagged` have been replaced by
[`Doc.has_annotation`](/api/doc#has_annotation).
- The `spacy.gold` module has been renamed to
[`spacy.training`](%%GITHUB_SPACY/spacy/training).
- The `PRON_LEMMA` symbol and `-PRON-` as an indicator for pronoun lemmas has
@ -807,10 +809,11 @@ nlp = spacy.blank("en")
### Migrating Doc flags {#migrating-doc-flags}
The `Doc` flags `Doc.is_tagged`, `Doc.is_parsed`, `Doc.is_nered` and
`Doc.is_sentenced` are deprecated in v3 and replaced by
The [`Doc`](/api/doc) flags `Doc.is_tagged`, `Doc.is_parsed`, `Doc.is_nered` and
`Doc.is_sentenced` are deprecated in v3.0 and replaced by
[`Doc.has_annotation`](/api/doc#has_annotation) method, which refers to the
token attribute symbols (the same symbols used in `Matcher` patterns):
token attribute symbols (the same symbols used in [`Matcher`](/api/matcher)
patterns):
```diff
doc = nlp(text)

View File

@ -75,63 +75,64 @@
{
"label": "Containers",
"items": [
{ "text": "Language", "url": "/api/language" },
{ "text": "Doc", "url": "/api/doc" },
{ "text": "Token", "url": "/api/token" },
{ "text": "Span", "url": "/api/span" },
{ "text": "Lexeme", "url": "/api/lexeme" },
{ "text": "DocBin", "url": "/api/docbin" },
{ "text": "Example", "url": "/api/example" },
{ "text": "DocBin", "url": "/api/docbin" }
{ "text": "Language", "url": "/api/language" },
{ "text": "Lexeme", "url": "/api/lexeme" },
{ "text": "Span", "url": "/api/span" },
{ "text": "Token", "url": "/api/token" }
]
},
{
"label": "Pipeline",
"items": [
{ "text": "Tokenizer", "url": "/api/tokenizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" },
{ "text": "Transformer", "url": "/api/transformer" },
{ "text": "Lemmatizer", "url": "/api/lemmatizer" },
{ "text": "Morphologizer", "url": "/api/morphologizer" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "AttributeRuler", "url": "/api/attributeruler" },
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
{ "text": "EntityLinker", "url": "/api/entitylinker" },
{ "text": "EntityRecognizer", "url": "/api/entityrecognizer" },
{ "text": "EntityRuler", "url": "/api/entityruler" },
{ "text": "EntityLinker", "url": "/api/entitylinker" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "Lemmatizer", "url": "/api/lemmatizer" },
{ "text": "Morphologizer", "url": "/api/morphologizer" },
{ "text": "Pipe", "url": "/api/pipe" },
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Other Functions", "url": "/api/pipeline-functions" },
{ "text": "Pipe", "url": "/api/pipe" }
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" },
{ "text": "Tokenizer", "url": "/api/tokenizer" },
{ "text": "Transformer", "url": "/api/transformer" },
{ "text": "Other Functions", "url": "/api/pipeline-functions" }
]
},
{
"label": "Matchers",
"items": [
{ "text": "DependencyMatcher", "url": "/api/dependencymatcher" },
{ "text": "Matcher", "url": "/api/matcher" },
{ "text": "PhraseMatcher", "url": "/api/phrasematcher" },
{ "text": "DependencyMatcher", "url": "/api/dependencymatcher" }
{ "text": "PhraseMatcher", "url": "/api/phrasematcher" }
]
},
{
"label": "Other",
"items": [
{ "text": "Vocab", "url": "/api/vocab" },
{ "text": "Corpus", "url": "/api/corpus" },
{ "text": "KnowledgeBase", "url": "/api/kb" },
{ "text": "Lookups", "url": "/api/lookups" },
{ "text": "MorphAnalysis", "url": "/api/morphology#morphanalysis" },
{ "text": "Morphology", "url": "/api/morphology" },
{ "text": "Scorer", "url": "/api/scorer" },
{ "text": "StringStore", "url": "/api/stringstore" },
{ "text": "Vectors", "url": "/api/vectors" },
{ "text": "Lookups", "url": "/api/lookups" },
{ "text": "Morphology", "url": "/api/morphology" },
{ "text": "KnowledgeBase", "url": "/api/kb" },
{ "text": "Scorer", "url": "/api/scorer" },
{ "text": "Corpus", "url": "/api/corpus" }
{ "text": "Vocab", "url": "/api/vocab" }
]
},
{
"label": "Cython",
"items": [
{ "text": "Architecture", "url": "/api/cython" },
{ "text": "Structs", "url": "/api/cython-structs" },
{ "text": "Classes", "url": "/api/cython-classes" }
{ "text": "Classes", "url": "/api/cython-classes" },
{ "text": "Structs", "url": "/api/cython-structs" }
]
}
]