diff --git a/bin/parser/train.py b/bin/parser/train.py index 372c7932e..22e7875ec 100755 --- a/bin/parser/train.py +++ b/bin/parser/train.py @@ -79,10 +79,8 @@ def _merge_sents(sents): return [(m_deps, m_brackets)] -def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', - seed=0, gold_preproc=False, n_sents=0, corruption_level=0, - beam_width=1, verbose=False, - use_orig_arc_eager=False, pseudoprojective=False): +def train(Language, gold_tuples, model_dir, tagger_cfg, parser_cfg, entity_cfg, + n_iter=15, seed=0, gold_preproc=False, n_sents=0, corruption_level=0): dep_model_dir = path.join(model_dir, 'deps') ner_model_dir = path.join(model_dir, 'ner') pos_model_dir = path.join(model_dir, 'pos') @@ -96,24 +94,28 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', os.mkdir(ner_model_dir) os.mkdir(pos_model_dir) - if pseudoprojective: + if parser_cfg['pseudoprojective']: # preprocess training data here before ArcEager.get_labels() is called gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) - Config.write(dep_model_dir, 'config', features=feat_set, seed=seed, - labels=ArcEager.get_labels(gold_tuples), - beam_width=beam_width,projectivize=pseudoprojective) - Config.write(ner_model_dir, 'config', features='ner', seed=seed, - labels=BiluoPushDown.get_labels(gold_tuples), - beam_width=0) + parser_cfg['labels'] = ArcEager.get_labels(gold_tuples) + entity_cfg['labels'] = BiluoPushDown.get_labels(gold_tuples) + + with (dep_model_dir / 'config.json').open('w') as file_: + json.dump(file_, parser_config) + with (ner_model_dir / 'config.json').open('w') as file_: + json.dump(file_, entity_config) + with (pos_model_dir / 'config.json').open('w') as file_: + json.dump(file_, tagger_config) if n_sents > 0: gold_tuples = gold_tuples[:n_sents] - nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False) - nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates()) - nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager) - nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown) + nlp = Language( + data_dir=model_dir, + tagger=Tagger.blank(nlp.vocab, **tagger_cfg), + parser=Parser.blank(nlp.vocab, ArcEager, **parser_cfg), + entity=Parser.blank(nlp.vocab, BiluoPushDown, **entity_cfg)) print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %") for itn in range(n_iter): scorer = Scorer() @@ -219,15 +221,17 @@ def write_parses(Language, dev_loc, model_dir, out_loc): ) def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False, debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False, pseudoprojective=False): + parser_cfg = dict(locals()) + tagger_cfg = dict(locals()) + entity_cfg = dict(locals()) + lang = spacy.util.get_lang_class(language) if not eval_only: gold_train = list(read_json_file(train_loc)) - train(lang, gold_train, model_dir, - feat_set='basic' if not debug else 'debug', - gold_preproc=gold_preproc, n_sents=n_sents, - corruption_level=corruption_level, n_iter=n_iter, - verbose=verbose,pseudoprojective=pseudoprojective) + train(lang, gold_train, model_dir, tagger_cfg, parser_cfg, entity_cfg, + n_sents=n_sents, gold_preproc=gold_preproc, corruption_level=corruption_level, + n_iter=n_iter) if out_loc: write_parses(lang, dev_loc, model_dir, out_loc) scorer = evaluate(lang, list(read_json_file(dev_loc)),