mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Tok2Vec: extract-embed-encode (#5102)
* avoid changing original config * fix elif structure, batch with just int crashes otherwise * tok2vec example with doc2feats, encode and embed architectures * further clean up MultiHashEmbed * further generalize Tok2Vec to work with extract-embed-encode parts * avoid initializing the charembed layer with Docs (for now ?) * small fixes for bilstm config (still does not run) * rename to core layer * move new configs * walk model to set nI instead of using core ref * fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
This commit is contained in:
parent
c95ce96c44
commit
5847be6022
|
@ -62,4 +62,4 @@ width = 96
|
||||||
depth = 4
|
depth = 4
|
||||||
embed_size = 2000
|
embed_size = 2000
|
||||||
subword_features = true
|
subword_features = true
|
||||||
char_embed = false
|
maxout_pieces = 3
|
||||||
|
|
65
examples/experiments/tok2vec-ner/charembed_tok2vec.cfg
Normal file
65
examples/experiments/tok2vec-ner/charembed_tok2vec.cfg
Normal file
|
@ -0,0 +1,65 @@
|
||||||
|
[training]
|
||||||
|
use_gpu = -1
|
||||||
|
limit = 0
|
||||||
|
dropout = 0.2
|
||||||
|
patience = 10000
|
||||||
|
eval_frequency = 200
|
||||||
|
scores = ["ents_f"]
|
||||||
|
score_weights = {"ents_f": 1}
|
||||||
|
orth_variant_level = 0.0
|
||||||
|
gold_preproc = true
|
||||||
|
max_length = 0
|
||||||
|
batch_size = 25
|
||||||
|
|
||||||
|
[optimizer]
|
||||||
|
@optimizers = "Adam.v1"
|
||||||
|
learn_rate = 0.001
|
||||||
|
beta1 = 0.9
|
||||||
|
beta2 = 0.999
|
||||||
|
|
||||||
|
[nlp]
|
||||||
|
lang = "en"
|
||||||
|
vectors = null
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec]
|
||||||
|
factory = "tok2vec"
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model]
|
||||||
|
@architectures = "spacy.Tok2Vec.v1"
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.extract]
|
||||||
|
@architectures = "spacy.CharacterEmbed.v1"
|
||||||
|
width = 96
|
||||||
|
nM = 64
|
||||||
|
nC = 8
|
||||||
|
rows = 2000
|
||||||
|
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.extract.features]
|
||||||
|
@architectures = "spacy.Doc2Feats.v1"
|
||||||
|
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.embed]
|
||||||
|
@architectures = "spacy.LayerNormalizedMaxout.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
||||||
|
maxout_pieces = 4
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.encode]
|
||||||
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
||||||
|
window_size = 1
|
||||||
|
maxout_pieces = 2
|
||||||
|
depth = 2
|
||||||
|
|
||||||
|
[nlp.pipeline.ner]
|
||||||
|
factory = "ner"
|
||||||
|
|
||||||
|
[nlp.pipeline.ner.model]
|
||||||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||||||
|
nr_feature_tokens = 6
|
||||||
|
hidden_width = 64
|
||||||
|
maxout_pieces = 2
|
||||||
|
|
||||||
|
[nlp.pipeline.ner.model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2VecTensors.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
65
examples/experiments/tok2vec-ner/multihashembed_tok2vec.cfg
Normal file
65
examples/experiments/tok2vec-ner/multihashembed_tok2vec.cfg
Normal file
|
@ -0,0 +1,65 @@
|
||||||
|
[training]
|
||||||
|
use_gpu = -1
|
||||||
|
limit = 0
|
||||||
|
dropout = 0.2
|
||||||
|
patience = 10000
|
||||||
|
eval_frequency = 200
|
||||||
|
scores = ["ents_f"]
|
||||||
|
score_weights = {"ents_f": 1}
|
||||||
|
orth_variant_level = 0.0
|
||||||
|
gold_preproc = true
|
||||||
|
max_length = 0
|
||||||
|
batch_size = 25
|
||||||
|
|
||||||
|
[optimizer]
|
||||||
|
@optimizers = "Adam.v1"
|
||||||
|
learn_rate = 0.001
|
||||||
|
beta1 = 0.9
|
||||||
|
beta2 = 0.999
|
||||||
|
|
||||||
|
[nlp]
|
||||||
|
lang = "en"
|
||||||
|
vectors = null
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec]
|
||||||
|
factory = "tok2vec"
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model]
|
||||||
|
@architectures = "spacy.Tok2Vec.v1"
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.extract]
|
||||||
|
@architectures = "spacy.Doc2Feats.v1"
|
||||||
|
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.embed]
|
||||||
|
@architectures = "spacy.MultiHashEmbed.v1"
|
||||||
|
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
|
||||||
|
width = 96
|
||||||
|
rows = 2000
|
||||||
|
use_subwords = true
|
||||||
|
pretrained_vectors = null
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.embed.mix]
|
||||||
|
@architectures = "spacy.LayerNormalizedMaxout.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
||||||
|
maxout_pieces = 3
|
||||||
|
|
||||||
|
[nlp.pipeline.tok2vec.model.encode]
|
||||||
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
||||||
|
window_size = 1
|
||||||
|
maxout_pieces = 3
|
||||||
|
depth = 2
|
||||||
|
|
||||||
|
[nlp.pipeline.ner]
|
||||||
|
factory = "ner"
|
||||||
|
|
||||||
|
[nlp.pipeline.ner.model]
|
||||||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||||||
|
nr_feature_tokens = 6
|
||||||
|
hidden_width = 64
|
||||||
|
maxout_pieces = 2
|
||||||
|
|
||||||
|
[nlp.pipeline.ner.model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2VecTensors.v1"
|
||||||
|
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
|
@ -337,13 +337,14 @@ class Language(object):
|
||||||
default_config = self.defaults.get(name, None)
|
default_config = self.defaults.get(name, None)
|
||||||
|
|
||||||
# transform the model's config to an actual Model
|
# transform the model's config to an actual Model
|
||||||
|
factory_cfg = dict(config)
|
||||||
model_cfg = None
|
model_cfg = None
|
||||||
if "model" in config:
|
if "model" in factory_cfg:
|
||||||
model_cfg = config["model"]
|
model_cfg = factory_cfg["model"]
|
||||||
if not isinstance(model_cfg, dict):
|
if not isinstance(model_cfg, dict):
|
||||||
warnings.warn(Warnings.W099.format(type=type(model_cfg), pipe=name))
|
warnings.warn(Warnings.W099.format(type=type(model_cfg), pipe=name))
|
||||||
model_cfg = None
|
model_cfg = None
|
||||||
del config["model"]
|
del factory_cfg["model"]
|
||||||
if model_cfg is None and default_config is not None:
|
if model_cfg is None and default_config is not None:
|
||||||
warnings.warn(Warnings.W098.format(name=name))
|
warnings.warn(Warnings.W098.format(name=name))
|
||||||
model_cfg = default_config["model"]
|
model_cfg = default_config["model"]
|
||||||
|
@ -353,7 +354,7 @@ class Language(object):
|
||||||
model = registry.make_from_config({"model": model_cfg}, validate=True)[
|
model = registry.make_from_config({"model": model_cfg}, validate=True)[
|
||||||
"model"
|
"model"
|
||||||
]
|
]
|
||||||
return factory(self, model, **config)
|
return factory(self, model, **factory_cfg)
|
||||||
|
|
||||||
def add_pipe(
|
def add_pipe(
|
||||||
self, component, name=None, before=None, after=None, first=None, last=None
|
self, component, name=None, before=None, after=None, first=None, last=None
|
||||||
|
|
|
@ -21,7 +21,7 @@ def init(model, X=None, Y=None):
|
||||||
|
|
||||||
|
|
||||||
def forward(model, docs, is_train):
|
def forward(model, docs, is_train):
|
||||||
if not docs:
|
if docs is None:
|
||||||
return []
|
return []
|
||||||
ids = []
|
ids = []
|
||||||
output = []
|
output = []
|
||||||
|
|
|
@ -4,7 +4,7 @@ from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
|
||||||
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
||||||
|
|
||||||
from ... import util
|
from ... import util
|
||||||
from ...util import registry, make_layer
|
from ...util import registry
|
||||||
from ...ml import _character_embed
|
from ...ml import _character_embed
|
||||||
from ...pipeline.tok2vec import Tok2VecListener
|
from ...pipeline.tok2vec import Tok2VecListener
|
||||||
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
||||||
|
@ -23,15 +23,14 @@ def get_vocab_vectors(name):
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.Tok2Vec.v1")
|
@registry.architectures.register("spacy.Tok2Vec.v1")
|
||||||
def Tok2Vec(config):
|
def Tok2Vec(extract, embed, encode):
|
||||||
doc2feats = make_layer(config["@doc2feats"])
|
|
||||||
embed = make_layer(config["@embed"])
|
|
||||||
encode = make_layer(config["@encode"])
|
|
||||||
field_size = 0
|
field_size = 0
|
||||||
if encode.has_attr("receptive_field"):
|
if encode.attrs.get("receptive_field", None):
|
||||||
field_size = encode.attrs["receptive_field"]
|
field_size = encode.attrs["receptive_field"]
|
||||||
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||||
tok2vec.attrs["cfg"] = config
|
if extract.has_dim("nO"):
|
||||||
|
_set_dims(embed, "nI", extract.get_dim("nO"))
|
||||||
|
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
|
||||||
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
||||||
tok2vec.set_ref("embed", embed)
|
tok2vec.set_ref("embed", embed)
|
||||||
tok2vec.set_ref("encode", encode)
|
tok2vec.set_ref("encode", encode)
|
||||||
|
@ -39,8 +38,7 @@ def Tok2Vec(config):
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.Doc2Feats.v1")
|
@registry.architectures.register("spacy.Doc2Feats.v1")
|
||||||
def Doc2Feats(config):
|
def Doc2Feats(columns):
|
||||||
columns = config["columns"]
|
|
||||||
return FeatureExtractor(columns)
|
return FeatureExtractor(columns)
|
||||||
|
|
||||||
|
|
||||||
|
@ -79,8 +77,8 @@ def hash_charembed_cnn(
|
||||||
maxout_pieces,
|
maxout_pieces,
|
||||||
window_size,
|
window_size,
|
||||||
subword_features,
|
subword_features,
|
||||||
nM=0,
|
nM,
|
||||||
nC=0,
|
nC,
|
||||||
):
|
):
|
||||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||||
return build_Tok2Vec_model(
|
return build_Tok2Vec_model(
|
||||||
|
@ -100,7 +98,7 @@ def hash_charembed_cnn(
|
||||||
|
|
||||||
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
||||||
def hash_embed_bilstm_v1(
|
def hash_embed_bilstm_v1(
|
||||||
pretrained_vectors, width, depth, embed_size, subword_features
|
pretrained_vectors, width, depth, embed_size, subword_features, maxout_pieces
|
||||||
):
|
):
|
||||||
# Does not use character embeddings: set to False by default
|
# Does not use character embeddings: set to False by default
|
||||||
return build_Tok2Vec_model(
|
return build_Tok2Vec_model(
|
||||||
|
@ -109,7 +107,7 @@ def hash_embed_bilstm_v1(
|
||||||
pretrained_vectors=pretrained_vectors,
|
pretrained_vectors=pretrained_vectors,
|
||||||
bilstm_depth=depth,
|
bilstm_depth=depth,
|
||||||
conv_depth=0,
|
conv_depth=0,
|
||||||
maxout_pieces=0,
|
maxout_pieces=maxout_pieces,
|
||||||
window_size=1,
|
window_size=1,
|
||||||
subword_features=subword_features,
|
subword_features=subword_features,
|
||||||
char_embed=False,
|
char_embed=False,
|
||||||
|
@ -120,7 +118,7 @@ def hash_embed_bilstm_v1(
|
||||||
|
|
||||||
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
||||||
def hash_char_embed_bilstm_v1(
|
def hash_char_embed_bilstm_v1(
|
||||||
pretrained_vectors, width, depth, embed_size, subword_features, nM=0, nC=0
|
pretrained_vectors, width, depth, embed_size, subword_features, nM, nC, maxout_pieces
|
||||||
):
|
):
|
||||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||||
return build_Tok2Vec_model(
|
return build_Tok2Vec_model(
|
||||||
|
@ -129,7 +127,7 @@ def hash_char_embed_bilstm_v1(
|
||||||
pretrained_vectors=pretrained_vectors,
|
pretrained_vectors=pretrained_vectors,
|
||||||
bilstm_depth=depth,
|
bilstm_depth=depth,
|
||||||
conv_depth=0,
|
conv_depth=0,
|
||||||
maxout_pieces=0,
|
maxout_pieces=maxout_pieces,
|
||||||
window_size=1,
|
window_size=1,
|
||||||
subword_features=subword_features,
|
subword_features=subword_features,
|
||||||
char_embed=True,
|
char_embed=True,
|
||||||
|
@ -138,104 +136,99 @@ def hash_char_embed_bilstm_v1(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
|
||||||
def MultiHashEmbed(config):
|
def LayerNormalizedMaxout(width, maxout_pieces):
|
||||||
# For backwards compatibility with models before the architecture registry,
|
return Maxout(
|
||||||
# we have to be careful to get exactly the same model structure. One subtle
|
nO=width,
|
||||||
# trick is that when we define concatenation with the operator, the operator
|
nP=maxout_pieces,
|
||||||
# is actually binary associative. So when we write (a | b | c), we're actually
|
dropout=0.0,
|
||||||
# getting concatenate(concatenate(a, b), c). That's why the implementation
|
normalize=True,
|
||||||
# is a bit ugly here.
|
)
|
||||||
cols = config["columns"]
|
|
||||||
width = config["width"]
|
|
||||||
rows = config["rows"]
|
|
||||||
|
|
||||||
norm = HashEmbed(width, rows, column=cols.index("NORM"))
|
|
||||||
if config["use_subwords"]:
|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||||
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"))
|
def MultiHashEmbed(columns, width, rows, use_subwords, pretrained_vectors, mix):
|
||||||
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"))
|
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
|
||||||
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"))
|
if use_subwords:
|
||||||
if config.get("@pretrained_vectors"):
|
prefix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("PREFIX"))
|
||||||
glove = make_layer(config["@pretrained_vectors"])
|
suffix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SUFFIX"))
|
||||||
mix = make_layer(config["@mix"])
|
shape = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SHAPE"))
|
||||||
|
|
||||||
|
if pretrained_vectors:
|
||||||
|
glove = StaticVectors(
|
||||||
|
vectors=pretrained_vectors.data,
|
||||||
|
nO=width,
|
||||||
|
column=columns.index(ID),
|
||||||
|
dropout=0.0,
|
||||||
|
)
|
||||||
|
|
||||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||||
if config["use_subwords"] and config["@pretrained_vectors"]:
|
if not use_subwords and not pretrained_vectors:
|
||||||
mix._layers[0].set_dim("nI", width * 5)
|
embed_layer = norm
|
||||||
layer = uniqued(
|
|
||||||
(glove | norm | prefix | suffix | shape) >> mix,
|
|
||||||
column=cols.index("ORTH"),
|
|
||||||
)
|
|
||||||
elif config["use_subwords"]:
|
|
||||||
mix._layers[0].set_dim("nI", width * 4)
|
|
||||||
layer = uniqued(
|
|
||||||
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
|
|
||||||
)
|
|
||||||
elif config["@pretrained_vectors"]:
|
|
||||||
mix._layers[0].set_dim("nI", width * 2)
|
|
||||||
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"))
|
|
||||||
else:
|
else:
|
||||||
layer = norm
|
if use_subwords and pretrained_vectors:
|
||||||
layer.attrs["cfg"] = config
|
nr_columns = 5
|
||||||
return layer
|
concat_columns = glove | norm | prefix | suffix | shape
|
||||||
|
elif use_subwords:
|
||||||
|
nr_columns = 4
|
||||||
|
concat_columns = norm | prefix | suffix | shape
|
||||||
|
else:
|
||||||
|
nr_columns = 2
|
||||||
|
concat_columns = glove | norm
|
||||||
|
|
||||||
|
_set_dims(mix, "nI", width * nr_columns)
|
||||||
|
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
|
||||||
|
|
||||||
|
return embed_layer
|
||||||
|
|
||||||
|
|
||||||
|
def _set_dims(model, name, value):
|
||||||
|
# Loop through the model to set a specific dimension if its unset on any layer.
|
||||||
|
for node in model.walk():
|
||||||
|
if node.has_dim(name) is None:
|
||||||
|
node.set_dim(name, value)
|
||||||
|
|
||||||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||||
def CharacterEmbed(config):
|
def CharacterEmbed(columns, width, rows, nM, nC, features):
|
||||||
width = config["width"]
|
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
|
||||||
chars = config["chars"]
|
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
|
||||||
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||||
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
|
embed_layer = chr_embed | features >> with_array(norm)
|
||||||
other_tables = make_layer(config["@embed_features"])
|
embed_layer.set_dim("nO", nM * nC + width)
|
||||||
mix = make_layer(config["@mix"])
|
return embed_layer
|
||||||
|
|
||||||
model = chain(concatenate(chr_embed, other_tables), mix)
|
|
||||||
model.attrs["cfg"] = config
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
||||||
def MaxoutWindowEncoder(config):
|
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
|
||||||
nO = config["width"]
|
cnn = chain(
|
||||||
nW = config["window_size"]
|
expand_window(window_size=window_size),
|
||||||
nP = config["pieces"]
|
Maxout(nO=width, nI=width * ((window_size * 2) + 1), nP=maxout_pieces, dropout=0.0, normalize=True),
|
||||||
depth = config["depth"]
|
|
||||||
|
|
||||||
cnn = (
|
|
||||||
expand_window(window_size=nW),
|
|
||||||
Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True),
|
|
||||||
)
|
)
|
||||||
model = clone(residual(cnn), depth)
|
model = clone(residual(cnn), depth)
|
||||||
model.set_dim("nO", nO)
|
model.set_dim("nO", width)
|
||||||
model.attrs["receptive_field"] = nW * depth
|
model.attrs["receptive_field"] = window_size * depth
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
||||||
def MishWindowEncoder(config):
|
def MishWindowEncoder(width, window_size, depth):
|
||||||
nO = config["width"]
|
|
||||||
nW = config["window_size"]
|
|
||||||
depth = config["depth"]
|
|
||||||
|
|
||||||
cnn = chain(
|
cnn = chain(
|
||||||
expand_window(window_size=nW),
|
expand_window(window_size=window_size),
|
||||||
Mish(nO=nO, nI=nO * ((nW * 2) + 1)),
|
Mish(nO=width, nI=width * ((window_size * 2) + 1)),
|
||||||
LayerNorm(nO),
|
LayerNorm(width),
|
||||||
)
|
)
|
||||||
model = clone(residual(cnn), depth)
|
model = clone(residual(cnn), depth)
|
||||||
model.set_dim("nO", nO)
|
model.set_dim("nO", width)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
||||||
def TorchBiLSTMEncoder(config):
|
def TorchBiLSTMEncoder(width, depth):
|
||||||
import torch.nn
|
import torch.nn
|
||||||
|
|
||||||
# TODO FIX
|
# TODO FIX
|
||||||
from thinc.api import PyTorchRNNWrapper
|
from thinc.api import PyTorchRNNWrapper
|
||||||
|
|
||||||
width = config["width"]
|
|
||||||
depth = config["depth"]
|
|
||||||
if depth == 0:
|
if depth == 0:
|
||||||
return noop()
|
return noop()
|
||||||
return with_padded(
|
return with_padded(
|
||||||
|
@ -243,40 +236,6 @@ def TorchBiLSTMEncoder(config):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# TODO: update
|
|
||||||
_EXAMPLE_CONFIG = {
|
|
||||||
"@doc2feats": {
|
|
||||||
"arch": "Doc2Feats",
|
|
||||||
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
|
|
||||||
},
|
|
||||||
"@embed": {
|
|
||||||
"arch": "spacy.MultiHashEmbed.v1",
|
|
||||||
"config": {
|
|
||||||
"width": 96,
|
|
||||||
"rows": 2000,
|
|
||||||
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
|
|
||||||
"use_subwords": True,
|
|
||||||
"@pretrained_vectors": {
|
|
||||||
"arch": "TransformedStaticVectors",
|
|
||||||
"config": {
|
|
||||||
"vectors_name": "en_vectors_web_lg.vectors",
|
|
||||||
"width": 96,
|
|
||||||
"column": 0,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"@mix": {
|
|
||||||
"arch": "LayerNormalizedMaxout",
|
|
||||||
"config": {"width": 96, "pieces": 3},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"@encode": {
|
|
||||||
"arch": "MaxoutWindowEncode",
|
|
||||||
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def build_Tok2Vec_model(
|
def build_Tok2Vec_model(
|
||||||
width,
|
width,
|
||||||
embed_size,
|
embed_size,
|
||||||
|
|
|
@ -131,9 +131,10 @@ class Tok2Vec(Pipe):
|
||||||
get_examples (function): Function returning example training data.
|
get_examples (function): Function returning example training data.
|
||||||
pipeline (list): The pipeline the model is part of.
|
pipeline (list): The pipeline the model is part of.
|
||||||
"""
|
"""
|
||||||
# TODO: use examples instead ?
|
# TODO: charembed does not play nicely with dim inference yet
|
||||||
docs = [Doc(Vocab(), words=["hello"])]
|
# docs = [Doc(Vocab(), words=["hello"])]
|
||||||
self.model.initialize(X=docs)
|
# self.model.initialize(X=docs)
|
||||||
|
self.model.initialize()
|
||||||
link_vectors_to_models(self.vocab)
|
link_vectors_to_models(self.vocab)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -36,17 +36,17 @@ def test_overfitting_IO():
|
||||||
assert losses["senter"] < 0.0001
|
assert losses["senter"] < 0.0001
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
test_text = "I like eggs. There is ham. She likes ham."
|
test_text = "I like purple eggs. They eat ham. You like yellow eggs."
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
gold_sent_starts = [0] * 12
|
gold_sent_starts = [0] * 14
|
||||||
gold_sent_starts[0] = 1
|
gold_sent_starts[0] = 1
|
||||||
gold_sent_starts[4] = 1
|
gold_sent_starts[5] = 1
|
||||||
gold_sent_starts[8] = 1
|
gold_sent_starts[9] = 1
|
||||||
assert gold_sent_starts == [int(t.is_sent_start) for t in doc]
|
assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
|
||||||
|
|
||||||
# Also test the results are still the same after IO
|
# Also test the results are still the same after IO
|
||||||
with make_tempdir() as tmp_dir:
|
with make_tempdir() as tmp_dir:
|
||||||
nlp.to_disk(tmp_dir)
|
nlp.to_disk(tmp_dir)
|
||||||
nlp2 = util.load_model_from_path(tmp_dir)
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||||||
doc2 = nlp2(test_text)
|
doc2 = nlp2(test_text)
|
||||||
assert gold_sent_starts == [int(t.is_sent_start) for t in doc2]
|
assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
|
||||||
|
|
|
@ -79,11 +79,6 @@ def set_lang_class(name, cls):
|
||||||
registry.languages.register(name, func=cls)
|
registry.languages.register(name, func=cls)
|
||||||
|
|
||||||
|
|
||||||
def make_layer(arch_config):
|
|
||||||
arch_func = registry.architectures.get(arch_config["arch"])
|
|
||||||
return arch_func(arch_config["config"])
|
|
||||||
|
|
||||||
|
|
||||||
def ensure_path(path):
|
def ensure_path(path):
|
||||||
"""Ensure string is converted to a Path.
|
"""Ensure string is converted to a Path.
|
||||||
|
|
||||||
|
@ -563,7 +558,7 @@ def minibatch_by_words(examples, size, tuples=True, count_words=len):
|
||||||
"""Create minibatches of a given number of words."""
|
"""Create minibatches of a given number of words."""
|
||||||
if isinstance(size, int):
|
if isinstance(size, int):
|
||||||
size_ = itertools.repeat(size)
|
size_ = itertools.repeat(size)
|
||||||
if isinstance(size, List):
|
elif isinstance(size, List):
|
||||||
size_ = iter(size)
|
size_ = iter(size)
|
||||||
else:
|
else:
|
||||||
size_ = size
|
size_ = size
|
||||||
|
|
Loading…
Reference in New Issue
Block a user