mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Tok2Vec: extract-embed-encode (#5102)
* avoid changing original config * fix elif structure, batch with just int crashes otherwise * tok2vec example with doc2feats, encode and embed architectures * further clean up MultiHashEmbed * further generalize Tok2Vec to work with extract-embed-encode parts * avoid initializing the charembed layer with Docs (for now ?) * small fixes for bilstm config (still does not run) * rename to core layer * move new configs * walk model to set nI instead of using core ref * fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
This commit is contained in:
parent
c95ce96c44
commit
5847be6022
|
@ -62,4 +62,4 @@ width = 96
|
|||
depth = 4
|
||||
embed_size = 2000
|
||||
subword_features = true
|
||||
char_embed = false
|
||||
maxout_pieces = 3
|
||||
|
|
65
examples/experiments/tok2vec-ner/charembed_tok2vec.cfg
Normal file
65
examples/experiments/tok2vec-ner/charembed_tok2vec.cfg
Normal file
|
@ -0,0 +1,65 @@
|
|||
[training]
|
||||
use_gpu = -1
|
||||
limit = 0
|
||||
dropout = 0.2
|
||||
patience = 10000
|
||||
eval_frequency = 200
|
||||
scores = ["ents_f"]
|
||||
score_weights = {"ents_f": 1}
|
||||
orth_variant_level = 0.0
|
||||
gold_preproc = true
|
||||
max_length = 0
|
||||
batch_size = 25
|
||||
|
||||
[optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
learn_rate = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
vectors = null
|
||||
|
||||
[nlp.pipeline.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[nlp.pipeline.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[nlp.pipeline.tok2vec.model.extract]
|
||||
@architectures = "spacy.CharacterEmbed.v1"
|
||||
width = 96
|
||||
nM = 64
|
||||
nC = 8
|
||||
rows = 2000
|
||||
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||
|
||||
[nlp.pipeline.tok2vec.model.extract.features]
|
||||
@architectures = "spacy.Doc2Feats.v1"
|
||||
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
|
||||
|
||||
[nlp.pipeline.tok2vec.model.embed]
|
||||
@architectures = "spacy.LayerNormalizedMaxout.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
||||
maxout_pieces = 4
|
||||
|
||||
[nlp.pipeline.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
||||
window_size = 1
|
||||
maxout_pieces = 2
|
||||
depth = 2
|
||||
|
||||
[nlp.pipeline.ner]
|
||||
factory = "ner"
|
||||
|
||||
[nlp.pipeline.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
nr_feature_tokens = 6
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
|
||||
[nlp.pipeline.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecTensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.extract:width}
|
65
examples/experiments/tok2vec-ner/multihashembed_tok2vec.cfg
Normal file
65
examples/experiments/tok2vec-ner/multihashembed_tok2vec.cfg
Normal file
|
@ -0,0 +1,65 @@
|
|||
[training]
|
||||
use_gpu = -1
|
||||
limit = 0
|
||||
dropout = 0.2
|
||||
patience = 10000
|
||||
eval_frequency = 200
|
||||
scores = ["ents_f"]
|
||||
score_weights = {"ents_f": 1}
|
||||
orth_variant_level = 0.0
|
||||
gold_preproc = true
|
||||
max_length = 0
|
||||
batch_size = 25
|
||||
|
||||
[optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
learn_rate = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
vectors = null
|
||||
|
||||
[nlp.pipeline.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[nlp.pipeline.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[nlp.pipeline.tok2vec.model.extract]
|
||||
@architectures = "spacy.Doc2Feats.v1"
|
||||
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||
|
||||
[nlp.pipeline.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
|
||||
width = 96
|
||||
rows = 2000
|
||||
use_subwords = true
|
||||
pretrained_vectors = null
|
||||
|
||||
[nlp.pipeline.tok2vec.model.embed.mix]
|
||||
@architectures = "spacy.LayerNormalizedMaxout.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
||||
maxout_pieces = 3
|
||||
|
||||
[nlp.pipeline.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
depth = 2
|
||||
|
||||
[nlp.pipeline.ner]
|
||||
factory = "ner"
|
||||
|
||||
[nlp.pipeline.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v1"
|
||||
nr_feature_tokens = 6
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
|
||||
[nlp.pipeline.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecTensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model.embed:width}
|
|
@ -337,13 +337,14 @@ class Language(object):
|
|||
default_config = self.defaults.get(name, None)
|
||||
|
||||
# transform the model's config to an actual Model
|
||||
factory_cfg = dict(config)
|
||||
model_cfg = None
|
||||
if "model" in config:
|
||||
model_cfg = config["model"]
|
||||
if "model" in factory_cfg:
|
||||
model_cfg = factory_cfg["model"]
|
||||
if not isinstance(model_cfg, dict):
|
||||
warnings.warn(Warnings.W099.format(type=type(model_cfg), pipe=name))
|
||||
model_cfg = None
|
||||
del config["model"]
|
||||
del factory_cfg["model"]
|
||||
if model_cfg is None and default_config is not None:
|
||||
warnings.warn(Warnings.W098.format(name=name))
|
||||
model_cfg = default_config["model"]
|
||||
|
@ -353,7 +354,7 @@ class Language(object):
|
|||
model = registry.make_from_config({"model": model_cfg}, validate=True)[
|
||||
"model"
|
||||
]
|
||||
return factory(self, model, **config)
|
||||
return factory(self, model, **factory_cfg)
|
||||
|
||||
def add_pipe(
|
||||
self, component, name=None, before=None, after=None, first=None, last=None
|
||||
|
|
|
@ -21,7 +21,7 @@ def init(model, X=None, Y=None):
|
|||
|
||||
|
||||
def forward(model, docs, is_train):
|
||||
if not docs:
|
||||
if docs is None:
|
||||
return []
|
||||
ids = []
|
||||
output = []
|
||||
|
|
|
@ -4,7 +4,7 @@ from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
|
|||
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
||||
|
||||
from ... import util
|
||||
from ...util import registry, make_layer
|
||||
from ...util import registry
|
||||
from ...ml import _character_embed
|
||||
from ...pipeline.tok2vec import Tok2VecListener
|
||||
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
||||
|
@ -23,15 +23,14 @@ def get_vocab_vectors(name):
|
|||
|
||||
|
||||
@registry.architectures.register("spacy.Tok2Vec.v1")
|
||||
def Tok2Vec(config):
|
||||
doc2feats = make_layer(config["@doc2feats"])
|
||||
embed = make_layer(config["@embed"])
|
||||
encode = make_layer(config["@encode"])
|
||||
def Tok2Vec(extract, embed, encode):
|
||||
field_size = 0
|
||||
if encode.has_attr("receptive_field"):
|
||||
if encode.attrs.get("receptive_field", None):
|
||||
field_size = encode.attrs["receptive_field"]
|
||||
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
|
||||
tok2vec.attrs["cfg"] = config
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
if extract.has_dim("nO"):
|
||||
_set_dims(embed, "nI", extract.get_dim("nO"))
|
||||
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
|
||||
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
||||
tok2vec.set_ref("embed", embed)
|
||||
tok2vec.set_ref("encode", encode)
|
||||
|
@ -39,8 +38,7 @@ def Tok2Vec(config):
|
|||
|
||||
|
||||
@registry.architectures.register("spacy.Doc2Feats.v1")
|
||||
def Doc2Feats(config):
|
||||
columns = config["columns"]
|
||||
def Doc2Feats(columns):
|
||||
return FeatureExtractor(columns)
|
||||
|
||||
|
||||
|
@ -79,8 +77,8 @@ def hash_charembed_cnn(
|
|||
maxout_pieces,
|
||||
window_size,
|
||||
subword_features,
|
||||
nM=0,
|
||||
nC=0,
|
||||
nM,
|
||||
nC,
|
||||
):
|
||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||
return build_Tok2Vec_model(
|
||||
|
@ -100,7 +98,7 @@ def hash_charembed_cnn(
|
|||
|
||||
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
||||
def hash_embed_bilstm_v1(
|
||||
pretrained_vectors, width, depth, embed_size, subword_features
|
||||
pretrained_vectors, width, depth, embed_size, subword_features, maxout_pieces
|
||||
):
|
||||
# Does not use character embeddings: set to False by default
|
||||
return build_Tok2Vec_model(
|
||||
|
@ -109,7 +107,7 @@ def hash_embed_bilstm_v1(
|
|||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=depth,
|
||||
conv_depth=0,
|
||||
maxout_pieces=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=1,
|
||||
subword_features=subword_features,
|
||||
char_embed=False,
|
||||
|
@ -120,7 +118,7 @@ def hash_embed_bilstm_v1(
|
|||
|
||||
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
||||
def hash_char_embed_bilstm_v1(
|
||||
pretrained_vectors, width, depth, embed_size, subword_features, nM=0, nC=0
|
||||
pretrained_vectors, width, depth, embed_size, subword_features, nM, nC, maxout_pieces
|
||||
):
|
||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||
return build_Tok2Vec_model(
|
||||
|
@ -129,7 +127,7 @@ def hash_char_embed_bilstm_v1(
|
|||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=depth,
|
||||
conv_depth=0,
|
||||
maxout_pieces=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=1,
|
||||
subword_features=subword_features,
|
||||
char_embed=True,
|
||||
|
@ -138,104 +136,99 @@ def hash_char_embed_bilstm_v1(
|
|||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||
def MultiHashEmbed(config):
|
||||
# For backwards compatibility with models before the architecture registry,
|
||||
# we have to be careful to get exactly the same model structure. One subtle
|
||||
# trick is that when we define concatenation with the operator, the operator
|
||||
# is actually binary associative. So when we write (a | b | c), we're actually
|
||||
# getting concatenate(concatenate(a, b), c). That's why the implementation
|
||||
# is a bit ugly here.
|
||||
cols = config["columns"]
|
||||
width = config["width"]
|
||||
rows = config["rows"]
|
||||
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
|
||||
def LayerNormalizedMaxout(width, maxout_pieces):
|
||||
return Maxout(
|
||||
nO=width,
|
||||
nP=maxout_pieces,
|
||||
dropout=0.0,
|
||||
normalize=True,
|
||||
)
|
||||
|
||||
norm = HashEmbed(width, rows, column=cols.index("NORM"))
|
||||
if config["use_subwords"]:
|
||||
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"))
|
||||
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"))
|
||||
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"))
|
||||
if config.get("@pretrained_vectors"):
|
||||
glove = make_layer(config["@pretrained_vectors"])
|
||||
mix = make_layer(config["@mix"])
|
||||
|
||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||
def MultiHashEmbed(columns, width, rows, use_subwords, pretrained_vectors, mix):
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
|
||||
if use_subwords:
|
||||
prefix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("PREFIX"))
|
||||
suffix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SUFFIX"))
|
||||
shape = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SHAPE"))
|
||||
|
||||
if pretrained_vectors:
|
||||
glove = StaticVectors(
|
||||
vectors=pretrained_vectors.data,
|
||||
nO=width,
|
||||
column=columns.index(ID),
|
||||
dropout=0.0,
|
||||
)
|
||||
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
if config["use_subwords"] and config["@pretrained_vectors"]:
|
||||
mix._layers[0].set_dim("nI", width * 5)
|
||||
layer = uniqued(
|
||||
(glove | norm | prefix | suffix | shape) >> mix,
|
||||
column=cols.index("ORTH"),
|
||||
)
|
||||
elif config["use_subwords"]:
|
||||
mix._layers[0].set_dim("nI", width * 4)
|
||||
layer = uniqued(
|
||||
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
|
||||
)
|
||||
elif config["@pretrained_vectors"]:
|
||||
mix._layers[0].set_dim("nI", width * 2)
|
||||
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"))
|
||||
if not use_subwords and not pretrained_vectors:
|
||||
embed_layer = norm
|
||||
else:
|
||||
layer = norm
|
||||
layer.attrs["cfg"] = config
|
||||
return layer
|
||||
if use_subwords and pretrained_vectors:
|
||||
nr_columns = 5
|
||||
concat_columns = glove | norm | prefix | suffix | shape
|
||||
elif use_subwords:
|
||||
nr_columns = 4
|
||||
concat_columns = norm | prefix | suffix | shape
|
||||
else:
|
||||
nr_columns = 2
|
||||
concat_columns = glove | norm
|
||||
|
||||
_set_dims(mix, "nI", width * nr_columns)
|
||||
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
|
||||
|
||||
return embed_layer
|
||||
|
||||
|
||||
def _set_dims(model, name, value):
|
||||
# Loop through the model to set a specific dimension if its unset on any layer.
|
||||
for node in model.walk():
|
||||
if node.has_dim(name) is None:
|
||||
node.set_dim(name, value)
|
||||
|
||||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||
def CharacterEmbed(config):
|
||||
width = config["width"]
|
||||
chars = config["chars"]
|
||||
|
||||
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
|
||||
other_tables = make_layer(config["@embed_features"])
|
||||
mix = make_layer(config["@mix"])
|
||||
|
||||
model = chain(concatenate(chr_embed, other_tables), mix)
|
||||
model.attrs["cfg"] = config
|
||||
return model
|
||||
def CharacterEmbed(columns, width, rows, nM, nC, features):
|
||||
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
|
||||
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
embed_layer = chr_embed | features >> with_array(norm)
|
||||
embed_layer.set_dim("nO", nM * nC + width)
|
||||
return embed_layer
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
||||
def MaxoutWindowEncoder(config):
|
||||
nO = config["width"]
|
||||
nW = config["window_size"]
|
||||
nP = config["pieces"]
|
||||
depth = config["depth"]
|
||||
|
||||
cnn = (
|
||||
expand_window(window_size=nW),
|
||||
Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True),
|
||||
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
|
||||
cnn = chain(
|
||||
expand_window(window_size=window_size),
|
||||
Maxout(nO=width, nI=width * ((window_size * 2) + 1), nP=maxout_pieces, dropout=0.0, normalize=True),
|
||||
)
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", nO)
|
||||
model.attrs["receptive_field"] = nW * depth
|
||||
model.set_dim("nO", width)
|
||||
model.attrs["receptive_field"] = window_size * depth
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
||||
def MishWindowEncoder(config):
|
||||
nO = config["width"]
|
||||
nW = config["window_size"]
|
||||
depth = config["depth"]
|
||||
|
||||
def MishWindowEncoder(width, window_size, depth):
|
||||
cnn = chain(
|
||||
expand_window(window_size=nW),
|
||||
Mish(nO=nO, nI=nO * ((nW * 2) + 1)),
|
||||
LayerNorm(nO),
|
||||
expand_window(window_size=window_size),
|
||||
Mish(nO=width, nI=width * ((window_size * 2) + 1)),
|
||||
LayerNorm(width),
|
||||
)
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", nO)
|
||||
model.set_dim("nO", width)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
||||
def TorchBiLSTMEncoder(config):
|
||||
def TorchBiLSTMEncoder(width, depth):
|
||||
import torch.nn
|
||||
|
||||
# TODO FIX
|
||||
from thinc.api import PyTorchRNNWrapper
|
||||
|
||||
width = config["width"]
|
||||
depth = config["depth"]
|
||||
if depth == 0:
|
||||
return noop()
|
||||
return with_padded(
|
||||
|
@ -243,40 +236,6 @@ def TorchBiLSTMEncoder(config):
|
|||
)
|
||||
|
||||
|
||||
# TODO: update
|
||||
_EXAMPLE_CONFIG = {
|
||||
"@doc2feats": {
|
||||
"arch": "Doc2Feats",
|
||||
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
|
||||
},
|
||||
"@embed": {
|
||||
"arch": "spacy.MultiHashEmbed.v1",
|
||||
"config": {
|
||||
"width": 96,
|
||||
"rows": 2000,
|
||||
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
|
||||
"use_subwords": True,
|
||||
"@pretrained_vectors": {
|
||||
"arch": "TransformedStaticVectors",
|
||||
"config": {
|
||||
"vectors_name": "en_vectors_web_lg.vectors",
|
||||
"width": 96,
|
||||
"column": 0,
|
||||
},
|
||||
},
|
||||
"@mix": {
|
||||
"arch": "LayerNormalizedMaxout",
|
||||
"config": {"width": 96, "pieces": 3},
|
||||
},
|
||||
},
|
||||
},
|
||||
"@encode": {
|
||||
"arch": "MaxoutWindowEncode",
|
||||
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def build_Tok2Vec_model(
|
||||
width,
|
||||
embed_size,
|
||||
|
|
|
@ -131,9 +131,10 @@ class Tok2Vec(Pipe):
|
|||
get_examples (function): Function returning example training data.
|
||||
pipeline (list): The pipeline the model is part of.
|
||||
"""
|
||||
# TODO: use examples instead ?
|
||||
docs = [Doc(Vocab(), words=["hello"])]
|
||||
self.model.initialize(X=docs)
|
||||
# TODO: charembed does not play nicely with dim inference yet
|
||||
# docs = [Doc(Vocab(), words=["hello"])]
|
||||
# self.model.initialize(X=docs)
|
||||
self.model.initialize()
|
||||
link_vectors_to_models(self.vocab)
|
||||
|
||||
|
||||
|
|
|
@ -36,17 +36,17 @@ def test_overfitting_IO():
|
|||
assert losses["senter"] < 0.0001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like eggs. There is ham. She likes ham."
|
||||
test_text = "I like purple eggs. They eat ham. You like yellow eggs."
|
||||
doc = nlp(test_text)
|
||||
gold_sent_starts = [0] * 12
|
||||
gold_sent_starts = [0] * 14
|
||||
gold_sent_starts[0] = 1
|
||||
gold_sent_starts[4] = 1
|
||||
gold_sent_starts[8] = 1
|
||||
assert gold_sent_starts == [int(t.is_sent_start) for t in doc]
|
||||
gold_sent_starts[5] = 1
|
||||
gold_sent_starts[9] = 1
|
||||
assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
assert gold_sent_starts == [int(t.is_sent_start) for t in doc2]
|
||||
assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
|
||||
|
|
|
@ -79,11 +79,6 @@ def set_lang_class(name, cls):
|
|||
registry.languages.register(name, func=cls)
|
||||
|
||||
|
||||
def make_layer(arch_config):
|
||||
arch_func = registry.architectures.get(arch_config["arch"])
|
||||
return arch_func(arch_config["config"])
|
||||
|
||||
|
||||
def ensure_path(path):
|
||||
"""Ensure string is converted to a Path.
|
||||
|
||||
|
@ -563,7 +558,7 @@ def minibatch_by_words(examples, size, tuples=True, count_words=len):
|
|||
"""Create minibatches of a given number of words."""
|
||||
if isinstance(size, int):
|
||||
size_ = itertools.repeat(size)
|
||||
if isinstance(size, List):
|
||||
elif isinstance(size, List):
|
||||
size_ = iter(size)
|
||||
else:
|
||||
size_ = size
|
||||
|
|
Loading…
Reference in New Issue
Block a user