Merge pull request #1362 from IamJeffG/docs/custom-tokenizer

Document Tokenizer(token_match) and clarify tokenizer_pseudo_code
This commit is contained in:
Ines Montani 2017-09-26 15:51:15 +02:00 committed by GitHub
commit 58bfe30a12

View File

@ -87,8 +87,8 @@ p
| algorithm in Python, optimized for readability rather than performance:
+code.
def tokenizer_pseudo_code(text, find_prefix, find_suffix,
find_infixes, special_cases):
def tokenizer_pseudo_code(text, special_cases,
find_prefix, find_suffix, find_infixes):
tokens = []
for substring in text.split(' '):
suffixes = []
@ -140,7 +140,7 @@ p
p
| Let's imagine you wanted to create a tokenizer for a new language. There
| are four things you would need to define:
| are five things you would need to define:
+list("numbers")
+item
@ -162,6 +162,11 @@ p
| A function #[code infixes_finditer], to handle non-whitespace
| separators, such as hyphens etc.
+item
| (Optional) A boolean function #[code token_match] matching strings
| that should never be split, overriding the previous rules.
| Useful for things like URLs or numbers.
p
| You shouldn't usually need to create a #[code Tokenizer] subclass.
| Standard usage is to use #[code re.compile()] to build a regular
@ -175,11 +180,15 @@ p
prefix_re = re.compile(r'''[\[\("']''')
suffix_re = re.compile(r'''[\]\)"']''')
infix_re = re.compile(r'''[-~]''')
simple_url_re = re.compile(r'''^https?://''')
def create_tokenizer(nlp):
return Tokenizer(nlp.vocab, rules={},
return Tokenizer(nlp.vocab,
rules={},
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer)
infix_finditer=infix_re.finditer,
token_match=simple_url_re.match
)
nlp = spacy.load('en', create_make_doc=create_tokenizer)