mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add label_data property to pipeline
This commit is contained in:
parent
591038b1a4
commit
58c8d4b414
|
@ -1,5 +1,5 @@
|
||||||
# cython: infer_types=True, profile=True, binding=True
|
# cython: infer_types=True, profile=True, binding=True
|
||||||
from typing import Optional
|
from typing import Optional, Union, Dict
|
||||||
import srsly
|
import srsly
|
||||||
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
|
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
|
@ -101,6 +101,11 @@ class Morphologizer(Tagger):
|
||||||
"""RETURNS (Tuple[str]): The labels currently added to the component."""
|
"""RETURNS (Tuple[str]): The labels currently added to the component."""
|
||||||
return tuple(self.cfg["labels_morph"].keys())
|
return tuple(self.cfg["labels_morph"].keys())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]:
|
||||||
|
"""RETURNS (Dict): A dictionary with all labels data."""
|
||||||
|
return {"morph": self.cfg["labels_morph"], "pos": self.cfg["labels_pos"]}
|
||||||
|
|
||||||
def add_label(self, label):
|
def add_label(self, label):
|
||||||
"""Add a new label to the pipe.
|
"""Add a new label to the pipe.
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
# cython: infer_types=True, profile=True
|
# cython: infer_types=True, profile=True
|
||||||
|
from typing import Optional, Tuple
|
||||||
import srsly
|
import srsly
|
||||||
from thinc.api import set_dropout_rate, Model
|
from thinc.api import set_dropout_rate, Model
|
||||||
|
|
||||||
|
@ -32,6 +33,20 @@ cdef class Pipe:
|
||||||
self.name = name
|
self.name = name
|
||||||
self.cfg = dict(cfg)
|
self.cfg = dict(cfg)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def labels(self) -> Optional[Tuple[str]]:
|
||||||
|
if "labels" in self.cfg:
|
||||||
|
return tuple(self.cfg["labels"])
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self):
|
||||||
|
"""Optional JSON-serializable data that would be sufficient to recreate
|
||||||
|
the label set if provided to the `pipe.initialize()` method.
|
||||||
|
"""
|
||||||
|
return None
|
||||||
|
|
||||||
def __call__(self, Doc doc):
|
def __call__(self, Doc doc):
|
||||||
"""Apply the pipe to one document. The document is modified in place,
|
"""Apply the pipe to one document. The document is modified in place,
|
||||||
and returned. This usually happens under the hood when the nlp object
|
and returned. This usually happens under the hood when the nlp object
|
||||||
|
|
|
@ -71,6 +71,10 @@ class SentenceRecognizer(Tagger):
|
||||||
# are 0
|
# are 0
|
||||||
return tuple(["I", "S"])
|
return tuple(["I", "S"])
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self):
|
||||||
|
return self.labels
|
||||||
|
|
||||||
def set_annotations(self, docs, batch_tag_ids):
|
def set_annotations(self, docs, batch_tag_ids):
|
||||||
"""Modify a batch of documents, using pre-computed scores.
|
"""Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
|
|
|
@ -90,6 +90,16 @@ class Tagger(Pipe):
|
||||||
"""
|
"""
|
||||||
return tuple(self.cfg["labels"])
|
return tuple(self.cfg["labels"])
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self):
|
||||||
|
"""Data about the labels currently added to the component.
|
||||||
|
|
||||||
|
RETURNS (Dict): The labels data.
|
||||||
|
|
||||||
|
DOCS: https://nightly.spacy.io/api/tagger#labels
|
||||||
|
"""
|
||||||
|
return tuple(self.cfg["labels"])
|
||||||
|
|
||||||
def __call__(self, doc):
|
def __call__(self, doc):
|
||||||
"""Apply the pipe to a Doc.
|
"""Apply the pipe to a Doc.
|
||||||
|
|
||||||
|
|
|
@ -154,8 +154,23 @@ class TextCategorizer(Pipe):
|
||||||
|
|
||||||
@labels.setter
|
@labels.setter
|
||||||
def labels(self, value: List[str]) -> None:
|
def labels(self, value: List[str]) -> None:
|
||||||
|
# TODO: This really shouldn't be here. I had a look and I added it when
|
||||||
|
# I added the labels property, but it's pretty nasty to have this, and
|
||||||
|
# will lead to problems.
|
||||||
self.cfg["labels"] = tuple(value)
|
self.cfg["labels"] = tuple(value)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self) -> Dict:
|
||||||
|
"""RETURNS (Dict): Information about the component's labels.
|
||||||
|
|
||||||
|
DOCS: https://nightly.spacy.io/api/textcategorizer#labels
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
"labels": self.labels,
|
||||||
|
"positive": self.cfg["positive_label"],
|
||||||
|
"threshold": self.cfg["threshold"]
|
||||||
|
}
|
||||||
|
|
||||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
"""Apply the pipe to a stream of documents. This usually happens under
|
||||||
the hood when the nlp object is called on a text and all components are
|
the hood when the nlp object is called on a text and all components are
|
||||||
|
|
|
@ -95,6 +95,10 @@ cdef class Parser(Pipe):
|
||||||
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
|
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
|
||||||
return class_names
|
return class_names
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self):
|
||||||
|
return self.moves.labels
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def tok2vec(self):
|
def tok2vec(self):
|
||||||
"""Return the embedding and convolutional layer of the model."""
|
"""Return the embedding and convolutional layer of the model."""
|
||||||
|
|
Loading…
Reference in New Issue
Block a user