mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge remote-tracking branch 'upstream/develop' into indonesian
This commit is contained in:
commit
58d8078971
|
@ -229,7 +229,7 @@ Compile from source
|
|||
The other way to install spaCy is to clone its
|
||||
`GitHub repository <https://github.com/explosion/spaCy>`_ and build it from
|
||||
source. That is the common way if you want to make changes to the code base.
|
||||
You'll need to make sure that you have a development enviroment consisting of a
|
||||
You'll need to make sure that you have a development environment consisting of a
|
||||
Python distribution including header files, a compiler,
|
||||
`pip <https://pip.pypa.io/en/latest/installing/>`__, `virtualenv <https://virtualenv.pypa.io/>`_
|
||||
and `git <https://git-scm.com>`_ installed. The compiler part is the trickiest.
|
||||
|
|
|
@ -3,15 +3,23 @@ from __future__ import print_function
|
|||
# NB! This breaks in plac on Python 2!!
|
||||
#from __future__ import unicode_literals
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import plac
|
||||
import sys
|
||||
from spacy.cli import download, link, info, package, train, convert
|
||||
from spacy.cli import download, link, info, package, train, convert, model
|
||||
from spacy.cli import profile
|
||||
from spacy.util import prints
|
||||
|
||||
commands = {'download': download, 'link': link, 'info': info, 'train': train,
|
||||
'convert': convert, 'package': package}
|
||||
commands = {
|
||||
'download': download,
|
||||
'link': link,
|
||||
'info': info,
|
||||
'train': train,
|
||||
'convert': convert,
|
||||
'package': package,
|
||||
'model': model,
|
||||
'profile': profile,
|
||||
}
|
||||
if len(sys.argv) == 1:
|
||||
prints(', '.join(commands), title="Available commands", exits=1)
|
||||
command = sys.argv.pop(1)
|
||||
|
@ -19,5 +27,7 @@ if __name__ == '__main__':
|
|||
if command in commands:
|
||||
plac.call(commands[command])
|
||||
else:
|
||||
prints("Available: %s" % ', '.join(commands),
|
||||
title="Unknown command: %s" % command, exits=1)
|
||||
prints(
|
||||
"Available: %s" % ', '.join(commands),
|
||||
title="Unknown command: %s" % command,
|
||||
exits=1)
|
||||
|
|
29
spacy/_ml.py
29
spacy/_ml.py
|
@ -218,7 +218,10 @@ def drop_layer(layer, factor=2.):
|
|||
return layer.begin_update(X, drop=drop)
|
||||
else:
|
||||
return X, lambda dX, sgd=None: dX
|
||||
return wrap(drop_layer_fwd, layer)
|
||||
|
||||
model = wrap(drop_layer_fwd, layer)
|
||||
model.predict = layer
|
||||
return model
|
||||
|
||||
|
||||
def Tok2Vec(width, embed_size, preprocess=None):
|
||||
|
@ -359,8 +362,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
def backward(d_output, sgd=None):
|
||||
return (tokens, d_output)
|
||||
return vectors, backward
|
||||
|
||||
|
||||
def fine_tune(embedding, combine=None):
|
||||
if combine is not None:
|
||||
raise NotImplementedError(
|
||||
|
@ -373,22 +374,30 @@ def fine_tune(embedding, combine=None):
|
|||
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
||||
flat_vecs = embedding.ops.flatten(vecs)
|
||||
output = embedding.ops.unflatten(
|
||||
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
|
||||
lengths)
|
||||
(model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_vecs(d_output, sgd=sgd)
|
||||
flat_grad = model.ops.flatten(d_output)
|
||||
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
|
||||
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
|
||||
model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum()
|
||||
model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum()
|
||||
|
||||
bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd)
|
||||
if sgd is not None:
|
||||
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
||||
return d_output
|
||||
return [d_o * model.mix[0] for d_o in d_output]
|
||||
return output, fine_tune_bwd
|
||||
|
||||
def fine_tune_predict(docs_tokvecs):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
vecs = embedding(docs)
|
||||
return [model.mix[0]*tv+model.mix[1]*v
|
||||
for tv, v in zip(tokvecs, vecs)]
|
||||
|
||||
model = wrap(fine_tune_fwd, embedding)
|
||||
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
||||
model.mix.fill(1.)
|
||||
model.mix.fill(0.5)
|
||||
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
||||
model.predict = fine_tune_predict
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
@ -2,5 +2,7 @@ from .download import download
|
|||
from .info import info
|
||||
from .link import link
|
||||
from .package import package
|
||||
from .profile import profile
|
||||
from .train import train
|
||||
from .convert import convert
|
||||
from .model import model
|
||||
|
|
|
@ -24,28 +24,29 @@ def download(cmd, model, direct=False):
|
|||
with version.
|
||||
"""
|
||||
if direct:
|
||||
download_model('{m}/{m}.tar.gz'.format(m=model))
|
||||
dl = download_model('{m}/{m}.tar.gz'.format(m=model))
|
||||
else:
|
||||
shortcuts = get_json(about.__shortcuts__, "available shortcuts")
|
||||
model_name = shortcuts.get(model, model)
|
||||
compatibility = get_compatibility()
|
||||
version = get_version(model_name, compatibility)
|
||||
download_model('{m}-{v}/{m}-{v}.tar.gz'.format(m=model_name, v=version))
|
||||
try:
|
||||
# Get package path here because link uses
|
||||
# pip.get_installed_distributions() to check if model is a package,
|
||||
# which fails if model was just installed via subprocess
|
||||
package_path = get_package_path(model_name)
|
||||
link(None, model_name, model, force=True, model_path=package_path)
|
||||
except:
|
||||
# Dirty, but since spacy.download and the auto-linking is mostly
|
||||
# a convenience wrapper, it's best to show a success message and
|
||||
# loading instructions, even if linking fails.
|
||||
prints("Creating a shortcut link for 'en' didn't work (maybe you "
|
||||
"don't have admin permissions?), but you can still load "
|
||||
"the model via its full package name:",
|
||||
"nlp = spacy.load('%s')" % model_name,
|
||||
title="Download successful")
|
||||
dl = download_model('{m}-{v}/{m}-{v}.tar.gz'.format(m=model_name, v=version))
|
||||
if dl == 0:
|
||||
try:
|
||||
# Get package path here because link uses
|
||||
# pip.get_installed_distributions() to check if model is a package,
|
||||
# which fails if model was just installed via subprocess
|
||||
package_path = get_package_path(model_name)
|
||||
link(None, model_name, model, force=True, model_path=package_path)
|
||||
except:
|
||||
# Dirty, but since spacy.download and the auto-linking is mostly
|
||||
# a convenience wrapper, it's best to show a success message and
|
||||
# loading instructions, even if linking fails.
|
||||
prints("Creating a shortcut link for 'en' didn't work (maybe you "
|
||||
"don't have admin permissions?), but you can still load "
|
||||
"the model via its full package name:",
|
||||
"nlp = spacy.load('%s')" % model_name,
|
||||
title="Download successful")
|
||||
|
||||
|
||||
def get_json(url, desc):
|
||||
|
@ -77,6 +78,6 @@ def get_version(model, comp):
|
|||
|
||||
def download_model(filename):
|
||||
download_url = about.__download_url__ + '/' + filename
|
||||
subprocess.call([sys.executable, '-m',
|
||||
return subprocess.call([sys.executable, '-m',
|
||||
'pip', 'install', '--no-cache-dir', download_url],
|
||||
env=os.environ.copy())
|
||||
|
|
119
spacy/cli/model.py
Normal file
119
spacy/cli/model.py
Normal file
|
@ -0,0 +1,119 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import gzip
|
||||
import math
|
||||
from ast import literal_eval
|
||||
from pathlib import Path
|
||||
from preshed.counter import PreshCounter
|
||||
|
||||
import spacy
|
||||
from ..compat import fix_text
|
||||
from .. import util
|
||||
|
||||
|
||||
def model(cmd, lang, model_dir, freqs_data, clusters_data, vectors_data):
|
||||
model_path = Path(model_dir)
|
||||
freqs_path = Path(freqs_data)
|
||||
clusters_path = Path(clusters_data) if clusters_data else None
|
||||
vectors_path = Path(vectors_data) if vectors_data else None
|
||||
|
||||
check_dirs(freqs_path, clusters_path, vectors_path)
|
||||
# vocab = util.get_lang_class(lang).Defaults.create_vocab()
|
||||
nlp = spacy.blank(lang)
|
||||
vocab = nlp.vocab
|
||||
probs, oov_prob = read_probs(freqs_path)
|
||||
clusters = read_clusters(clusters_path) if clusters_path else {}
|
||||
populate_vocab(vocab, clusters, probs, oov_prob)
|
||||
create_model(model_path, nlp)
|
||||
|
||||
|
||||
def create_model(model_path, model):
|
||||
if not model_path.exists():
|
||||
model_path.mkdir()
|
||||
model.to_disk(model_path.as_posix())
|
||||
|
||||
|
||||
def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200):
|
||||
counts = PreshCounter()
|
||||
total = 0
|
||||
freqs_file = check_unzip(freqs_path)
|
||||
for i, line in enumerate(freqs_file):
|
||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
||||
freq = int(freq)
|
||||
counts.inc(i + 1, freq)
|
||||
total += freq
|
||||
counts.smooth()
|
||||
log_total = math.log(total)
|
||||
freqs_file = check_unzip(freqs_path)
|
||||
probs = {}
|
||||
for line in freqs_file:
|
||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
||||
doc_freq = int(doc_freq)
|
||||
freq = int(freq)
|
||||
if doc_freq >= min_doc_freq and freq >= min_freq and len(
|
||||
key) < max_length:
|
||||
word = literal_eval(key)
|
||||
smooth_count = counts.smoother(int(freq))
|
||||
probs[word] = math.log(smooth_count) - log_total
|
||||
oov_prob = math.log(counts.smoother(0)) - log_total
|
||||
return probs, oov_prob
|
||||
|
||||
|
||||
def read_clusters(clusters_path):
|
||||
clusters = {}
|
||||
with clusters_path.open() as f:
|
||||
for line in f:
|
||||
try:
|
||||
cluster, word, freq = line.split()
|
||||
word = fix_text(word)
|
||||
except ValueError:
|
||||
continue
|
||||
# If the clusterer has only seen the word a few times, its
|
||||
# cluster is unreliable.
|
||||
if int(freq) >= 3:
|
||||
clusters[word] = cluster
|
||||
else:
|
||||
clusters[word] = '0'
|
||||
# Expand clusters with re-casing
|
||||
for word, cluster in list(clusters.items()):
|
||||
if word.lower() not in clusters:
|
||||
clusters[word.lower()] = cluster
|
||||
if word.title() not in clusters:
|
||||
clusters[word.title()] = cluster
|
||||
if word.upper() not in clusters:
|
||||
clusters[word.upper()] = cluster
|
||||
return clusters
|
||||
|
||||
|
||||
def populate_vocab(vocab, clusters, probs, oov_prob):
|
||||
for word, prob in reversed(
|
||||
sorted(list(probs.items()), key=lambda item: item[1])):
|
||||
lexeme = vocab[word]
|
||||
lexeme.prob = prob
|
||||
lexeme.is_oov = False
|
||||
# Decode as a little-endian string, so that we can do & 15 to get
|
||||
# the first 4 bits. See _parse_features.pyx
|
||||
if word in clusters:
|
||||
lexeme.cluster = int(clusters[word][::-1], 2)
|
||||
else:
|
||||
lexeme.cluster = 0
|
||||
|
||||
|
||||
def check_unzip(file_path):
|
||||
file_path_str = file_path.as_posix()
|
||||
if file_path_str.endswith('gz'):
|
||||
return gzip.open(file_path_str)
|
||||
else:
|
||||
return file_path.open()
|
||||
|
||||
|
||||
def check_dirs(freqs_data, clusters_data, vectors_data):
|
||||
if not freqs_data.is_file():
|
||||
util.sys_exit(freqs_data.as_posix(), title="No frequencies file found")
|
||||
if clusters_data and not clusters_data.is_file():
|
||||
util.sys_exit(
|
||||
clusters_data.as_posix(), title="No Brown clusters file found")
|
||||
if vectors_data and not vectors_data.is_file():
|
||||
util.sys_exit(
|
||||
vectors_data.as_posix(), title="No word vectors file found")
|
45
spacy/cli/profile.py
Normal file
45
spacy/cli/profile.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals, division, print_function
|
||||
|
||||
import plac
|
||||
from pathlib import Path
|
||||
import ujson
|
||||
import cProfile
|
||||
import pstats
|
||||
|
||||
import spacy
|
||||
import sys
|
||||
import tqdm
|
||||
import cytoolz
|
||||
|
||||
|
||||
def read_inputs(loc):
|
||||
if loc is None:
|
||||
file_ = sys.stdin
|
||||
file_ = (line.encode('utf8') for line in file_)
|
||||
else:
|
||||
file_ = Path(loc).open()
|
||||
for line in file_:
|
||||
data = ujson.loads(line)
|
||||
text = data['text']
|
||||
yield text
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
lang=("model/language", "positional", None, str),
|
||||
inputs=("Location of input file", "positional", None, read_inputs)
|
||||
)
|
||||
def profile(cmd, lang, inputs=None):
|
||||
"""
|
||||
Profile a spaCy pipeline, to find out which functions take the most time.
|
||||
"""
|
||||
nlp = spacy.load(lang)
|
||||
texts = list(cytoolz.take(10000, inputs))
|
||||
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
|
||||
s = pstats.Stats("Profile.prof")
|
||||
s.strip_dirs().sort_stats("time").print_stats()
|
||||
|
||||
|
||||
def parse_texts(nlp, texts):
|
||||
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=128):
|
||||
pass
|
|
@ -32,10 +32,12 @@ from ..compat import json_dumps
|
|||
resume=("Whether to resume training", "flag", "R", bool),
|
||||
no_tagger=("Don't train tagger", "flag", "T", bool),
|
||||
no_parser=("Don't train parser", "flag", "P", bool),
|
||||
no_entities=("Don't train NER", "flag", "N", bool)
|
||||
no_entities=("Don't train NER", "flag", "N", bool),
|
||||
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
|
||||
)
|
||||
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False):
|
||||
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False,
|
||||
gold_preproc=False):
|
||||
"""
|
||||
Train a model. Expects data in spaCy's JSON format.
|
||||
"""
|
||||
|
@ -86,13 +88,13 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
i += 20
|
||||
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
|
||||
train_docs = corpus.train_docs(nlp, projectivize=True,
|
||||
gold_preproc=False, max_length=0)
|
||||
gold_preproc=gold_preproc, max_length=0)
|
||||
losses = {}
|
||||
for batch in minibatch(train_docs, size=batch_sizes):
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(docs, golds, sgd=optimizer,
|
||||
drop=next(dropout_rates), losses=losses,
|
||||
update_tensors=True)
|
||||
update_shared=True)
|
||||
pbar.update(sum(len(doc) for doc in docs))
|
||||
|
||||
with nlp.use_params(optimizer.averages):
|
||||
|
@ -104,7 +106,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
scorer = nlp_loaded.evaluate(
|
||||
corpus.dev_docs(
|
||||
nlp_loaded,
|
||||
gold_preproc=False))
|
||||
gold_preproc=gold_preproc))
|
||||
acc_loc =(output_path / ('model%d' % i) / 'accuracy.json')
|
||||
with acc_loc.open('w') as file_:
|
||||
file_.write(json_dumps(scorer.scores))
|
||||
|
|
|
@ -60,7 +60,7 @@ GLOSSARY = {
|
|||
'JJR': 'adjective, comparative',
|
||||
'JJS': 'adjective, superlative',
|
||||
'LS': 'list item marker',
|
||||
'MD': 'verb, modal auxillary',
|
||||
'MD': 'verb, modal auxiliary',
|
||||
'NIL': 'missing tag',
|
||||
'NN': 'noun, singular or mass',
|
||||
'NNP': 'noun, proper singular',
|
||||
|
@ -91,7 +91,7 @@ GLOSSARY = {
|
|||
'NFP': 'superfluous punctuation',
|
||||
'GW': 'additional word in multi-word expression',
|
||||
'XX': 'unknown',
|
||||
'BES': 'auxillary "be"',
|
||||
'BES': 'auxiliary "be"',
|
||||
'HVS': 'forms of "have"',
|
||||
|
||||
|
||||
|
|
|
@ -406,11 +406,11 @@ cdef class GoldParse:
|
|||
if tags is None:
|
||||
tags = [None for _ in doc]
|
||||
if heads is None:
|
||||
heads = [token.i for token in doc]
|
||||
heads = [None for token in doc]
|
||||
if deps is None:
|
||||
deps = [None for _ in doc]
|
||||
if entities is None:
|
||||
entities = ['-' for _ in doc]
|
||||
entities = [None for _ in doc]
|
||||
elif len(entities) == 0:
|
||||
entities = ['O' for _ in doc]
|
||||
elif not isinstance(entities[0], basestring):
|
||||
|
|
|
@ -232,7 +232,10 @@ for verb_data in [
|
|||
{ORTH: "are", LEMMA: "be", NORM: "are", TAG: "VBP", "number": 2},
|
||||
{ORTH: "is", LEMMA: "be", NORM: "is", TAG: "VBZ"},
|
||||
{ORTH: "was", LEMMA: "be", NORM: "was"},
|
||||
{ORTH: "were", LEMMA: "be", NORM: "were"}]:
|
||||
{ORTH: "were", LEMMA: "be", NORM: "were"},
|
||||
{ORTH: "have", NORM: "have"},
|
||||
{ORTH: "has", LEMMA: "have", NORM: "has"},
|
||||
{ORTH: "dare", NORM: "dare"}]:
|
||||
verb_data_tc = dict(verb_data)
|
||||
verb_data_tc[ORTH] = verb_data_tc[ORTH].title()
|
||||
for data in [verb_data, verb_data_tc]:
|
||||
|
|
|
@ -200,6 +200,7 @@ class Language(object):
|
|||
else:
|
||||
flat_list.append(pipe)
|
||||
self.pipeline = flat_list
|
||||
self._optimizer = None
|
||||
|
||||
@property
|
||||
def meta(self):
|
||||
|
@ -244,7 +245,7 @@ class Language(object):
|
|||
def matcher(self):
|
||||
return self.get_component('matcher')
|
||||
|
||||
def get_component(self, name):
|
||||
def get_component(self, name):
|
||||
if self.pipeline in (True, None):
|
||||
return None
|
||||
for proc in self.pipeline:
|
||||
|
@ -278,7 +279,7 @@ class Language(object):
|
|||
return self.tokenizer(text)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None,
|
||||
update_tensors=False):
|
||||
update_shared=False):
|
||||
"""Update the models in the pipeline.
|
||||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
|
@ -298,6 +299,10 @@ class Language(object):
|
|||
"Got: %d, %d" % (len(docs), len(golds)))
|
||||
if len(docs) == 0:
|
||||
return
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = Adam(Model.ops, 0.001)
|
||||
sgd = self._optimizer
|
||||
tok2vec = self.pipeline[0]
|
||||
feats = tok2vec.doc2feats(docs)
|
||||
grads = {}
|
||||
|
@ -312,10 +317,11 @@ class Language(object):
|
|||
continue
|
||||
d_tokvecses = proc.update((docs, tokvecses), golds,
|
||||
drop=drop, sgd=get_grads, losses=losses)
|
||||
if update_tensors and d_tokvecses is not None:
|
||||
if update_shared and d_tokvecses is not None:
|
||||
for i, d_tv in enumerate(d_tokvecses):
|
||||
all_d_tokvecses[i] += d_tv
|
||||
bp_tokvecses(all_d_tokvecses, sgd=sgd)
|
||||
if update_shared and bp_tokvecses is not None:
|
||||
bp_tokvecses(all_d_tokvecses, sgd=sgd)
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
# Clear the tensor variable, to free GPU memory.
|
||||
|
@ -378,11 +384,11 @@ class Language(object):
|
|||
eps = util.env_opt('optimizer_eps', 1e-08)
|
||||
L2 = util.env_opt('L2_penalty', 1e-6)
|
||||
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
|
||||
optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
|
||||
beta2=beta2, eps=eps)
|
||||
optimizer.max_grad_norm = max_grad_norm
|
||||
optimizer.device = device
|
||||
return optimizer
|
||||
self._optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
|
||||
beta2=beta2, eps=eps)
|
||||
self._optimizer.max_grad_norm = max_grad_norm
|
||||
self._optimizer.device = device
|
||||
return self._optimizer
|
||||
|
||||
def evaluate(self, docs_golds):
|
||||
scorer = Scorer()
|
||||
|
|
|
@ -294,6 +294,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
doc.is_tagged = True
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
docs, tokvecs = docs_tokvecs
|
||||
|
||||
if self.model.nI is None:
|
||||
|
@ -302,6 +304,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
||||
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
return d_tokvecs
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
|
|
|
@ -113,7 +113,7 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
|
||||
def has_gold(self, GoldParse gold, start=0, end=None):
|
||||
end = end or len(gold.ner)
|
||||
if all([tag == '-' for tag in gold.ner[start:end]]):
|
||||
if all([tag in ('-', None) for tag in gold.ner[start:end]]):
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
|
|
@ -14,4 +14,8 @@ cdef class Parser:
|
|||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -257,10 +257,15 @@ cdef class Parser:
|
|||
nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
clone(Maxout(hidden_width), (depth-1)),
|
||||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
if depth == 0:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
else:
|
||||
upper = chain(
|
||||
clone(Maxout(hidden_width), (depth-1)),
|
||||
zero_init(Affine(nr_class, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
|
@ -412,20 +417,27 @@ cdef class Parser:
|
|||
cdef np.ndarray scores
|
||||
c_token_ids = <int*>token_ids.data
|
||||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
while not next_step.empty():
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
guess = arg_max_if_valid(
|
||||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
if not has_hidden:
|
||||
for i in cython.parallel.prange(
|
||||
next_step.size(), num_threads=6, nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, nr_class, nr_feat, nr_piece)
|
||||
else:
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(next_step.size()):
|
||||
st = next_step[i]
|
||||
guess = arg_max_if_valid(
|
||||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
|
@ -482,7 +494,31 @@ cdef class Parser:
|
|||
beams.append(beam)
|
||||
return beams
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil:
|
||||
'''This only works with no hidden layers -- fast but inaccurate'''
|
||||
#for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
|
||||
# self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(scores,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
if not any(self.moves.has_gold(gold) for gold in golds):
|
||||
return None
|
||||
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5:
|
||||
return self.update_beam(docs_tokvecs, golds,
|
||||
self.cfg['beam_width'], self.cfg['beam_density'],
|
||||
|
@ -555,6 +591,10 @@ cdef class Parser:
|
|||
|
||||
def update_beam(self, docs_tokvecs, golds, width=None, density=None,
|
||||
drop=0., sgd=None, losses=None):
|
||||
if not any(self.moves.has_gold(gold) for gold in golds):
|
||||
return None
|
||||
if not golds:
|
||||
return None
|
||||
if width is None:
|
||||
width = self.cfg.get('beam_width', 2)
|
||||
if density is None:
|
||||
|
|
|
@ -303,8 +303,14 @@ cdef class Doc:
|
|||
return self.user_hooks['vector'](self)
|
||||
if self._vector is not None:
|
||||
return self._vector
|
||||
elif self.has_vector and len(self):
|
||||
self._vector = sum(t.vector for t in self) / len(self)
|
||||
elif not len(self):
|
||||
self._vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
|
||||
return self._vector
|
||||
elif self.has_vector:
|
||||
vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
|
||||
for token in self.c[:self.length]:
|
||||
vector += self.vocab.get_vector(token.lex.orth)
|
||||
self._vector = vector / len(self)
|
||||
return self._vector
|
||||
elif self.tensor is not None:
|
||||
self._vector = self.tensor.mean(axis=0)
|
||||
|
|
|
@ -4,6 +4,7 @@ from __future__ import unicode_literals
|
|||
import bz2
|
||||
import ujson
|
||||
import re
|
||||
import numpy
|
||||
|
||||
from libc.string cimport memset, memcpy
|
||||
from libc.stdint cimport int32_t
|
||||
|
@ -244,7 +245,7 @@ cdef class Vocab:
|
|||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
return len(self.vectors)
|
||||
return self.vectors.data.shape[1]
|
||||
|
||||
def clear_vectors(self, new_dim=None):
|
||||
"""Drop the current vector table. Because all vectors must be the same
|
||||
|
@ -268,7 +269,10 @@ cdef class Vocab:
|
|||
"""
|
||||
if isinstance(orth, basestring_):
|
||||
orth = self.strings.add(orth)
|
||||
return self.vectors[orth]
|
||||
if orth in self.vectors.key2row:
|
||||
return self.vectors[orth]
|
||||
else:
|
||||
return numpy.zeros((self.vectors_length,), dtype='f')
|
||||
|
||||
def set_vector(self, orth, vector):
|
||||
"""Set a vector for a word in the vocabulary.
|
||||
|
|
|
@ -21,7 +21,7 @@ p
|
|||
+pos-row("$", "SYM", "SymType=currency", "symbol, currency")
|
||||
+pos-row("ADD", "X", "", "email")
|
||||
+pos-row("AFX", "ADJ", "Hyph=yes", "affix")
|
||||
+pos-row("BES", "VERB", "", 'auxillary "be"')
|
||||
+pos-row("BES", "VERB", "", 'auxiliary "be"')
|
||||
+pos-row("CC", "CONJ", "ConjType=coor", "conjunction, coordinating")
|
||||
+pos-row("CD", "NUM", "NumType=card", "cardinal number")
|
||||
+pos-row("DT", "DET", "determiner")
|
||||
|
@ -35,7 +35,7 @@ p
|
|||
+pos-row("JJR", "ADJ", "Degree=comp", "adjective, comparative")
|
||||
+pos-row("JJS", "ADJ", "Degree=sup", "adjective, superlative")
|
||||
+pos-row("LS", "PUNCT", "NumType=ord", "list item marker")
|
||||
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxillary")
|
||||
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxiliary")
|
||||
+pos-row("NFP", "PUNCT", "", "superfluous punctuation")
|
||||
+pos-row("NIL", "", "", "missing tag")
|
||||
+pos-row("NN", "NOUN", "Number=sing", "noun, singular or mass")
|
||||
|
|
|
@ -205,7 +205,7 @@ p Retokenize the document, such that the span is merged into a single token.
|
|||
|
||||
p
|
||||
| The token within the span that's highest in the parse tree. If there's a
|
||||
| tie, the earlist is prefered.
|
||||
| tie, the earliest is preferred.
|
||||
|
||||
+aside-code("Example").
|
||||
doc = nlp(u'I like New York in Autumn.')
|
||||
|
|
|
@ -39,7 +39,7 @@ p
|
|||
+h(2, "special-cases") Adding special case tokenization rules
|
||||
|
||||
p
|
||||
| Most domains have at least some idiosyncracies that require custom
|
||||
| Most domains have at least some idiosyncrasies that require custom
|
||||
| tokenization rules. This could be very certain expressions, or
|
||||
| abbreviations only used in this specific field.
|
||||
|
||||
|
|
|
@ -109,7 +109,7 @@ p
|
|||
| The other way to install spaCy is to clone its
|
||||
| #[+a(gh("spaCy")) GitHub repository] and build it from source. That is
|
||||
| the common way if you want to make changes to the code base. You'll need to
|
||||
| make sure that you have a development enviroment consisting of a Python
|
||||
| make sure that you have a development environment consisting of a Python
|
||||
| distribution including header files, a compiler,
|
||||
| #[+a("https://pip.pypa.io/en/latest/installing/") pip],
|
||||
| #[+a("https://virtualenv.pypa.io/") virtualenv] and
|
||||
|
|
|
@ -190,10 +190,10 @@ p
|
|||
|
||||
+code("Examples", "bash").
|
||||
# set up shortcut link to load installed package as "en_default"
|
||||
python -m spacy link en_core_web_md en_default
|
||||
spacy link en_core_web_md en_default
|
||||
|
||||
# set up shortcut link to load local model as "my_amazing_model"
|
||||
python -m spacy link /Users/you/model my_amazing_model
|
||||
spacy link /Users/you/model my_amazing_model
|
||||
|
||||
+infobox("Important note")
|
||||
| In order to create a symlink, your user needs the #[strong required permissions].
|
||||
|
|
|
@ -40,7 +40,7 @@ p
|
|||
+cell #[code VerbForm=Fin], #[code Mood=Ind], #[code Tense=Pres]
|
||||
|
||||
+row
|
||||
+cell I read the paper yesteday
|
||||
+cell I read the paper yesterday
|
||||
+cell read
|
||||
+cell read
|
||||
+cell verb
|
||||
|
|
|
@ -94,7 +94,7 @@ p
|
|||
| is mostly intended as a convenient, interactive wrapper. It performs
|
||||
| compatibility checks and prints detailed error messages and warnings.
|
||||
| However, if you're downloading models as part of an automated build
|
||||
| process, this only adds an unecessary layer of complexity. If you know
|
||||
| process, this only adds an unnecessary layer of complexity. If you know
|
||||
| which models your application needs, you should be specifying them directly.
|
||||
|
||||
p
|
||||
|
|
Loading…
Reference in New Issue
Block a user