Merge remote-tracking branch 'upstream/develop' into indonesian

This commit is contained in:
Jim Geovedi 2017-08-25 09:21:49 +08:00
commit 58d8078971
25 changed files with 340 additions and 85 deletions

View File

@ -229,7 +229,7 @@ Compile from source
The other way to install spaCy is to clone its
`GitHub repository <https://github.com/explosion/spaCy>`_ and build it from
source. That is the common way if you want to make changes to the code base.
You'll need to make sure that you have a development enviroment consisting of a
You'll need to make sure that you have a development environment consisting of a
Python distribution including header files, a compiler,
`pip <https://pip.pypa.io/en/latest/installing/>`__, `virtualenv <https://virtualenv.pypa.io/>`_
and `git <https://git-scm.com>`_ installed. The compiler part is the trickiest.

View File

@ -3,15 +3,23 @@ from __future__ import print_function
# NB! This breaks in plac on Python 2!!
#from __future__ import unicode_literals
if __name__ == '__main__':
import plac
import sys
from spacy.cli import download, link, info, package, train, convert
from spacy.cli import download, link, info, package, train, convert, model
from spacy.cli import profile
from spacy.util import prints
commands = {'download': download, 'link': link, 'info': info, 'train': train,
'convert': convert, 'package': package}
commands = {
'download': download,
'link': link,
'info': info,
'train': train,
'convert': convert,
'package': package,
'model': model,
'profile': profile,
}
if len(sys.argv) == 1:
prints(', '.join(commands), title="Available commands", exits=1)
command = sys.argv.pop(1)
@ -19,5 +27,7 @@ if __name__ == '__main__':
if command in commands:
plac.call(commands[command])
else:
prints("Available: %s" % ', '.join(commands),
title="Unknown command: %s" % command, exits=1)
prints(
"Available: %s" % ', '.join(commands),
title="Unknown command: %s" % command,
exits=1)

View File

@ -218,7 +218,10 @@ def drop_layer(layer, factor=2.):
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
return wrap(drop_layer_fwd, layer)
model = wrap(drop_layer_fwd, layer)
model.predict = layer
return model
def Tok2Vec(width, embed_size, preprocess=None):
@ -359,8 +362,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
def fine_tune(embedding, combine=None):
if combine is not None:
raise NotImplementedError(
@ -373,22 +374,30 @@ def fine_tune(embedding, combine=None):
flat_tokvecs = embedding.ops.flatten(tokvecs)
flat_vecs = embedding.ops.flatten(vecs)
output = embedding.ops.unflatten(
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
lengths)
(model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths)
def fine_tune_bwd(d_output, sgd=None):
bp_vecs(d_output, sgd=sgd)
flat_grad = model.ops.flatten(d_output)
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum()
bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd)
if sgd is not None:
sgd(model._mem.weights, model._mem.gradient, key=model.id)
return d_output
return [d_o * model.mix[0] for d_o in d_output]
return output, fine_tune_bwd
def fine_tune_predict(docs_tokvecs):
docs, tokvecs = docs_tokvecs
vecs = embedding(docs)
return [model.mix[0]*tv+model.mix[1]*v
for tv, v in zip(tokvecs, vecs)]
model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(1.)
model.mix.fill(0.5)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
model.predict = fine_tune_predict
return model

View File

@ -2,5 +2,7 @@ from .download import download
from .info import info
from .link import link
from .package import package
from .profile import profile
from .train import train
from .convert import convert
from .model import model

View File

@ -24,13 +24,14 @@ def download(cmd, model, direct=False):
with version.
"""
if direct:
download_model('{m}/{m}.tar.gz'.format(m=model))
dl = download_model('{m}/{m}.tar.gz'.format(m=model))
else:
shortcuts = get_json(about.__shortcuts__, "available shortcuts")
model_name = shortcuts.get(model, model)
compatibility = get_compatibility()
version = get_version(model_name, compatibility)
download_model('{m}-{v}/{m}-{v}.tar.gz'.format(m=model_name, v=version))
dl = download_model('{m}-{v}/{m}-{v}.tar.gz'.format(m=model_name, v=version))
if dl == 0:
try:
# Get package path here because link uses
# pip.get_installed_distributions() to check if model is a package,
@ -77,6 +78,6 @@ def get_version(model, comp):
def download_model(filename):
download_url = about.__download_url__ + '/' + filename
subprocess.call([sys.executable, '-m',
return subprocess.call([sys.executable, '-m',
'pip', 'install', '--no-cache-dir', download_url],
env=os.environ.copy())

119
spacy/cli/model.py Normal file
View File

@ -0,0 +1,119 @@
# coding: utf8
from __future__ import unicode_literals
import gzip
import math
from ast import literal_eval
from pathlib import Path
from preshed.counter import PreshCounter
import spacy
from ..compat import fix_text
from .. import util
def model(cmd, lang, model_dir, freqs_data, clusters_data, vectors_data):
model_path = Path(model_dir)
freqs_path = Path(freqs_data)
clusters_path = Path(clusters_data) if clusters_data else None
vectors_path = Path(vectors_data) if vectors_data else None
check_dirs(freqs_path, clusters_path, vectors_path)
# vocab = util.get_lang_class(lang).Defaults.create_vocab()
nlp = spacy.blank(lang)
vocab = nlp.vocab
probs, oov_prob = read_probs(freqs_path)
clusters = read_clusters(clusters_path) if clusters_path else {}
populate_vocab(vocab, clusters, probs, oov_prob)
create_model(model_path, nlp)
def create_model(model_path, model):
if not model_path.exists():
model_path.mkdir()
model.to_disk(model_path.as_posix())
def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200):
counts = PreshCounter()
total = 0
freqs_file = check_unzip(freqs_path)
for i, line in enumerate(freqs_file):
freq, doc_freq, key = line.rstrip().split('\t', 2)
freq = int(freq)
counts.inc(i + 1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
freqs_file = check_unzip(freqs_path)
probs = {}
for line in freqs_file:
freq, doc_freq, key = line.rstrip().split('\t', 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(
key) < max_length:
word = literal_eval(key)
smooth_count = counts.smoother(int(freq))
probs[word] = math.log(smooth_count) - log_total
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def read_clusters(clusters_path):
clusters = {}
with clusters_path.open() as f:
for line in f:
try:
cluster, word, freq = line.split()
word = fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its
# cluster is unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = '0'
# Expand clusters with re-casing
for word, cluster in list(clusters.items()):
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters:
clusters[word.upper()] = cluster
return clusters
def populate_vocab(vocab, clusters, probs, oov_prob):
for word, prob in reversed(
sorted(list(probs.items()), key=lambda item: item[1])):
lexeme = vocab[word]
lexeme.prob = prob
lexeme.is_oov = False
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
lexeme.cluster = int(clusters[word][::-1], 2)
else:
lexeme.cluster = 0
def check_unzip(file_path):
file_path_str = file_path.as_posix()
if file_path_str.endswith('gz'):
return gzip.open(file_path_str)
else:
return file_path.open()
def check_dirs(freqs_data, clusters_data, vectors_data):
if not freqs_data.is_file():
util.sys_exit(freqs_data.as_posix(), title="No frequencies file found")
if clusters_data and not clusters_data.is_file():
util.sys_exit(
clusters_data.as_posix(), title="No Brown clusters file found")
if vectors_data and not vectors_data.is_file():
util.sys_exit(
vectors_data.as_posix(), title="No word vectors file found")

45
spacy/cli/profile.py Normal file
View File

@ -0,0 +1,45 @@
# coding: utf8
from __future__ import unicode_literals, division, print_function
import plac
from pathlib import Path
import ujson
import cProfile
import pstats
import spacy
import sys
import tqdm
import cytoolz
def read_inputs(loc):
if loc is None:
file_ = sys.stdin
file_ = (line.encode('utf8') for line in file_)
else:
file_ = Path(loc).open()
for line in file_:
data = ujson.loads(line)
text = data['text']
yield text
@plac.annotations(
lang=("model/language", "positional", None, str),
inputs=("Location of input file", "positional", None, read_inputs)
)
def profile(cmd, lang, inputs=None):
"""
Profile a spaCy pipeline, to find out which functions take the most time.
"""
nlp = spacy.load(lang)
texts = list(cytoolz.take(10000, inputs))
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()
def parse_texts(nlp, texts):
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=128):
pass

View File

@ -32,10 +32,12 @@ from ..compat import json_dumps
resume=("Whether to resume training", "flag", "R", bool),
no_tagger=("Don't train tagger", "flag", "T", bool),
no_parser=("Don't train parser", "flag", "P", bool),
no_entities=("Don't train NER", "flag", "N", bool)
no_entities=("Don't train NER", "flag", "N", bool),
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
)
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False):
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False,
gold_preproc=False):
"""
Train a model. Expects data in spaCy's JSON format.
"""
@ -86,13 +88,13 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
i += 20
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
train_docs = corpus.train_docs(nlp, projectivize=True,
gold_preproc=False, max_length=0)
gold_preproc=gold_preproc, max_length=0)
losses = {}
for batch in minibatch(train_docs, size=batch_sizes):
docs, golds = zip(*batch)
nlp.update(docs, golds, sgd=optimizer,
drop=next(dropout_rates), losses=losses,
update_tensors=True)
update_shared=True)
pbar.update(sum(len(doc) for doc in docs))
with nlp.use_params(optimizer.averages):
@ -104,7 +106,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
scorer = nlp_loaded.evaluate(
corpus.dev_docs(
nlp_loaded,
gold_preproc=False))
gold_preproc=gold_preproc))
acc_loc =(output_path / ('model%d' % i) / 'accuracy.json')
with acc_loc.open('w') as file_:
file_.write(json_dumps(scorer.scores))

View File

@ -60,7 +60,7 @@ GLOSSARY = {
'JJR': 'adjective, comparative',
'JJS': 'adjective, superlative',
'LS': 'list item marker',
'MD': 'verb, modal auxillary',
'MD': 'verb, modal auxiliary',
'NIL': 'missing tag',
'NN': 'noun, singular or mass',
'NNP': 'noun, proper singular',
@ -91,7 +91,7 @@ GLOSSARY = {
'NFP': 'superfluous punctuation',
'GW': 'additional word in multi-word expression',
'XX': 'unknown',
'BES': 'auxillary "be"',
'BES': 'auxiliary "be"',
'HVS': 'forms of "have"',

View File

@ -406,11 +406,11 @@ cdef class GoldParse:
if tags is None:
tags = [None for _ in doc]
if heads is None:
heads = [token.i for token in doc]
heads = [None for token in doc]
if deps is None:
deps = [None for _ in doc]
if entities is None:
entities = ['-' for _ in doc]
entities = [None for _ in doc]
elif len(entities) == 0:
entities = ['O' for _ in doc]
elif not isinstance(entities[0], basestring):

View File

@ -232,7 +232,10 @@ for verb_data in [
{ORTH: "are", LEMMA: "be", NORM: "are", TAG: "VBP", "number": 2},
{ORTH: "is", LEMMA: "be", NORM: "is", TAG: "VBZ"},
{ORTH: "was", LEMMA: "be", NORM: "was"},
{ORTH: "were", LEMMA: "be", NORM: "were"}]:
{ORTH: "were", LEMMA: "be", NORM: "were"},
{ORTH: "have", NORM: "have"},
{ORTH: "has", LEMMA: "have", NORM: "has"},
{ORTH: "dare", NORM: "dare"}]:
verb_data_tc = dict(verb_data)
verb_data_tc[ORTH] = verb_data_tc[ORTH].title()
for data in [verb_data, verb_data_tc]:

View File

@ -200,6 +200,7 @@ class Language(object):
else:
flat_list.append(pipe)
self.pipeline = flat_list
self._optimizer = None
@property
def meta(self):
@ -278,7 +279,7 @@ class Language(object):
return self.tokenizer(text)
def update(self, docs, golds, drop=0., sgd=None, losses=None,
update_tensors=False):
update_shared=False):
"""Update the models in the pipeline.
docs (iterable): A batch of `Doc` objects.
@ -298,6 +299,10 @@ class Language(object):
"Got: %d, %d" % (len(docs), len(golds)))
if len(docs) == 0:
return
if sgd is None:
if self._optimizer is None:
self._optimizer = Adam(Model.ops, 0.001)
sgd = self._optimizer
tok2vec = self.pipeline[0]
feats = tok2vec.doc2feats(docs)
grads = {}
@ -312,9 +317,10 @@ class Language(object):
continue
d_tokvecses = proc.update((docs, tokvecses), golds,
drop=drop, sgd=get_grads, losses=losses)
if update_tensors and d_tokvecses is not None:
if update_shared and d_tokvecses is not None:
for i, d_tv in enumerate(d_tokvecses):
all_d_tokvecses[i] += d_tv
if update_shared and bp_tokvecses is not None:
bp_tokvecses(all_d_tokvecses, sgd=sgd)
for key, (W, dW) in grads.items():
sgd(W, dW, key=key)
@ -378,11 +384,11 @@ class Language(object):
eps = util.env_opt('optimizer_eps', 1e-08)
L2 = util.env_opt('L2_penalty', 1e-6)
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
self._optimizer = Adam(Model.ops, learn_rate, L2=L2, beta1=beta1,
beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
optimizer.device = device
return optimizer
self._optimizer.max_grad_norm = max_grad_norm
self._optimizer.device = device
return self._optimizer
def evaluate(self, docs_golds):
scorer = Scorer()

View File

@ -294,6 +294,8 @@ class NeuralTagger(BaseThincComponent):
doc.is_tagged = True
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
if losses is not None and self.name not in losses:
losses[self.name] = 0.
docs, tokvecs = docs_tokvecs
if self.model.nI is None:
@ -302,6 +304,8 @@ class NeuralTagger(BaseThincComponent):
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
if losses is not None:
losses[self.name] += loss
return d_tokvecs
def get_loss(self, docs, golds, scores):

View File

@ -113,7 +113,7 @@ cdef class BiluoPushDown(TransitionSystem):
def has_gold(self, GoldParse gold, start=0, end=None):
end = end or len(gold.ner)
if all([tag == '-' for tag in gold.ner[start:end]]):
if all([tag in ('-', None) for tag in gold.ner[start:end]]):
return False
else:
return True

View File

@ -14,4 +14,8 @@ cdef class Parser:
cdef readonly TransitionSystem moves
cdef readonly object cfg
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -257,10 +257,15 @@ cdef class Parser:
nI=token_vector_width)
with Model.use_device('cpu'):
if depth == 0:
upper = chain()
upper.is_noop = True
else:
upper = chain(
clone(Maxout(hidden_width), (depth-1)),
zero_init(Affine(nr_class, drop_factor=0.0))
)
upper.is_noop = False
# TODO: This is an unfortunate hack atm!
# Used to set input dimensions in network.
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
@ -412,7 +417,14 @@ cdef class Parser:
cdef np.ndarray scores
c_token_ids = <int*>token_ids.data
c_is_valid = <int*>is_valid.data
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
while not next_step.empty():
if not has_hidden:
for i in cython.parallel.prange(
next_step.size(), num_threads=6, nogil=True):
self._parse_step(next_step[i],
feat_weights, nr_class, nr_feat, nr_piece)
else:
for i in range(next_step.size()):
st = next_step[i]
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
@ -482,7 +494,31 @@ cdef class Parser:
beams.append(beam)
return beams
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil:
'''This only works with no hidden layers -- fast but inaccurate'''
#for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
# self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
state.set_context_tokens(token_ids, nr_feat)
sum_state_features(scores,
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
self.moves.set_valid(is_valid, state)
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
action = self.moves.c[guess]
action.do(state, action.label)
free(is_valid)
free(scores)
free(token_ids)
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
if not any(self.moves.has_gold(gold) for gold in golds):
return None
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5:
return self.update_beam(docs_tokvecs, golds,
self.cfg['beam_width'], self.cfg['beam_density'],
@ -555,6 +591,10 @@ cdef class Parser:
def update_beam(self, docs_tokvecs, golds, width=None, density=None,
drop=0., sgd=None, losses=None):
if not any(self.moves.has_gold(gold) for gold in golds):
return None
if not golds:
return None
if width is None:
width = self.cfg.get('beam_width', 2)
if density is None:

View File

@ -303,8 +303,14 @@ cdef class Doc:
return self.user_hooks['vector'](self)
if self._vector is not None:
return self._vector
elif self.has_vector and len(self):
self._vector = sum(t.vector for t in self) / len(self)
elif not len(self):
self._vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
return self._vector
elif self.has_vector:
vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
for token in self.c[:self.length]:
vector += self.vocab.get_vector(token.lex.orth)
self._vector = vector / len(self)
return self._vector
elif self.tensor is not None:
self._vector = self.tensor.mean(axis=0)

View File

@ -4,6 +4,7 @@ from __future__ import unicode_literals
import bz2
import ujson
import re
import numpy
from libc.string cimport memset, memcpy
from libc.stdint cimport int32_t
@ -244,7 +245,7 @@ cdef class Vocab:
@property
def vectors_length(self):
return len(self.vectors)
return self.vectors.data.shape[1]
def clear_vectors(self, new_dim=None):
"""Drop the current vector table. Because all vectors must be the same
@ -268,7 +269,10 @@ cdef class Vocab:
"""
if isinstance(orth, basestring_):
orth = self.strings.add(orth)
if orth in self.vectors.key2row:
return self.vectors[orth]
else:
return numpy.zeros((self.vectors_length,), dtype='f')
def set_vector(self, orth, vector):
"""Set a vector for a word in the vocabulary.

View File

@ -21,7 +21,7 @@ p
+pos-row("$", "SYM", "SymType=currency", "symbol, currency")
+pos-row("ADD", "X", "", "email")
+pos-row("AFX", "ADJ", "Hyph=yes", "affix")
+pos-row("BES", "VERB", "", 'auxillary "be"')
+pos-row("BES", "VERB", "", 'auxiliary "be"')
+pos-row("CC", "CONJ", "ConjType=coor", "conjunction, coordinating")
+pos-row("CD", "NUM", "NumType=card", "cardinal number")
+pos-row("DT", "DET", "determiner")
@ -35,7 +35,7 @@ p
+pos-row("JJR", "ADJ", "Degree=comp", "adjective, comparative")
+pos-row("JJS", "ADJ", "Degree=sup", "adjective, superlative")
+pos-row("LS", "PUNCT", "NumType=ord", "list item marker")
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxillary")
+pos-row("MD", "VERB", "VerbType=mod", "verb, modal auxiliary")
+pos-row("NFP", "PUNCT", "", "superfluous punctuation")
+pos-row("NIL", "", "", "missing tag")
+pos-row("NN", "NOUN", "Number=sing", "noun, singular or mass")

View File

@ -205,7 +205,7 @@ p Retokenize the document, such that the span is merged into a single token.
p
| The token within the span that's highest in the parse tree. If there's a
| tie, the earlist is prefered.
| tie, the earliest is preferred.
+aside-code("Example").
doc = nlp(u'I like New York in Autumn.')

View File

@ -39,7 +39,7 @@ p
+h(2, "special-cases") Adding special case tokenization rules
p
| Most domains have at least some idiosyncracies that require custom
| Most domains have at least some idiosyncrasies that require custom
| tokenization rules. This could be very certain expressions, or
| abbreviations only used in this specific field.

View File

@ -109,7 +109,7 @@ p
| The other way to install spaCy is to clone its
| #[+a(gh("spaCy")) GitHub repository] and build it from source. That is
| the common way if you want to make changes to the code base. You'll need to
| make sure that you have a development enviroment consisting of a Python
| make sure that you have a development environment consisting of a Python
| distribution including header files, a compiler,
| #[+a("https://pip.pypa.io/en/latest/installing/") pip],
| #[+a("https://virtualenv.pypa.io/") virtualenv] and

View File

@ -190,10 +190,10 @@ p
+code("Examples", "bash").
# set up shortcut link to load installed package as "en_default"
python -m spacy link en_core_web_md en_default
spacy link en_core_web_md en_default
# set up shortcut link to load local model as "my_amazing_model"
python -m spacy link /Users/you/model my_amazing_model
spacy link /Users/you/model my_amazing_model
+infobox("Important note")
| In order to create a symlink, your user needs the #[strong required permissions].

View File

@ -40,7 +40,7 @@ p
+cell #[code VerbForm=Fin], #[code Mood=Ind], #[code Tense=Pres]
+row
+cell I read the paper yesteday
+cell I read the paper yesterday
+cell read
+cell read
+cell verb

View File

@ -94,7 +94,7 @@ p
| is mostly intended as a convenient, interactive wrapper. It performs
| compatibility checks and prints detailed error messages and warnings.
| However, if you're downloading models as part of an automated build
| process, this only adds an unecessary layer of complexity. If you know
| process, this only adds an unnecessary layer of complexity. If you know
| which models your application needs, you should be specifying them directly.
p