mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-24 17:06:29 +03:00
Korean support (#3901)
* start lang/ko * add test codes * using natto-py * add test_ko_tokenizer_full_tags() * spaCy contributor agreement * external dependency for ko * collections.namedtuple for python version < 3.5 * case fix * tuple unpacking * add jongseong(final consonant) * apply mecab option * Remove Pipfile for now Co-authored-by: Ines Montani <ines@ines.io>
This commit is contained in:
parent
547464609d
commit
58f06e6180
106
.github/contributors/cedar101.md
vendored
Normal file
106
.github/contributors/cedar101.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | ------------------------ |
|
||||
| Name | Kim, Baeg-il |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 2019-07-03 |
|
||||
| GitHub username | cedar101 |
|
||||
| Website (optional) | |
|
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -56,6 +56,8 @@ parts/
|
|||
sdist/
|
||||
var/
|
||||
*.egg-info/
|
||||
pip-wheel-metadata/
|
||||
Pipfile.lock
|
||||
.installed.cfg
|
||||
*.egg
|
||||
.eggs
|
||||
|
|
1
setup.py
1
setup.py
|
@ -246,6 +246,7 @@ def setup_package():
|
|||
"cuda100": ["thinc_gpu_ops>=0.0.1,<0.1.0", "cupy-cuda100>=5.0.0b4"],
|
||||
# Language tokenizers with external dependencies
|
||||
"ja": ["mecab-python3==0.7"],
|
||||
"ko": ["natto-py==0.9.0"],
|
||||
},
|
||||
python_requires=">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*",
|
||||
classifiers=[
|
||||
|
|
118
spacy/lang/ko/__init__.py
Normal file
118
spacy/lang/ko/__init__.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
# encoding: utf8
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tag_map import TAG_MAP, POS
|
||||
from ...attrs import LANG
|
||||
from ...language import Language
|
||||
from ...tokens import Doc
|
||||
from ...compat import copy_reg
|
||||
from ...util import DummyTokenizer
|
||||
from ...compat import is_python3, is_python_pre_3_5
|
||||
|
||||
is_python_post_3_7 = is_python3 and sys.version_info[1] >= 7
|
||||
|
||||
# fmt: off
|
||||
if is_python_pre_3_5:
|
||||
from collections import namedtuple
|
||||
Morpheme = namedtuple("Morpheme", "surface lemma tag")
|
||||
elif is_python_post_3_7:
|
||||
from dataclasses import dataclass
|
||||
@dataclass(frozen=True)
|
||||
class Morpheme:
|
||||
surface: str
|
||||
lemma: str
|
||||
tag: str
|
||||
else:
|
||||
from typing import NamedTuple
|
||||
class Morpheme(NamedTuple):
|
||||
surface: str
|
||||
lemma: str
|
||||
tag: str
|
||||
|
||||
|
||||
def try_mecab_import():
|
||||
try:
|
||||
from natto import MeCab
|
||||
return MeCab
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Korean support requires [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
|
||||
"[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
|
||||
"and [natto-py](https://github.com/buruzaemon/natto-py)"
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
|
||||
def check_spaces(text, tokens):
|
||||
token_pattern = re.compile(r"\s?".join(f"({t})" for t in tokens))
|
||||
m = token_pattern.match(text)
|
||||
if m is not None:
|
||||
for i in range(1, m.lastindex):
|
||||
yield m.end(i) < m.start(i + 1)
|
||||
yield False
|
||||
|
||||
|
||||
class KoreanTokenizer(DummyTokenizer):
|
||||
def __init__(self, cls, nlp=None):
|
||||
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
||||
self.Tokenizer = try_mecab_import()
|
||||
|
||||
def __call__(self, text):
|
||||
dtokens = list(self.detailed_tokens(text))
|
||||
surfaces = [dt.surface for dt in dtokens]
|
||||
doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
|
||||
for token, dtoken in zip(doc, dtokens):
|
||||
first_tag, sep, eomi_tags = dtoken.tag.partition("+")
|
||||
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
||||
token.lemma_ = dtoken.lemma
|
||||
doc.user_data["full_tags"] = [dt.tag for dt in dtokens]
|
||||
return doc
|
||||
|
||||
def detailed_tokens(self, text):
|
||||
# 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3],
|
||||
# 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], *
|
||||
with self.Tokenizer("-F%f[0],%f[7]") as tokenizer:
|
||||
for node in tokenizer.parse(text, as_nodes=True):
|
||||
if node.is_eos():
|
||||
break
|
||||
surface = node.surface
|
||||
feature = node.feature
|
||||
tag, _, expr = feature.partition(",")
|
||||
lemma, _, remainder = expr.partition("/")
|
||||
if lemma == "*":
|
||||
lemma = surface
|
||||
yield Morpheme(surface, lemma, tag)
|
||||
|
||||
|
||||
class KoreanDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda _text: "ko"
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||
|
||||
@classmethod
|
||||
def create_tokenizer(cls, nlp=None):
|
||||
return KoreanTokenizer(cls, nlp)
|
||||
|
||||
|
||||
class Korean(Language):
|
||||
lang = "ko"
|
||||
Defaults = KoreanDefaults
|
||||
|
||||
def make_doc(self, text):
|
||||
return self.tokenizer(text)
|
||||
|
||||
|
||||
def pickle_korean(instance):
|
||||
return Korean, tuple()
|
||||
|
||||
|
||||
copy_reg.pickle(Korean, pickle_korean)
|
||||
|
||||
__all__ = ["Korean"]
|
15
spacy/lang/ko/examples.py
Normal file
15
spacy/lang/ko/examples.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.ko.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
sentences = [
|
||||
"애플이 영국의 신생 기업을 10억 달러에 구매를 고려중이다.",
|
||||
"자동 운전 자동차의 손해 배상 책임에 자동차 메이커에 일정한 부담을 요구하겠다.",
|
||||
"자동 배달 로봇이 보도를 주행하는 것을 샌프란시스코시가 금지를 검토중이라고 합니다.",
|
||||
"런던은 영국의 수도이자 가장 큰 도시입니다."
|
||||
]
|
68
spacy/lang/ko/stop_words.py
Normal file
68
spacy/lang/ko/stop_words.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
STOP_WORDS = set("""
|
||||
이
|
||||
있
|
||||
하
|
||||
것
|
||||
들
|
||||
그
|
||||
되
|
||||
수
|
||||
이
|
||||
보
|
||||
않
|
||||
없
|
||||
나
|
||||
주
|
||||
아니
|
||||
등
|
||||
같
|
||||
때
|
||||
년
|
||||
가
|
||||
한
|
||||
지
|
||||
오
|
||||
말
|
||||
일
|
||||
그렇
|
||||
위하
|
||||
때문
|
||||
그것
|
||||
두
|
||||
말하
|
||||
알
|
||||
그러나
|
||||
받
|
||||
못하
|
||||
일
|
||||
그런
|
||||
또
|
||||
더
|
||||
많
|
||||
그리고
|
||||
좋
|
||||
크
|
||||
시키
|
||||
그러
|
||||
하나
|
||||
살
|
||||
데
|
||||
안
|
||||
어떤
|
||||
번
|
||||
나
|
||||
다른
|
||||
어떻
|
||||
들
|
||||
이렇
|
||||
점
|
||||
싶
|
||||
말
|
||||
좀
|
||||
원
|
||||
잘
|
||||
놓
|
||||
""".split())
|
66
spacy/lang/ko/tag_map.py
Normal file
66
spacy/lang/ko/tag_map.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
# encoding: utf8
|
||||
from __future__ import unicode_literals
|
||||
from collections import defaultdict
|
||||
|
||||
from ...symbols import (POS, PUNCT, INTJ, X, SYM,
|
||||
ADJ, AUX, ADP, CONJ, NOUN, PRON, VERB, ADV, PROPN,
|
||||
NUM, DET)
|
||||
|
||||
# 은전한닢(mecab-ko-dic)의 품사 태그를 universal pos tag로 대응시킴
|
||||
# https://docs.google.com/spreadsheets/d/1-9blXKjtjeKZqsf4NzHeYJCrr49-nXeRF6D80udfcwY/edit#gid=589544265
|
||||
# https://universaldependencies.org/u/pos/
|
||||
TAG_MAP = {
|
||||
# J.{1,2} 조사
|
||||
"JKS": {POS: ADP},
|
||||
"JKC": {POS: ADP},
|
||||
"JKG": {POS: ADP},
|
||||
"JKO": {POS: ADP},
|
||||
"JKB": {POS: ADP},
|
||||
"JKV": {POS: ADP},
|
||||
"JKQ": {POS: ADP},
|
||||
"JX": {POS: ADP}, # 보조사
|
||||
"JC": {POS: CONJ}, # 접속 조사
|
||||
"MAJ": {POS: CONJ}, # 접속 부사
|
||||
"MAG": {POS: ADV}, # 일반 부사
|
||||
"MM": {POS: DET}, # 관형사
|
||||
|
||||
"XPN": {POS: X}, # 접두사
|
||||
# XS. 접미사
|
||||
"XSN": {POS: X},
|
||||
"XSV": {POS: X},
|
||||
"XSA": {POS: X},
|
||||
"XR": {POS: X}, # 어근
|
||||
# E.{1,2} 어미
|
||||
"EP": {POS: X},
|
||||
"EF": {POS: X},
|
||||
"EC": {POS: X},
|
||||
"ETN": {POS: X},
|
||||
"ETM": {POS: X},
|
||||
|
||||
"IC": {POS: INTJ}, # 감탄사
|
||||
|
||||
"VV": {POS: VERB}, # 동사
|
||||
"VA": {POS: ADJ}, # 형용사
|
||||
"VX": {POS: AUX}, # 보조 용언
|
||||
"VCP": {POS: ADP}, # 긍정 지정사(이다)
|
||||
"VCN": {POS: ADJ}, # 부정 지정사(아니다)
|
||||
|
||||
"NNG": {POS: NOUN}, # 일반 명사(general noun)
|
||||
"NNB": {POS: NOUN}, # 의존 명사
|
||||
"NNBC": {POS: NOUN}, # 의존 명사(단위: unit)
|
||||
"NNP": {POS: PROPN}, # 고유 명사(proper noun)
|
||||
"NP": {POS: PRON}, # 대명사
|
||||
"NR": {POS: NUM}, # 수사(numerals)
|
||||
"SN": {POS: NUM}, # 숫자
|
||||
|
||||
# S.{1,2} 부호
|
||||
# 문장 부호
|
||||
"SF": {POS: PUNCT}, # period or other EOS marker
|
||||
"SE": {POS: PUNCT},
|
||||
"SC": {POS: PUNCT}, # comma, etc.
|
||||
"SSO": {POS: PUNCT}, # open bracket
|
||||
"SSC": {POS: PUNCT}, # close bracket
|
||||
"SY": {POS: SYM}, # 기타 기호
|
||||
"SL": {POS: X}, # 외국어
|
||||
"SH": {POS: X}, # 한자
|
||||
}
|
|
@ -124,6 +124,12 @@ def ja_tokenizer():
|
|||
return get_lang_class("ja").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ko_tokenizer():
|
||||
pytest.importorskip("natto")
|
||||
return get_lang_class("ko").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def lt_tokenizer():
|
||||
return get_lang_class("lt").Defaults.create_tokenizer()
|
||||
|
|
0
spacy/tests/lang/ko/__init__.py
Normal file
0
spacy/tests/lang/ko/__init__.py
Normal file
13
spacy/tests/lang/ko/test_lemmatization.py
Normal file
13
spacy/tests/lang/ko/test_lemmatization.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"word,lemma",
|
||||
[("새로운", "새롭"), ("빨간", "빨갛"), ("클수록", "크"), ("뭡니까", "뭣"), ("됐다", "되")],
|
||||
)
|
||||
def test_ko_lemmatizer_assigns(ko_tokenizer, word, lemma):
|
||||
test_lemma = ko_tokenizer(word)[0].lemma_
|
||||
assert test_lemma == lemma
|
46
spacy/tests/lang/ko/test_tokenizer.py
Normal file
46
spacy/tests/lang/ko/test_tokenizer.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
# fmt: off
|
||||
TOKENIZER_TESTS = [("서울 타워 근처에 살고 있습니다.", "서울 타워 근처 에 살 고 있 습니다 ."),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.", "영등포구 에 있 는 맛집 좀 알려 주 세요 .")]
|
||||
|
||||
TAG_TESTS = [("서울 타워 근처에 살고 있습니다.",
|
||||
"NNP NNG NNG JKB VV EC VX EF SF"),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"NNP JKB VV ETM NNG MAG VV VX EP SF")]
|
||||
|
||||
FULL_TAG_TESTS = [("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"NNP JKB VV ETM NNG MAG VV+EC VX EP+EF SF")]
|
||||
|
||||
POS_TESTS = [("서울 타워 근처에 살고 있습니다.",
|
||||
"PROPN NOUN NOUN ADP VERB X AUX X PUNCT"),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"PROPN ADP VERB X NOUN ADV VERB AUX X PUNCT")]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS)
|
||||
def test_ko_tokenizer(ko_tokenizer, text, expected_tokens):
|
||||
tokens = [token.text for token in ko_tokenizer(text)]
|
||||
assert tokens == expected_tokens.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tags", TAG_TESTS)
|
||||
def test_ko_tokenizer_tags(ko_tokenizer, text, expected_tags):
|
||||
tags = [token.tag_ for token in ko_tokenizer(text)]
|
||||
assert tags == expected_tags.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tags", FULL_TAG_TESTS)
|
||||
def test_ko_tokenizer_full_tags(ko_tokenizer, text, expected_tags):
|
||||
tags = ko_tokenizer(text).user_data["full_tags"]
|
||||
assert tags == expected_tags.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_pos", POS_TESTS)
|
||||
def test_ko_tokenizer_pos(ko_tokenizer, text, expected_pos):
|
||||
pos = [token.pos_ for token in ko_tokenizer(text)]
|
||||
assert pos == expected_pos.split()
|
|
@ -153,6 +153,17 @@
|
|||
"example": "これは文章です。",
|
||||
"has_examples": true
|
||||
},
|
||||
{
|
||||
"code": "ko",
|
||||
"name": "Korean",
|
||||
"dependencies": [
|
||||
{ "name": "mecab-ko", "url": "https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md" },
|
||||
{ "name": "mecab-ko-dic", "url": "https://bitbucket.org/eunjeon/mecab-ko-dic" },
|
||||
{ "name": "natto-py", "url": "https://github.com/buruzaemon/natto-py"}
|
||||
],
|
||||
"example": "이것은 문장입니다.",
|
||||
"has_examples": true
|
||||
},
|
||||
{
|
||||
"code": "vi",
|
||||
"name": "Vietnamese",
|
||||
|
|
Loading…
Reference in New Issue
Block a user