mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
596c7718b2
106
.github/contributors/munozbravo.md
vendored
Normal file
106
.github/contributors/munozbravo.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Germán Muñoz |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 2019-06-01 |
|
||||||
|
| GitHub username | munozbravo |
|
||||||
|
| Website (optional) | |
|
|
@ -4,6 +4,7 @@ from __future__ import unicode_literals
|
||||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||||
from .tag_map import TAG_MAP
|
from .tag_map import TAG_MAP
|
||||||
from .stop_words import STOP_WORDS
|
from .stop_words import STOP_WORDS
|
||||||
|
from .lex_attrs import LEX_ATTRS
|
||||||
from .lemmatizer import LOOKUP
|
from .lemmatizer import LOOKUP
|
||||||
from .syntax_iterators import SYNTAX_ITERATORS
|
from .syntax_iterators import SYNTAX_ITERATORS
|
||||||
|
|
||||||
|
@ -16,6 +17,7 @@ from ...util import update_exc, add_lookups
|
||||||
|
|
||||||
class SpanishDefaults(Language.Defaults):
|
class SpanishDefaults(Language.Defaults):
|
||||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||||
|
lex_attr_getters.update(LEX_ATTRS)
|
||||||
lex_attr_getters[LANG] = lambda text: "es"
|
lex_attr_getters[LANG] = lambda text: "es"
|
||||||
lex_attr_getters[NORM] = add_lookups(
|
lex_attr_getters[NORM] = add_lookups(
|
||||||
Language.Defaults.lex_attr_getters[NORM], BASE_NORMS
|
Language.Defaults.lex_attr_getters[NORM], BASE_NORMS
|
||||||
|
|
59
spacy/lang/es/lex_attrs.py
Normal file
59
spacy/lang/es/lex_attrs.py
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
# coding: utf8
|
||||||
|
from __future__ import unicode_literals
|
||||||
|
|
||||||
|
from ...attrs import LIKE_NUM
|
||||||
|
|
||||||
|
|
||||||
|
_num_words = [
|
||||||
|
"cero",
|
||||||
|
"uno",
|
||||||
|
"dos",
|
||||||
|
"tres",
|
||||||
|
"cuatro",
|
||||||
|
"cinco",
|
||||||
|
"seis",
|
||||||
|
"siete",
|
||||||
|
"ocho",
|
||||||
|
"nueve",
|
||||||
|
"diez",
|
||||||
|
"once",
|
||||||
|
"doce",
|
||||||
|
"trece",
|
||||||
|
"catorce",
|
||||||
|
"quince",
|
||||||
|
"dieciséis",
|
||||||
|
"diecisiete",
|
||||||
|
"dieciocho",
|
||||||
|
"diecinueve",
|
||||||
|
"veinte",
|
||||||
|
"treinta",
|
||||||
|
"cuarenta",
|
||||||
|
"cincuenta",
|
||||||
|
"sesenta",
|
||||||
|
"setenta",
|
||||||
|
"ochenta",
|
||||||
|
"noventa",
|
||||||
|
"cien",
|
||||||
|
"mil",
|
||||||
|
"millón",
|
||||||
|
"billón",
|
||||||
|
"trillón",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def like_num(text):
|
||||||
|
if text.startswith(("+", "-", "±", "~")):
|
||||||
|
text = text[1:]
|
||||||
|
text = text.replace(",", "").replace(".", "")
|
||||||
|
if text.isdigit():
|
||||||
|
return True
|
||||||
|
if text.count("/") == 1:
|
||||||
|
num, denom = text.split("/")
|
||||||
|
if num.isdigit() and denom.isdigit():
|
||||||
|
return True
|
||||||
|
if text.lower() in _num_words:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
LEX_ATTRS = {LIKE_NUM: like_num}
|
15
spacy/tests/regression/test_issue3803.py
Normal file
15
spacy/tests/regression/test_issue3803.py
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
# coding: utf8
|
||||||
|
from __future__ import unicode_literals
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from spacy.lang.es import Spanish
|
||||||
|
|
||||||
|
|
||||||
|
def test_issue3803():
|
||||||
|
"""Test that spanish num-like tokens have True for like_num attribute."""
|
||||||
|
nlp = Spanish()
|
||||||
|
text = "2 dos 1000 mil 12 doce"
|
||||||
|
doc = nlp(text)
|
||||||
|
|
||||||
|
assert [t.like_num for t in doc] == [True, True, True, True, True, True]
|
|
@ -1,22 +1,107 @@
|
||||||
{
|
{
|
||||||
"resources": [
|
"resources": [
|
||||||
|
{
|
||||||
|
"id": "nlp-architect",
|
||||||
|
"title": "NLP Architect",
|
||||||
|
"slogan": "Python lib for exploring Deep NLP & NLU by Intel AI",
|
||||||
|
"github": "NervanaSystems/nlp-architect",
|
||||||
|
"pip": "nlp-architect",
|
||||||
|
"thumb": "https://i.imgur.com/vMideRx.png",
|
||||||
|
"category": ["standalone", "research"],
|
||||||
|
"tags": ["pytorch"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "NeuroNER",
|
||||||
|
"title": "NeuroNER",
|
||||||
|
"slogan": "Named-entity recognition using neural networks",
|
||||||
|
"github": "Franck-Dernoncourt/NeuroNER",
|
||||||
|
"pip": "pyneuroner[cpu]",
|
||||||
|
"code_example": [
|
||||||
|
"from neuroner import neuromodel",
|
||||||
|
"nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)"
|
||||||
|
],
|
||||||
|
"category": ["ner"],
|
||||||
|
"tags": ["standalone"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "NLPre",
|
||||||
|
"title": "NLPre",
|
||||||
|
"slogan": "Natural Language Preprocessing Library for health data and more",
|
||||||
|
"github": "NIHOPA/NLPre",
|
||||||
|
"pip": "nlpre",
|
||||||
|
"code_example": [
|
||||||
|
"from nlpre import titlecaps, dedash, identify_parenthetical_phrases",
|
||||||
|
"from nlpre import replace_acronyms, replace_from_dictionary",
|
||||||
|
"ABBR = identify_parenthetical_phrases()(text)",
|
||||||
|
"parsers = [dedash(), titlecaps(), replace_acronyms(ABBR),",
|
||||||
|
" replace_from_dictionary(prefix='MeSH_')]",
|
||||||
|
"for f in parsers:",
|
||||||
|
" text = f(text)",
|
||||||
|
"print(text)"
|
||||||
|
],
|
||||||
|
"category": ["scientific"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Chatterbot",
|
||||||
|
"title": "Chatterbot",
|
||||||
|
"slogan": "A machine-learning based conversational dialog engine for creating chat bots",
|
||||||
|
"github": "gunthercox/ChatterBot",
|
||||||
|
"pip": "chatterbot",
|
||||||
|
"thumb": "https://i.imgur.com/eyAhwXk.jpg",
|
||||||
|
"code_example": [
|
||||||
|
"from chatterbot import ChatBot",
|
||||||
|
"from chatterbot.trainers import ListTrainer",
|
||||||
|
"# Create a new chat bot named Charlie",
|
||||||
|
"chatbot = ChatBot('Charlie')",
|
||||||
|
"trainer = ListTrainer(chatbot)",
|
||||||
|
"trainer.train([",
|
||||||
|
"'Hi, can I help you?',",
|
||||||
|
"'Sure, I would like to book a flight to Iceland.",
|
||||||
|
"'Your flight has been booked.'",
|
||||||
|
"])",
|
||||||
|
"",
|
||||||
|
"response = chatbot.get_response('I would like to book a flight.')"
|
||||||
|
],
|
||||||
|
"author": "Gunther Cox",
|
||||||
|
"author_links": {
|
||||||
|
"github": "gunthercox"
|
||||||
|
},
|
||||||
|
"category": ["conversational", "standalone"],
|
||||||
|
"tags": ["chatbots"]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"id": "saber",
|
"id": "saber",
|
||||||
"title": "saber",
|
"title": "saber",
|
||||||
"slogan": "deep-learning based tool for information extraction in the biomedical domain",
|
"slogan": "Deep-learning based tool for information extraction in the biomedical domain",
|
||||||
"github": "BaderLab/saber",
|
"github": "BaderLab/saber",
|
||||||
"pip": "saber",
|
"pip": "saber",
|
||||||
"thumb": "https://raw.githubusercontent.com/BaderLab/saber/master/docs/img/saber_logo.png",
|
"thumb": "https://raw.githubusercontent.com/BaderLab/saber/master/docs/img/saber_logo.png",
|
||||||
"code_example": [
|
"code_example": [
|
||||||
">>> from saber.saber import Saber",
|
"from saber.saber import Saber",
|
||||||
">>> saber = Saber()",
|
"saber = Saber()",
|
||||||
">>> saber.load('PRGE')",
|
"saber.load('PRGE')",
|
||||||
"saber.annotate('The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.')"
|
"saber.annotate('The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.')"
|
||||||
],
|
],
|
||||||
"category": ["research", "biomedical"],
|
"author": "Bader Lab, University of Toronto",
|
||||||
"tags": ["keras"]
|
"category": ["scientific"],
|
||||||
|
"tags": ["keras", "biomedical"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "alibi",
|
||||||
|
"title": "alibi",
|
||||||
|
"slogan": "Algorithms for monitoring and explaining machine learning models ",
|
||||||
|
"github": "SeldonIO/alibi",
|
||||||
|
"pip": "alibi",
|
||||||
|
"thumb": "https://i.imgur.com/YkzQHRp.png",
|
||||||
|
"code_example": [
|
||||||
|
"from alibi.explainers import AnchorTabular",
|
||||||
|
"explainer = AnchorTabular(predict_fn, feature_names)",
|
||||||
|
"explainer.fit(X_train)",
|
||||||
|
"explainer.explain(x)"
|
||||||
|
],
|
||||||
|
"author": "Seldon",
|
||||||
|
"category": ["standalone", "research"]
|
||||||
},
|
},
|
||||||
|
|
||||||
{
|
{
|
||||||
"id": "spacymoji",
|
"id": "spacymoji",
|
||||||
"slogan": "Emoji handling and meta data as a spaCy pipeline component",
|
"slogan": "Emoji handling and meta data as a spaCy pipeline component",
|
||||||
|
@ -160,7 +245,7 @@
|
||||||
"doc = nlp(my_doc_text)"
|
"doc = nlp(my_doc_text)"
|
||||||
],
|
],
|
||||||
"author": "tc64",
|
"author": "tc64",
|
||||||
"author_link": {
|
"author_links": {
|
||||||
"github": "tc64"
|
"github": "tc64"
|
||||||
},
|
},
|
||||||
"category": ["pipeline"]
|
"category": ["pipeline"]
|
||||||
|
@ -363,7 +448,7 @@
|
||||||
"author_links": {
|
"author_links": {
|
||||||
"github": "huggingface"
|
"github": "huggingface"
|
||||||
},
|
},
|
||||||
"category": ["standalone", "conversational"],
|
"category": ["standalone", "conversational", "models"],
|
||||||
"tags": ["coref"]
|
"tags": ["coref"]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -555,7 +640,7 @@
|
||||||
"twitter": "allenai_org",
|
"twitter": "allenai_org",
|
||||||
"website": "http://allenai.org"
|
"website": "http://allenai.org"
|
||||||
},
|
},
|
||||||
"category": ["models", "research"]
|
"category": ["scientific", "models", "research"]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "textacy",
|
"id": "textacy",
|
||||||
|
@ -618,7 +703,7 @@
|
||||||
"github": "ahalterman",
|
"github": "ahalterman",
|
||||||
"twitter": "ahalterman"
|
"twitter": "ahalterman"
|
||||||
},
|
},
|
||||||
"category": ["standalone"]
|
"category": ["standalone", "scientific"]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "kindred",
|
"id": "kindred",
|
||||||
|
@ -643,7 +728,7 @@
|
||||||
"author_links": {
|
"author_links": {
|
||||||
"github": "jakelever"
|
"github": "jakelever"
|
||||||
},
|
},
|
||||||
"category": ["standalone"]
|
"category": ["standalone", "scientific"]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "sense2vec",
|
"id": "sense2vec",
|
||||||
|
@ -911,6 +996,23 @@
|
||||||
"author": "Aaron Kramer",
|
"author": "Aaron Kramer",
|
||||||
"category": ["courses"]
|
"category": ["courses"]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"type": "education",
|
||||||
|
"id": "spacy-course",
|
||||||
|
"title": "Advanced NLP with spaCy",
|
||||||
|
"slogan": "spaCy, 2019",
|
||||||
|
"description": "In this free interactive course, you'll learn how to use spaCy to build advanced natural language understanding systems, using both rule-based and machine learning approaches.",
|
||||||
|
"url": "https://course.spacy.io",
|
||||||
|
"image": "https://i.imgur.com/JC00pHW.jpg",
|
||||||
|
"thumb": "https://i.imgur.com/5RXLtrr.jpg",
|
||||||
|
"author": "Ines Montani",
|
||||||
|
"author_links": {
|
||||||
|
"twitter": "_inesmontani",
|
||||||
|
"github": "ines",
|
||||||
|
"website": "https://ines.io"
|
||||||
|
},
|
||||||
|
"category": ["courses"]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"type": "education",
|
"type": "education",
|
||||||
"id": "video-spacys-ner-model",
|
"id": "video-spacys-ner-model",
|
||||||
|
@ -1071,7 +1173,7 @@
|
||||||
"github": "ecohealthalliance",
|
"github": "ecohealthalliance",
|
||||||
"website": " https://ecohealthalliance.org/"
|
"website": " https://ecohealthalliance.org/"
|
||||||
},
|
},
|
||||||
"category": ["research", "standalone"]
|
"category": ["scientific", "standalone"]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "self-attentive-parser",
|
"id": "self-attentive-parser",
|
||||||
|
@ -1393,7 +1495,7 @@
|
||||||
"url": "https://github.com/msg-systems/holmes-extractor",
|
"url": "https://github.com/msg-systems/holmes-extractor",
|
||||||
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural search, topic matching and supervised document classification.",
|
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural search, topic matching and supervised document classification.",
|
||||||
"pip": "holmes-extractor",
|
"pip": "holmes-extractor",
|
||||||
"category": ["conversational", "research", "standalone"],
|
"category": ["conversational", "standalone"],
|
||||||
"tags": ["chatbots", "text-processing"],
|
"tags": ["chatbots", "text-processing"],
|
||||||
"code_example": [
|
"code_example": [
|
||||||
"import holmes_extractor as holmes",
|
"import holmes_extractor as holmes",
|
||||||
|
@ -1432,6 +1534,11 @@
|
||||||
"title": "Research",
|
"title": "Research",
|
||||||
"description": "Frameworks and utilities for developing better NLP models, especially using neural networks"
|
"description": "Frameworks and utilities for developing better NLP models, especially using neural networks"
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"id": "scientific",
|
||||||
|
"title": "Scientific",
|
||||||
|
"description": "Frameworks and utilities for scientific text processing"
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"id": "visualizers",
|
"id": "visualizers",
|
||||||
"title": "Visualizers",
|
"title": "Visualizers",
|
||||||
|
@ -1451,6 +1558,11 @@
|
||||||
"id": "standalone",
|
"id": "standalone",
|
||||||
"title": "Standalone",
|
"title": "Standalone",
|
||||||
"description": "Self-contained libraries or tools that use spaCy under the hood"
|
"description": "Self-contained libraries or tools that use spaCy under the hood"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "models",
|
||||||
|
"title": "Models",
|
||||||
|
"description": "Third-party pre-trained models for different languages and domains"
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|
Loading…
Reference in New Issue
Block a user