Improve ud-train script. Make config optional

This commit is contained in:
Matthew Honnibal 2018-09-13 14:24:08 +02:00
parent 3e3a309764
commit 59cf533879

View File

@ -13,7 +13,7 @@ import spacy
import spacy.util
from ..tokens import Token, Doc
from ..gold import GoldParse
from ..util import compounding, minibatch_by_words
from ..util import compounding, minibatch, minibatch_by_words
from ..syntax.nonproj import projectivize
from ..matcher import Matcher
from .. import displacy
@ -302,8 +302,8 @@ def initialize_pipeline(nlp, docs, golds, config, device):
class Config(object):
def __init__(self, vectors=None, max_doc_length=10, multitask_tag=True,
multitask_sent=True, multitask_dep=True, multitask_vectors=False,
nr_epoch=30, batch_size=1000, dropout=0.2,
conv_depth=4, subword_features=True):
nr_epoch=30, min_batch_size=1, max_batch_size=16, batch_by_words=False,
dropout=0.2, conv_depth=4, subword_features=True):
for key, value in locals().items():
setattr(self, key, value)
@ -346,20 +346,23 @@ class TreebankPaths(object):
corpus=("UD corpus to train and evaluate on, e.g. en, es_ancora, etc",
"positional", None, str),
parses_dir=("Directory to write the development parses", "positional", None, Path),
config=("Path to json formatted config file", "positional"),
config=("Path to json formatted config file", "option", "C", Path),
limit=("Size limit", "option", "n", int),
use_gpu=("Use GPU", "option", "g", int),
use_oracle_segments=("Use oracle segments", "flag", "G", int),
vectors_dir=("Path to directory with pre-trained vectors, named e.g. en/",
"option", "v", Path),
)
def main(ud_dir, parses_dir, config, corpus, limit=0, use_gpu=-1, vectors_dir=None,
def main(ud_dir, parses_dir, config=None, corpus, limit=0, use_gpu=-1, vectors_dir=None,
use_oracle_segments=False):
spacy.util.fix_random_seed()
lang.zh.Chinese.Defaults.use_jieba = False
lang.ja.Japanese.Defaults.use_janome = False
config = Config.load(config)
if config is not None:
config = Config.load(config)
else:
config = Config()
paths = TreebankPaths(ud_dir, corpus)
if not (parses_dir / corpus).exists():
(parses_dir / corpus).mkdir()
@ -372,7 +375,7 @@ def main(ud_dir, parses_dir, config, corpus, limit=0, use_gpu=-1, vectors_dir=No
optimizer = initialize_pipeline(nlp, docs, golds, config, use_gpu)
batch_sizes = compounding(config.batch_size//10, config.batch_size, 1.001)
batch_sizes = compounding(config.min_batch_size, config.max_batch_size, 1.001)
beam_prob = compounding(0.2, 0.8, 1.001)
for i in range(config.nr_epoch):
docs, golds = read_data(nlp, paths.train.conllu.open(), paths.train.text.open(),
@ -381,7 +384,10 @@ def main(ud_dir, parses_dir, config, corpus, limit=0, use_gpu=-1, vectors_dir=No
raw_text=not use_oracle_segments)
Xs = list(zip(docs, golds))
random.shuffle(Xs)
batches = minibatch_by_words(Xs, size=batch_sizes)
if config.batch_by_words:
batches = minibatch_by_words(Xs, size=batch_sizes)
else:
batches = minibatch(Xs, size=batch_sizes)
losses = {}
n_train_words = sum(len(doc) for doc in docs)
with tqdm.tqdm(total=n_train_words, leave=False) as pbar: