mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 06:09:01 +03:00
Add cnn_window option to pretrain
This commit is contained in:
parent
3a67aa857e
commit
5a601ef46a
|
@ -19,7 +19,7 @@ from ..errors import Errors
|
|||
from ..tokens import Doc
|
||||
from ..attrs import ID, HEAD
|
||||
from .._ml import Tok2Vec, flatten, chain, create_default_optimizer
|
||||
from .._ml import masked_language_model, get_cossim_loss
|
||||
from .._ml import masked_language_model, get_cossim_loss, get_characters_loss
|
||||
from .._ml import MultiSoftmax
|
||||
from .. import util
|
||||
from .train import _load_pretrained_tok2vec
|
||||
|
@ -37,6 +37,7 @@ from .train import _load_pretrained_tok2vec
|
|||
output_dir=("Directory to write models to on each epoch", "positional", None, str),
|
||||
width=("Width of CNN layers", "option", "cw", int),
|
||||
depth=("Depth of CNN layers", "option", "cd", int),
|
||||
cnn_window=("Window size for CNN layers", "option", "cW", int),
|
||||
use_chars=("Whether to use character-based embedding", "flag", "chr", bool),
|
||||
sa_depth=("Depth of self-attention layers", "option", "sa", int),
|
||||
bilstm_depth=("Depth of BiLSTM layers (requires PyTorch)", "option", "lstm", int),
|
||||
|
@ -88,6 +89,7 @@ def pretrain(
|
|||
bilstm_depth=0,
|
||||
sa_depth=0,
|
||||
use_chars=False,
|
||||
cnn_window=1,
|
||||
embed_rows=2000,
|
||||
loss_func="cosine",
|
||||
use_vectors=False,
|
||||
|
@ -158,6 +160,7 @@ def pretrain(
|
|||
width,
|
||||
embed_rows,
|
||||
conv_depth=depth,
|
||||
conv_window=cnn_window,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
char_embed=use_chars,
|
||||
self_attn_depth=sa_depth, # Experimental.
|
||||
|
@ -297,16 +300,6 @@ def make_docs(nlp, batch, min_length, max_length):
|
|||
return docs, skip_count
|
||||
|
||||
|
||||
def get_characters_loss(ops, docs, prediction, nr_char=10):
|
||||
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
|
||||
target_ids = target_ids.reshape((-1,))
|
||||
target = ops.asarray(to_categorical(target_ids, nb_classes=256), dtype="f")
|
||||
target = target.reshape((-1, 256*nr_char))
|
||||
diff = prediction - target
|
||||
loss = (diff**2).sum()
|
||||
d_target = diff / float(prediction.shape[0])
|
||||
return loss, d_target
|
||||
|
||||
|
||||
def get_vectors_loss(ops, docs, prediction, objective="L2"):
|
||||
"""Compute a mean-squared error loss between the documents' vectors and
|
||||
|
|
Loading…
Reference in New Issue
Block a user