Update v2 guide and split into partials

This commit is contained in:
ines 2017-11-01 14:13:36 +01:00
parent 1c7313051f
commit 5ab4e96144
6 changed files with 682 additions and 514 deletions

View File

@ -79,6 +79,7 @@
"title": "What's New in v2.0", "title": "What's New in v2.0",
"teaser": "New features, backwards incompatibilities and migration guide.", "teaser": "New features, backwards incompatibilities and migration guide.",
"menu": { "menu": {
"Summary": "summary",
"New features": "features", "New features": "features",
"Backwards Incompatibilities": "incompat", "Backwards Incompatibilities": "incompat",
"Migrating from v1.x": "migrating", "Migrating from v1.x": "migrating",

View File

@ -0,0 +1,237 @@
//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > NEW FEATURES
p
| This section contains an overview of the most important
| #[strong new features and improvements]. The #[+a("/api") API docs]
| include additional deprecation notes. New methods and functions that
| were introduced in this version are marked with a
| #[span.u-text-tag.u-text-tag--spaced v2.0] tag.
+h(3, "features-models") Convolutional neural network models
+aside-code("Example", "bash")
for model in ["en", "de", "fr", "es", "pt", "it"]
| spacy download #{model} # default #{LANGUAGES[model]} model!{'\n'}
| spacy download xx_ent_wiki_sm # multi-language NER
p
| spaCy v2.0 features new neural models for tagging,
| parsing and entity recognition. The models have
| been designed and implemented from scratch specifically for spaCy, to
| give you an unmatched balance of speed, size and accuracy. The new
| models are #[strong 10× smaller], #[strong 20% more accurate],
| and #[strong just as fast] as the previous generation.
| #[strong GPU usage] is now supported via
| #[+a("http://chainer.org") Chainer]'s CuPy module.
+infobox
| #[+label-inline Usage:] #[+a("/models") Models directory],
| #[+a("/models/comparison") Models comparison],
| #[+a("/usage/#gpu") Using spaCy with GPU]
+h(3, "features-pipelines") Improved processing pipelines
+aside-code("Example").
# Set custom attributes
Doc.set_extension('my_attr', default=False)
Token.set_extension('my_attr', getter=my_token_getter)
assert doc._.my_attr, token._.my_attr
# Add components to the pipeline
my_component = lambda doc: doc
nlp.add_pipe(my_component)
p
| It's now much easier to #[strong customise the pipeline] with your own
| components: functions that receive a #[code Doc] object, modify and
| return it. Extensions let you write any
| #[strong attributes, properties and methods] to the #[code Doc],
| #[code Token] and #[code Span]. You can add data, implement new
| features, integrate other libraries with spaCy or plug in your own
| machine learning models.
+image
include ../../assets/img/pipeline.svg
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]],
| #[+api("doc#set_extension") #[code Doc.set_extension]],
| #[+api("span#set_extension") #[code Span.set_extension]],
| #[+api("token#set_extension") #[code Token.set_extension]]
| #[+label-inline Usage:]
| #[+a("/usage/processing-pipelines") Processing pipelines]
| #[+label-inline Code:]
| #[+src("/usage/examples#section-pipeline") Pipeline examples]
+h(3, "features-text-classification") Text classification
+aside-code("Example").
textcat = nlp.create_pipe('textcat')
nlp.add_pipe(textcat, last=True)
optimizer = nlp.begin_training()
for itn in range(100):
for doc, gold in train_data:
nlp.update([doc], [gold], sgd=optimizer)
doc = nlp(u'This is a text.')
print(doc.cats)
p
| spaCy v2.0 lets you add text categorization models to spaCy pipelines.
| The model supports classification with multiple, non-mutually
| exclusive labels so multiple labels can apply at once. You can
| change the model architecture rather easily, but by default, the
| #[code TextCategorizer] class uses a convolutional neural network to
| assign position-sensitive vectors to each word in the document.
+infobox
| #[+label-inline API:] #[+api("textcategorizer") #[code TextCategorizer]],
| #[+api("doc#attributes") #[code Doc.cats]],
| #[+api("goldparse#attributes") #[code GoldParse.cats]]#[br]
| #[+label-inline Usage:] #[+a("/usage/text-classification") Text classification]
+h(3, "features-hash-ids") Hash values instead of integer IDs
+aside-code("Example").
doc = nlp(u'I love coffee')
assert doc.vocab.strings[u'coffee'] == 3197928453018144401
assert doc.vocab.strings[3197928453018144401] == u'coffee'
beer_hash = doc.vocab.strings.add(u'beer')
assert doc.vocab.strings[u'beer'] == beer_hash
assert doc.vocab.strings[beer_hash] == u'beer'
p
| The #[+api("stringstore") #[code StringStore]] now resolves all strings
| to hash values instead of integer IDs. This means that the string-to-int
| mapping #[strong no longer depends on the vocabulary state], making a lot
| of workflows much simpler, especially during training. Unlike integer IDs
| in spaCy v1.x, hash values will #[strong always match] even across
| models. Strings can now be added explicitly using the new
| #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash
| is available via #[code token.orth].
+infobox
| #[+label-inline API:] #[+api("stringstore") #[code StringStore]]
| #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
+h(3, "features-vectors") Improved word vectors support
+aside-code("Example").
for word, vector in vector_data:
nlp.vocab.set_vector(word, vector)
nlp.vocab.vectors.from_glove('/path/to/vectors')
# keep 10000 unique vectors and remap the rest
nlp.vocab.prune_vectors(10000)
nlp.to_disk('/model')
p
| The new #[+api("vectors") #[code Vectors]] class helps the
| #[code Vocab] manage the vectors assigned to strings, and lets you
| assign vectors individually, or
| #[+a("/usage/vectors-similarity#custom-loading-glove") load in GloVe vectors]
| from a directory. To help you strike a good balance between coverage
| and memory usage, the #[code Vectors] class lets you map
| #[strong multiple keys] to the #[strong same row] of the table. If
| you're using the #[+api("cli#vocab") #[code spacy vocab]] command to
| create a vocabulary, pruning the vectors will be taken care of
| automatically. Otherwise, you can use the new
| #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]].
+infobox
| #[+label-inline API:] #[+api("vectors") #[code Vectors]],
| #[+api("vocab") #[code Vocab]]
| #[+label-inline Usage:] #[+a("/usage/vectors-similarity") Word vectors and semantic similarity]
+h(3, "features-serializer") Saving, loading and serialization
+aside-code("Example").
nlp = spacy.load('en') # shortcut link
nlp = spacy.load('en_core_web_sm') # package
nlp = spacy.load('/path/to/en') # unicode path
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
nlp.to_disk('/path/to/nlp')
nlp = English().from_disk('/path/to/nlp')
p
| spay's serialization API has been made consistent across classes and
| objects. All container classes, i.e. #[code Language], #[code Doc],
| #[code Vocab] and #[code StringStore] now have a #[code to_bytes()],
| #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method
| that supports the Pickle protocol.
p
| The improved #[code spacy.load] makes loading models easier and more
| transparent. You can load a model by supplying its
| #[+a("/usage/models#usage") shortcut link], the name of an installed
| #[+a("/usage/saving-loading#generating") model package] or a path.
| The #[code Language] class to initialise will be determined based on the
| model's settings. For a blank language, you can import the class directly,
| e.g. #[code from spacy.lang.en import English].
+infobox
| #[+label-inline API:] #[+api("spacy#load") #[code spacy.load]]
| #[+label-inline Usage:] #[+a("/usage/saving-loading") Saving and loading]
+h(3, "features-displacy") displaCy visualizer with Jupyter support
+aside-code("Example").
from spacy import displacy
doc = nlp(u'This is a sentence about Facebook.')
displacy.serve(doc, style='dep') # run the web server
html = displacy.render(doc, style='ent') # generate HTML
p
| Our popular dependency and named entity visualizers are now an official
| part of the spaCy library. displaCy can run a simple web server, or
| generate raw HTML markup or SVG files to be exported. You can pass in one
| or more docs, and customise the style. displaCy also auto-detects whether
| you're running #[+a("https://jupyter.org") Jupyter] and will render the
| visualizations in your notebook.
+infobox
| #[+label-inline API:] #[+api("displacy") #[code displacy]]
| #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizing spaCy]
+h(3, "features-language") Improved language data and lazy loading
p
| Language-specfic data now lives in its own submodule, #[code spacy.lang].
| Languages are lazy-loaded, i.e. only loaded when you import a
| #[code Language] class, or load a model that initialises one. This allows
| languages to contain more custom data, e.g. lemmatizer lookup tables, or
| complex regular expressions. The language data has also been tidied up
| and simplified. spaCy now also supports simple lookup-based
| lemmatization and #[strong #{LANG_COUNT} languages] in total!
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]]
| #[+label-inline Code:] #[+src(gh("spaCy", "spacy/lang")) #[code spacy/lang]]
| #[+label-inline Usage:] #[+a("/usage/adding-languages") Adding languages]
+h(3, "features-matcher") Revised matcher API and phrase matcher
+aside-code("Example").
from spacy.matcher import Matcher, PhraseMatcher
matcher = Matcher(nlp.vocab)
matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}])
phrasematcher = PhraseMatcher(nlp.vocab)
phrasematcher.add('OBAMA', None, nlp(u"Barack Obama"))
p
| Patterns can now be added to the matcher by calling
| #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional
| callback function to be invoked on each match, and one or more patterns.
| This allows you to write powerful, pattern-specific logic using only one
| matcher. For example, you might only want to merge some entity types,
| and set custom flags for other matched patterns. The new
| #[+api("phrasematcher") #[code PhraseMatcher]] lets you efficiently
| match very large terminology lists using #[code Doc] objects as match
| patterns.
+infobox
| #[+label-inline API:] #[+api("matcher") #[code Matcher]],
| #[+api("phrasematcher") #[code PhraseMatcher]]
| #[+label-inline Usage:] #[+a("/usage/rule-based-matching") Rule-based matching]

View File

@ -0,0 +1,141 @@
//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > BACKWARDS INCOMPATIBILITIES
+table(["Old", "New"])
+row
+cell
| #[code spacy.en] etc.
+cell
| #[code spacy.lang.en] etc.
+row
+cell #[code spacy.orth]
+cell #[code spacy.lang.xx.lex_attrs]
+row
+cell #[code spacy.syntax.iterators]
+cell #[code spacy.lang.xx.syntax_iterators]
+row
+cell #[code spacy.tagger.Tagger]
+cell #[code spacy.pipeline.Tagger]
+row
+cell #[code spacy.cli.model]
+cell #[+api("cli#vocab") #[code spacy.cli.vocab]]
+row
+cell #[code Language.save_to_directory]
+cell #[+api("language#to_disk") #[code Language.to_disk]]
+row
+cell #[code Language.end_training]
+cell #[+api("language#begin_training") #[code Language.begin_training]]
+row
+cell #[code Language.create_make_doc]
+cell #[+api("language#attributes") #[code Language.tokenizer]]
+row
+cell
| #[code Vocab.load]
| #[code Vocab.load_lexemes]
+cell
| #[+api("vocab#from_disk") #[code Vocab.from_disk]]
| #[+api("vocab#from_bytes") #[code Vocab.from_bytes]]
+row
+cell
| #[code Vocab.dump]
+cell
| #[+api("vocab#to_disk") #[code Vocab.to_disk]]#[br]
| #[+api("vocab#to_bytes") #[code Vocab.to_bytes]]
+row
+cell
| #[code Vocab.load_vectors]
| #[code Vocab.load_vectors_from_bin_loc]
+cell
| #[+api("vectors#from_disk") #[code Vectors.from_disk]]
| #[+api("vectors#from_bytes") #[code Vectors.from_bytes]]
| #[+api("vectors#from_glove") #[code Vectors.from_glove]]
+row
+cell
| #[code Vocab.dump_vectors]
+cell
| #[+api("vectors#to_disk") #[code Vectors.to_disk]]
| #[+api("vectors#to_bytes") #[code Vectors.to_bytes]]
+row
+cell
| #[code StringStore.load]
+cell
| #[+api("stringstore#from_disk") #[code StringStore.from_disk]]
| #[+api("stringstore#from_bytes") #[code StringStore.from_bytes]]
+row
+cell
| #[code StringStore.dump]
+cell
| #[+api("stringstore#to_disk") #[code StringStore.to_disk]]
| #[+api("stringstore#to_bytes") #[code StringStore.to_bytes]]
+row
+cell #[code Tokenizer.load]
+cell
| #[+api("tokenizer#from_disk") #[code Tokenizer.from_disk]]
| #[+api("tokenizer#from_bytes") #[code Tokenizer.from_bytes]]
+row
+cell #[code Tagger.load]
+cell
| #[+api("tagger#from_disk") #[code Tagger.from_disk]]
| #[+api("tagger#from_bytes") #[code Tagger.from_bytes]]
+row
+cell #[code DependencyParser.load]
+cell
| #[+api("dependencyparser#from_disk") #[code DependencyParser.from_disk]]
| #[+api("dependencyparser#from_bytes") #[code DependencyParser.from_bytes]]
+row
+cell #[code EntityRecognizer.load]
+cell
| #[+api("entityrecognizer#from_disk") #[code EntityRecognizer.from_disk]]
| #[+api("entityrecognizer#from_bytes") #[code EntityRecognizer.from_bytes]]
+row
+cell #[code Matcher.load]
+cell -
+row
+cell
| #[code Matcher.add_pattern]
| #[code Matcher.add_entity]
+cell
| #[+api("matcher#add") #[code Matcher.add]]
| #[+api("phrasematcher#add") #[code PhraseMatcher.add]]
+row
+cell #[code Matcher.get_entity]
+cell #[+api("matcher#get") #[code Matcher.get]]
+row
+cell #[code Matcher.has_entity]
+cell #[+api("matcher#has_key") #[code Matcher.has_key]]
+row
+cell #[code Doc.read_bytes]
+cell
| #[+api("doc#to_bytes") #[code Doc.to_bytes]]
| #[+api("doc#from_bytes") #[code Doc.from_bytes]]
| #[+api("doc#to_disk") #[code Doc.to_disk]]
| #[+api("doc#from_disk") #[code Doc.from_disk]]
+row
+cell #[code Token.is_ancestor_of]
+cell #[+api("token#is_ancestor") #[code Token.is_ancestor]]
+row
+cell #[code Span.sent_start]
+cell #[+api("span#is_sent_start") #[code Span.is_sent_start]]

View File

@ -0,0 +1,224 @@
//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > MIGRATING FROM SPACY 1.X
p
| Because we'e made so many architectural changes to the library, we've
| tried to #[strong keep breaking changes to a minimum]. A lot of projects
| follow the philosophy that if you're going to break anything, you may as
| well break everything. We think migration is easier if there's a logic to
| what has changed. We've therefore followed a policy of avoiding
| breaking changes to the #[code Doc], #[code Span] and #[code Token]
| objects. This way, you can focus on only migrating the code that
| does training, loading and serialization — in other words, code that
| works with the #[code nlp] object directly. Code that uses the
| annotations should continue to work.
+infobox("Important note", "⚠️")
| If you've trained your own models, keep in mind that your train and
| runtime inputs must match. This means you'll have to
| #[strong retrain your models] with spaCy v2.0.
+h(3, "migrating-saving-loading") Saving, loading and serialization
p
| Double-check all calls to #[code spacy.load()] and make sure they don't
| use the #[code path] keyword argument. If you're only loading in binary
| data and not a model package that can construct its own #[code Language]
| class and pipeline, you should now use the
| #[+api("language#from_disk") #[code Language.from_disk()]] method.
+code-new.
nlp = spacy.load('/model')
nlp = English().from_disk('/model/data')
+code-old nlp = spacy.load('en', path='/model')
p
| Review all other code that writes state to disk or bytes.
| All containers, now share the same, consistent API for saving and
| loading. Replace saving with #[code to_disk()] or #[code to_bytes()], and
| loading with #[code from_disk()] and #[code from_bytes()].
+code-new.
nlp.to_disk('/model')
nlp.vocab.to_disk('/vocab')
+code-old.
nlp.save_to_directory('/model')
nlp.vocab.dump('/vocab')
p
| If you've trained models with input from v1.x, you'll need to
| #[strong retrain them] with spaCy v2.0. All previous models will not
| be compatible with the new version.
+h(3, "migrating-languages") Processing pipelines and language data
p
| If you're importing language data or #[code Language] classes, make sure
| to change your import statements to import from #[code spacy.lang]. If
| you've added your own custom language, it needs to be moved to
| #[code spacy/lang/xx] and adjusted accordingly.
.o-block
+code-new from spacy.lang.en import English
+code-old from spacy.en import English
p
| If you've been using custom pipeline components, check out the new
| guide on #[+a("/usage/language-processing-pipelines") processing pipelines].
| Pipeline components are now #[code (name, func)] tuples. Appending
| them to the pipeline still works but the
| #[+api("language#add_pipe") #[code add_pipe]] method now makes this
| much more convenient. Methods for removing, renaming, replacing and
| retrieving components have been added as well. Components can now
| be disabled by passing a list of their names to the #[code disable]
| keyword argument on load, or by using
| #[+api("language#disable_pipes") #[code disable_pipes]] as a method
| or contextmanager:
.o-block
+code-new.
nlp = spacy.load('en', disable=['tagger', 'ner'])
with nlp.disable_pipes('parser'):
doc = nlp(u"I don't want parsed")
+code-old.
nlp = spacy.load('en', tagger=False, entity=False)
doc = nlp(u"I don't want parsed", parse=False)
p
| To add spaCy's built-in pipeline components to your pipeline,
| you can still import and instantiate them directly but it's more
| convenient to use the new
| #[+api("language#create_pipe") #[code create_pipe]] method with the
| component name, i.e. #[code 'tagger'], #[code 'parser'], #[code 'ner']
| or #[code 'textcat'].
+code-new.
tagger = nlp.create_pipe('tagger')
nlp.add_pipe(tagger, first=True)
+code-old.
from spacy.pipeline import Tagger
tagger = Tagger(nlp.vocab)
nlp.pipeline.insert(0, tagger)
+h(3, "migrating-training") Training
p
| All built-in pipeline components are now subclasses of
| #[+api("pipe") #[code Pipe]] are fully trainable and serializable,
| and follow the same API. Instead of updating the model and telling
| spaCy when to #[em stop], you can now explicitly call
| #[+api("language#begin_training") #[code begin_taining]], which
| returns an optimizer you can pass into the
| #[+api("language#update") #[code update]] function.
+code-new.
optimizer = nlp.begin_training()
for itn in range(1000):
for doc, gold in train_data:
nlp.update([doc], [gold], sgd=optimizer)
nlp.to_disk('/model')
+code-old.
for itn in range(1000):
for doc, gold in train_data:
nlp.update(doc, gold)
nlp.end_training()
nlp.save_to_directory('/model')
+h(3, "migrating-doc") Attaching custom data to the Doc
p
| Previously, you had to create a new container in order to attach custom
| data to a #[code Doc] object. This often required converting the
| #[code Doc] objects to and from arrays. In spaCy v2.0, you can set your
| own attributes, properties and methods on the #[code Doc], #[code Token]
| and #[code Span] via
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom extensions].
| This means that your application can and should only pass around
| #[code Doc] objects and refer to them as the single source of truth.
+code-new.
Doc.set_extension('meta', getter=get_doc_meta)
doc_with_meta = nlp(u'This is a doc with meta data')
meta = doc._.meta
+code-old.
doc = nlp(u'This is a regular doc')
doc_array = doc.to_array(['ORTH', 'POS'])
doc_with_meta = {'doc_array': doc_array, 'meta': get_doc_meta(doc_array)}
p
| If you wrap your extension attributes in a
| #[+a("/usage/processing-pipelines#custom-components") custom pipeline component],
| they will be assigned automatically when you call #[code nlp] on a text.
| If your application assigns custom data to spaCy's container objects,
| or includes other utilities that interact with the pipeline, consider
| moving this logic into its own extension module.
+code-new.
nlp.add_pipe(meta_component)
doc = nlp(u'Doc with a custom pipeline that assigns meta')
meta = doc._.meta
+code-old.
doc = nlp(u'Doc with a standard pipeline')
meta = get_meta(doc)
+h(3, "migrating-strings") Strings and hash values
p
| The change from integer IDs to hash values may not actually affect your
| code very much. However, if you're adding strings to the vocab manually,
| you now need to call #[+api("stringstore#add") #[code StringStore.add()]]
| explicitly. You can also now be sure that the string-to-hash mapping will
| always match across vocabularies.
+code-new.
nlp.vocab.strings.add(u'coffee')
nlp.vocab.strings[u'coffee'] # 3197928453018144401
other_nlp.vocab.strings[u'coffee'] # 3197928453018144401
+code-old.
nlp.vocab.strings[u'coffee'] # 3672
other_nlp.vocab.strings[u'coffee'] # 40259
+h(3, "migrating-matcher") Adding patterns and callbacks to the matcher
p
| If you're using the matcher, you can now add patterns in one step. This
| should be easy to update simply merge the ID, callback and patterns
| into one call to #[+api("matcher#add") #[code Matcher.add()]]. The
| matcher now also supports string keys, which saves you an extra import.
| If you've been using #[strong acceptor functions], you'll need to move
| this logic into the
| #[+a("/usage/rule-based-matching#on_match") #[code on_match] callbacks].
| The callback function is invoked on every match and will give you access to
| the doc, the index of the current match and all total matches. This lets
| you both accept or reject the match, and define the actions to be
| triggered.
.o-block
+code-new.
matcher.add('GoogleNow', merge_phrases, [{'ORTH': 'Google'}, {'ORTH': 'Now'}])
+code-old.
matcher.add_entity('GoogleNow', on_match=merge_phrases)
matcher.add_pattern('GoogleNow', [{ORTH: 'Google'}, {ORTH: 'Now'}])
p
| If you need to match large terminology lists, you can now also
| use the #[+api("phrasematcher") #[code PhraseMatcher]], which accepts
| #[code Doc] objects as match patterns and is more efficient than the
| regular, rule-based matcher.
+code-new.
from spacy.matcher import PhraseMatcher
matcher = PhraseMatcher(nlp.vocab)
patterns = [nlp(text) for text in large_terminology_list]
matcher.add('PRODUCT', None, *patterns)
+code-old.
matcher = Matcher(nlp.vocab)
matcher.add_entity('PRODUCT')
for text in large_terminology_list
matcher.add_pattern('PRODUCT', [{ORTH: text}])

View File

@ -0,0 +1,74 @@
//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > SUMMARY
p
| We're very excited to finally introduce spaCy v2.0! On this page, you'll
| find a summary of the new features, information on the backwards
| incompatibilities, including a handy overview of what's been renamed or
| deprecated. To help you make the most of v2.0, we also
| #[strong re-wrote almost all of the usage guides and API docs], and added
| more #[+a("/usage/examples") real-world examples]. If you're new to
| spaCy, or just want to brush up on some NLP basics and the details of
| the library, check out the
| #[+a("/usage/spacy-101") spaCy 101 guide] that explains the most
| important concepts with examples and illustrations.
+h(2, "summary") Summary
+grid.o-no-block
+grid-col("half")
p
| This release features entirely new
| #[strong deep learning-powered models] for spaCy's tagger,
| parser and entity recognizer. The new models are
| #[strong 10× smaller], #[strong 20% more accurate] and
| just as fast as the previous generation.
p
| We've also made several usability improvements that are
| particularly helpful for #[strong production deployments].
| spaCy v2 now fully supports the Pickle protocol, making it
| easy to use spaCy with
| #[+a("https://spark.apache.org/") Apache Spark]. The
| string-to-integer mapping is #[strong no longer stateful],
| making it easy to reconcile annotations made in different
| processes. Models are smaller and use less memory, and the
| APIs for serialization are now much more consistent. Custom
| pipeline components let you modify the #[code Doc] at any
| stage in the pipeline. You can now also add your own
| custom attributes, properties and methods to the #[code Doc],
| #[code Token] and #[code Span].
+table-of-contents
+item #[+a("#summary") Summary]
+item #[+a("#features") New features]
+item #[+a("#features-models") Neural network models]
+item #[+a("#features-pipelines") Improved processing pipelines]
+item #[+a("#features-text-classification") Text classification]
+item #[+a("#features-hash-ids") Hash values as IDs]
+item #[+a("#features-vectors") Improved word vectors support]
+item #[+a("#features-serializer") Saving, loading and serialization]
+item #[+a("#features-displacy") displaCy visualizer]
+item #[+a("#features-language") Language data and lazy loading]
+item #[+a("#features-matcher") Revised matcher API and phrase matcher]
+item #[+a("#incompat") Backwards incompatibilities]
+item #[+a("#migrating") Migrating from spaCy v1.x]
+item #[+a("#benchmarks") Benchmarks]
p
| The main usability improvements you'll notice in spaCy v2.0 are around
| #[strong defining, training and loading your own models] and components.
| The new neural network models make it much easier to train a model from
| scratch, or update an existing model with a few examples. In v1.x, the
| statistical models depended on the state of the #[code Vocab]. If you
| taught the model a new word, you would have to save and load a lot of
| data — otherwise the model wouldn't correctly recall the features of your
| new example. That's no longer the case.
p
| Due to some clever use of hashing, the statistical models
| #[strong never change size], even as they learn new vocabulary items.
| The whole pipeline is also now fully differentiable. Even if you don't
| have explicitly annotated data, you can update spaCy using all the
| #[strong latest deep learning tricks] like adversarial training, noise
| contrastive estimation or reinforcement learning.

View File

@ -2,531 +2,22 @@
include ../_includes/_mixins include ../_includes/_mixins
p +section("summary")
| We're very excited to finally introduce spaCy v2.0! On this page, you'll include _v2/_summary
| find a summary of the new features, information on the backwards
| incompatibilities, including a handy overview of what's been renamed or
| deprecated. To help you make the most of v2.0, we also
| #[strong re-wrote almost all of the usage guides and API docs], and added
| more real-world examples. If you're new to spaCy, or just want to brush
| up on some NLP basics and the details of the library, check out
| the #[+a("/usage/spacy-101") spaCy 101 guide] that explains the most
| important concepts with examples and illustrations.
+h(2, "summary") Summary
+grid.o-no-block
+grid-col("half")
p This release features
| entirely new #[strong deep learning-powered models] for spaCy's tagger,
| parser and entity recognizer. The new models are #[strong 20x smaller]
| than the linear models that have powered spaCy until now: from 300 MB to
| only 15 MB.
p
| We've also made several usability improvements that are
| particularly helpful for #[strong production deployments]. spaCy
| v2 now fully supports the Pickle protocol, making it easy to use
| spaCy with #[+a("https://spark.apache.org/") Apache Spark]. The
| string-to-integer mapping is #[strong no longer stateful], making
| it easy to reconcile annotations made in different processes.
| Models are smaller and use less memory, and the APIs for serialization
| are now much more consistent.
+table-of-contents
+item #[+a("#summary") Summary]
+item #[+a("#features") New features]
+item #[+a("#features-models") Neural network models]
+item #[+a("#features-pipelines") Improved processing pipelines]
+item #[+a("#features-text-classification") Text classification]
+item #[+a("#features-hash-ids") Hash values instead of integer IDs]
+item #[+a("#features-serializer") Saving, loading and serialization]
+item #[+a("#features-displacy") displaCy visualizer]
+item #[+a("#features-language") Language data and lazy loading]
+item #[+a("#features-matcher") Revised matcher API and phrase matcher]
+item #[+a("#incompat") Backwards incompatibilities]
+item #[+a("#migrating") Migrating from spaCy v1.x]
+item #[+a("#benchmarks") Benchmarks]
p
| The main usability improvements you'll notice in spaCy v2.0 are around
| #[strong defining, training and loading your own models] and components.
| The new neural network models make it much easier to train a model from
| scratch, or update an existing model with a few examples. In v1.x, the
| statistical models depended on the state of the #[code Vocab]. If you
| taught the model a new word, you would have to save and load a lot of
| data — otherwise the model wouldn't correctly recall the features of your
| new example. That's no longer the case.
p
| Due to some clever use of hashing, the statistical models
| #[strong never change size], even as they learn new vocabulary items.
| The whole pipeline is also now fully differentiable. Even if you don't
| have explicitly annotated data, you can update spaCy using all the
| #[strong latest deep learning tricks] like adversarial training, noise
| contrastive estimation or reinforcement learning.
+section("features") +section("features")
+h(2, "features") New features +h(2, "features") New features
include _v2/_features
p
| This section contains an overview of the most important
| #[strong new features and improvements]. The #[+a("/api") API docs]
| include additional deprecation notes. New methods and functions that
| were introduced in this version are marked with a #[+tag-new(2)] tag.
+h(3, "features-models") Convolutional neural network models
+aside-code("Example", "bash").
spacy download en # default English model
spacy download de # default German model
spacy download fr # default French model
spacy download es # default Spanish model
spacy download xx_ent_wiki_sm # multi-language NER
p
| spaCy v2.0 features new neural models for tagging,
| parsing and entity recognition. The models have
| been designed and implemented from scratch specifically for spaCy, to
| give you an unmatched balance of speed, size and accuracy. The new
| models are #[strong 10× smaller], #[strong 20% more accurate],
| and #[strong just as fast] as the previous generation.
| #[strong GPU usage] is now supported via
| #[+a("http://chainer.org") Chainer]'s CuPy module.
+infobox
| #[+label-inline Usage:] #[+a("/models") Models directory],
| #[+a("/usage/#gpu") Using spaCy with GPU]
+h(3, "features-pipelines") Improved processing pipelines
+aside-code("Example").
# Set custom attributes
Doc.set_extension('my_attr', default=False)
Token.set_extension('my_attr', getter=my_token_getter)
assert doc._.my_attr, token._.my_attr
# Add components to the pipeline
my_component = lambda doc: doc
nlp.add_pipe(my_component)
p
| It's now much easier to #[strong customise the pipeline] with your own
| components: functions that receive a #[code Doc] object, modify and
| return it. Extensions let you write any
| #[strong attributes, properties and methods] to the #[code Doc],
| #[code Token] and #[code Span]. You can add data, implement new
| features, integrate other libraries with spaCy or plug in your own
| machine learning models.
+image
include ../assets/img/pipeline.svg
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]],
| #[+api("doc#set_extension") #[code Doc.set_extension]],
| #[+api("span#set_extension") #[code Span.set_extension]],
| #[+api("token#set_extension") #[code Token.set_extension]]
| #[+label-inline Usage:]
| #[+a("/usage/processing-pipelines") Processing pipelines]
| #[+label-inline Code:]
| #[+src("/usage/examples#section-pipeline") Pipeline examples]
+h(3, "features-text-classification") Text classification
+aside-code("Example").
from spacy.lang.en import English
nlp = English(pipeline=['tensorizer', 'tagger', 'textcat'])
p
| spaCy v2.0 lets you add text categorization models to spaCy pipelines.
| The model supports classification with multiple, non-mutually exclusive
| labels so multiple labels can apply at once. You can change the model
| architecture rather easily, but by default, the #[code TextCategorizer]
| class uses a convolutional neural network to assign position-sensitive
| vectors to each word in the document.
+infobox
| #[+label-inline API:] #[+api("textcategorizer") #[code TextCategorizer]],
| #[+api("doc#attributes") #[code Doc.cats]],
| #[+api("goldparse#attributes") #[code GoldParse.cats]]#[br]
| #[+label-inline Usage:] #[+a("/usage/text-classification") Text classification]
+h(3, "features-hash-ids") Hash values instead of integer IDs
+aside-code("Example").
doc = nlp(u'I love coffee')
assert doc.vocab.strings[u'coffee'] == 3197928453018144401
assert doc.vocab.strings[3197928453018144401] == u'coffee'
beer_hash = doc.vocab.strings.add(u'beer')
assert doc.vocab.strings[u'beer'] == beer_hash
assert doc.vocab.strings[beer_hash] == u'beer'
p
| The #[+api("stringstore") #[code StringStore]] now resolves all strings
| to hash values instead of integer IDs. This means that the string-to-int
| mapping #[strong no longer depends on the vocabulary state], making a lot
| of workflows much simpler, especially during training. Unlike integer IDs
| in spaCy v1.x, hash values will #[strong always match] even across
| models. Strings can now be added explicitly using the new
| #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash
| is available via #[code token.orth].
+infobox
| #[+label-inline API:] #[+api("stringstore") #[code StringStore]]
| #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
+h(3, "features-serializer") Saving, loading and serialization
+aside-code("Example").
nlp = spacy.load('en') # shortcut link
nlp = spacy.load('en_core_web_sm') # package
nlp = spacy.load('/path/to/en') # unicode path
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
nlp.to_disk('/path/to/nlp')
nlp = English().from_disk('/path/to/nlp')
p
| spay's serialization API has been made consistent across classes and
| objects. All container classes, i.e. #[code Language], #[code Doc],
| #[code Vocab] and #[code StringStore] now have a #[code to_bytes()],
| #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method
| that supports the Pickle protocol.
p
| The improved #[code spacy.load] makes loading models easier and more
| transparent. You can load a model by supplying its
| #[+a("/usage/models#usage") shortcut link], the name of an installed
| #[+a("/usage/saving-loading#generating") model package] or a path.
| The #[code Language] class to initialise will be determined based on the
| model's settings. For a blank language, you can import the class directly,
| e.g. #[code from spacy.lang.en import English].
+infobox
| #[+label-inline API:] #[+api("spacy#load") #[code spacy.load]]
| #[+label-inline Usage:] #[+a("/usage/saving-loading") Saving and loading]
+h(3, "features-displacy") displaCy visualizer with Jupyter support
+aside-code("Example").
from spacy import displacy
doc = nlp(u'This is a sentence about Facebook.')
displacy.serve(doc, style='dep') # run the web server
html = displacy.render(doc, style='ent') # generate HTML
p
| Our popular dependency and named entity visualizers are now an official
| part of the spaCy library. displaCy can run a simple web server, or
| generate raw HTML markup or SVG files to be exported. You can pass in one
| or more docs, and customise the style. displaCy also auto-detects whether
| you're running #[+a("https://jupyter.org") Jupyter] and will render the
| visualizations in your notebook.
+infobox
| #[+label-inline API:] #[+api("displacy") #[code displacy]]
| #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizing spaCy]
+h(3, "features-language") Improved language data and lazy loading
p
| Language-specfic data now lives in its own submodule, #[code spacy.lang].
| Languages are lazy-loaded, i.e. only loaded when you import a
| #[code Language] class, or load a model that initialises one. This allows
| languages to contain more custom data, e.g. lemmatizer lookup tables, or
| complex regular expressions. The language data has also been tidied up
| and simplified. spaCy now also supports simple lookup-based lemmatization.
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]]
| #[+label-inline Code:] #[+src(gh("spaCy", "spacy/lang")) #[code spacy/lang]]
| #[+label-inline Usage:] #[+a("/usage/adding-languages") Adding languages]
+h(3, "features-matcher") Revised matcher API and phrase matcher
+aside-code("Example").
from spacy.matcher import Matcher, PhraseMatcher
matcher = Matcher(nlp.vocab)
matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}])
phrasematcher = PhraseMatcher(nlp.vocab)
phrasematcher.add('OBAMA', None, nlp(u"Barack Obama"))
p
| Patterns can now be added to the matcher by calling
| #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional
| callback function to be invoked on each match, and one or more patterns.
| This allows you to write powerful, pattern-specific logic using only one
| matcher. For example, you might only want to merge some entity types,
| and set custom flags for other matched patterns. The new
| #[+api("phrasematcher") #[code PhraseMatcher]] lets you efficiently
| match very large terminology lists using #[code Doc] objects as match
| patterns.
+infobox
| #[+label-inline API:] #[+api("matcher") #[code Matcher]],
| #[+api("phrasematcher") #[code PhraseMatcher]]
| #[+label-inline Usage:] #[+a("/usage/rule-based-matching") Rule-based matching]
+section("incompat") +section("incompat")
+h(2, "incompat") Backwards incompatibilities +h(2, "incompat") Backwards incompatibilities
include _v2/_incompat
+table(["Old", "New"])
+row
+cell
| #[code spacy.en]
| #[code spacy.xx]
+cell
| #[code spacy.lang.en]
| #[code spacy.lang.xx]
+row
+cell #[code orth]
+cell #[code lang.xx.lex_attrs]
+row
+cell #[code syntax.iterators]
+cell #[code lang.xx.syntax_iterators]
+row
+cell #[code Language.save_to_directory]
+cell #[+api("language#to_disk") #[code Language.to_disk]]
+row
+cell #[code Language.create_make_doc]
+cell #[+api("language#attributes") #[code Language.tokenizer]]
+row
+cell
| #[code Vocab.load]
| #[code Vocab.load_lexemes]
+cell
| #[+api("vocab#from_disk") #[code Vocab.from_disk]]
| #[+api("vocab#from_bytes") #[code Vocab.from_bytes]]
+row
+cell
| #[code Vocab.dump]
+cell
| #[+api("vocab#to_disk") #[code Vocab.to_disk]]#[br]
| #[+api("vocab#to_bytes") #[code Vocab.to_bytes]]
+row
+cell
| #[code Vocab.load_vectors]
| #[code Vocab.load_vectors_from_bin_loc]
+cell
| #[+api("vectors#from_disk") #[code Vectors.from_disk]]
| #[+api("vectors#from_bytes") #[code Vectors.from_bytes]]
+row
+cell
| #[code Vocab.dump_vectors]
+cell
| #[+api("vectors#to_disk") #[code Vectors.to_disk]]
| #[+api("vectors#to_bytes") #[code Vectors.to_bytes]]
+row
+cell
| #[code StringStore.load]
+cell
| #[+api("stringstore#from_disk") #[code StringStore.from_disk]]
| #[+api("stringstore#from_bytes") #[code StringStore.from_bytes]]
+row
+cell
| #[code StringStore.dump]
+cell
| #[+api("stringstore#to_disk") #[code StringStore.to_disk]]
| #[+api("stringstore#to_bytes") #[code StringStore.to_bytes]]
+row
+cell #[code Tokenizer.load]
+cell
| #[+api("tokenizer#from_disk") #[code Tokenizer.from_disk]]
| #[+api("tokenizer#from_bytes") #[code Tokenizer.from_bytes]]
+row
+cell #[code Tagger.load]
+cell
| #[+api("tagger#from_disk") #[code Tagger.from_disk]]
| #[+api("tagger#from_bytes") #[code Tagger.from_bytes]]
+row
+cell #[code DependencyParser.load]
+cell
| #[+api("dependencyparser#from_disk") #[code DependencyParser.from_disk]]
| #[+api("dependencyparser#from_bytes") #[code DependencyParser.from_bytes]]
+row
+cell #[code EntityRecognizer.load]
+cell
| #[+api("entityrecognizer#from_disk") #[code EntityRecognizer.from_disk]]
| #[+api("entityrecognizer#from_bytes") #[code EntityRecognizer.from_bytes]]
+row
+cell #[code Matcher.load]
+cell -
+row
+cell
| #[code Matcher.add_pattern]
| #[code Matcher.add_entity]
+cell #[+api("matcher#add") #[code Matcher.add]]
+row
+cell #[code Matcher.get_entity]
+cell #[+api("matcher#get") #[code Matcher.get]]
+row
+cell #[code Matcher.has_entity]
+cell #[+api("matcher#contains") #[code Matcher.__contains__]]
+row
+cell #[code Doc.read_bytes]
+cell
| #[+api("doc#to_bytes") #[code Doc.to_bytes]]
| #[+api("doc#from_bytes") #[code Doc.from_bytes]]
| #[+api("doc#to_disk") #[code Doc.to_disk]]
| #[+api("doc#from_disk") #[code Doc.from_disk]]
+row
+cell #[code Token.is_ancestor_of]
+cell #[+api("token#is_ancestor") #[code Token.is_ancestor]]
+row
+cell #[code cli.model]
+cell -
+section("migrating") +section("migrating")
+h(2, "migrating") Migrating from spaCy 1.x +h(2, "migrating") Migrating from spaCy 1.x
include _v2/_migrating
p
| Because we'e made so many architectural changes to the library, we've
| tried to #[strong keep breaking changes to a minimum]. A lot of projects
| follow the philosophy that if you're going to break anything, you may as
| well break everything. We think migration is easier if there's a logic to
| what has changed.
p
| We've therefore followed a policy of avoiding breaking changes to the
| #[code Doc], #[code Span] and #[code Token] objects. This way, you can
| focus on only migrating the code that does training, loading and
| serialization — in other words, code that works with the #[code nlp]
| object directly. Code that uses the annotations should continue to work.
+infobox("Important note")
| If you've trained your own models, keep in mind that your train and
| runtime inputs must match. This means you'll have to
| #[strong retrain your models] with spaCy v2.0.
+h(3, "migrating-saving-loading") Saving, loading and serialization
p
| Double-check all calls to #[code spacy.load()] and make sure they don't
| use the #[code path] keyword argument. If you're only loading in binary
| data and not a model package that can construct its own #[code Language]
| class and pipeline, you should now use the
| #[+api("language#from_disk") #[code Language.from_disk()]] method.
+code-new.
nlp = spacy.load('/model')
nlp = English().from_disk('/model/data')
+code-old nlp = spacy.load('en', path='/model')
p
| Review all other code that writes state to disk or bytes.
| All containers, now share the same, consistent API for saving and
| loading. Replace saving with #[code to_disk()] or #[code to_bytes()], and
| loading with #[code from_disk()] and #[code from_bytes()].
+code-new.
nlp.to_disk('/model')
nlp.vocab.to_disk('/vocab')
+code-old.
nlp.save_to_directory('/model')
nlp.vocab.dump('/vocab')
p
| If you've trained models with input from v1.x, you'll need to
| #[strong retrain them] with spaCy v2.0. All previous models will not
| be compatible with the new version.
+h(3, "migrating-strings") Strings and hash values
p
| The change from integer IDs to hash values may not actually affect your
| code very much. However, if you're adding strings to the vocab manually,
| you now need to call #[+api("stringstore#add") #[code StringStore.add()]]
| explicitly. You can also now be sure that the string-to-hash mapping will
| always match across vocabularies.
+code-new.
nlp.vocab.strings.add(u'coffee')
nlp.vocab.strings[u'coffee'] # 3197928453018144401
other_nlp.vocab.strings[u'coffee'] # 3197928453018144401
+code-old.
nlp.vocab.strings[u'coffee'] # 3672
other_nlp.vocab.strings[u'coffee'] # 40259
+h(3, "migrating-languages") Processing pipelines and language data
p
| If you're importing language data or #[code Language] classes, make sure
| to change your import statements to import from #[code spacy.lang]. If
| you've added your own custom language, it needs to be moved to
| #[code spacy/lang/xx] and adjusted accordingly.
+code-new from spacy.lang.en import English
+code-old from spacy.en import English
p
| If you've been using custom pipeline components, check out the new
| guide on #[+a("/usage/language-processing-pipelines") processing pipelines].
| Appending functions to the pipeline still works but the
| #[+api("language#add_pipe") #[code add_pipe]] methods now makes this
| much more convenient. Components of the processing pipeline can now
| be disabled by passing a list of their names to the #[code disable]
| keyword argument on load, or by simply demoving them from the
| pipeline alltogether.
+code-new.
nlp = spacy.load('en', disable=['tagger', 'ner'])
doc = nlp(u"I don't want parsed", disable['parser'])
nlp.remove_pipe('parser')
+code-old.
nlp = spacy.load('en', tagger=False, entity=False)
doc = nlp(u"I don't want parsed", parse=False)
+h(3, "migrating-matcher") Adding patterns and callbacks to the matcher
p
| If you're using the matcher, you can now add patterns in one step. This
| should be easy to update simply merge the ID, callback and patterns
| into one call to #[+api("matcher#add") #[code Matcher.add()]].
+code-new.
matcher.add('GoogleNow', merge_phrases, [{ORTH: 'Google'}, {ORTH: 'Now'}])
+code-old.
matcher.add_entity('GoogleNow', on_match=merge_phrases)
matcher.add_pattern('GoogleNow', [{ORTH: 'Google'}, {ORTH: 'Now'}])
p
| If you've been using #[strong acceptor functions], you'll need to move
| this logic into the
| #[+a("/usage/rule-based-matching#on_match") #[code on_match] callbacks].
| The callback function is invoked on every match and will give you access to
| the doc, the index of the current match and all total matches. This lets
| you both accept or reject the match, and define the actions to be
| triggered.
+section("benchmarks") +section("benchmarks")
+h(2, "benchmarks") Benchmarks +h(2, "benchmarks") Benchmarks
include _facts-figures/_benchmarks-models include _facts-figures/_benchmarks-models