diff --git a/spacy/tests/doc/test_span.py b/spacy/tests/doc/test_span.py index c6890eed7..adef5922f 100644 --- a/spacy/tests/doc/test_span.py +++ b/spacy/tests/doc/test_span.py @@ -706,12 +706,13 @@ def test_for_partial_ent_sents(): """Spans may be associated with multiple sentences. These .sents should always be complete, not partial, sentences, which this tests for. """ - nlp = English() - text = ["Mahler's", "Symphony", "No.", "8", "was", "beautiful."] - doc = Doc(nlp.vocab, words=text, sent_starts=[1, 0, 0, 1, 0, 0]) + doc = Doc( + English().vocab, + words=["Mahler's", "Symphony", "No.", "8", "was", "beautiful."], + sent_starts=[1, 0, 0, 1, 0, 0], + ) doc.set_ents([Span(doc, 1, 4, "WORK")]) # The specified entity is associated with both sentences in this doc, so we expect all sentences in the doc to be # equal to the sentences referenced in ent.sents. for doc_sent, ent_sent in zip(doc.sents, doc.ents[0].sents): assert doc_sent == ent_sent - diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index 72a216e05..7750b16ed 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -461,7 +461,7 @@ cdef class Span: if start >= self.end: break elif i == self.doc.length - 1: - yield Span(self.doc, start, i + 1) + yield Span(self.doc, start, self.doc.length) @property def ents(self):