CONLLU scoring 80.9% UAS with no oracle segments

This commit is contained in:
Matthew Honnibal 2018-02-23 23:49:17 +01:00
parent 968dabdde4
commit 5be092ee72

View File

@ -14,8 +14,14 @@ from spacy.syntax.nonproj import projectivize
from collections import Counter
from timeit import default_timer as timer
import random
import numpy.random
from spacy._align import align
random.seed(0)
numpy.random.seed(0)
def prevent_bad_sentences(doc):
'''This is an example pipeline component for fixing sentence segmentation
mistakes. The component sets is_sent_start to False, which means the
@ -41,10 +47,7 @@ def load_model(lang):
be marked as incorrect.
'''
English = spacy.util.get_lang_class(lang)
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-\d])',)
English.Defaults.infixes += ('(?<=[^-])[+\-\*^](?=[^-\d])',)
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-])',)
English.Defaults.token_match = re.compile(r'=+').match
English.Defaults.token_match = re.compile(r'=+|!+|\?+|\*+|_+').match
nlp = English()
nlp.tokenizer.add_special_case('***', [{'ORTH': '***'}])
nlp.tokenizer.add_special_case("):", [{'ORTH': ")"}, {"ORTH": ":"}])
@ -246,13 +249,19 @@ def print_conllu(docs, file_):
def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
output_loc):
nlp = load_model(spacy_model)
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
nlp.vocab.vectors = vec_nlp.vocab.vectors
for lex in vec_nlp.vocab:
_ = nlp.vocab[lex.orth_]
with open(conllu_train_loc) as conllu_file:
with open(text_train_loc) as text_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=True, raw_text=True,
oracle_segments=False, raw_text=True,
limit=None)
print("Create parser")
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.parser.add_multitask_objective('tag')
nlp.parser.add_multitask_objective('sent_start')
nlp.add_pipe(nlp.create_pipe('tagger'))
for gold in golds:
for tag in gold.tags:
@ -271,7 +280,7 @@ def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev
print("Begin training")
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 8),
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
spacy.util.env_opt('batch_to', 8),
spacy.util.env_opt('batch_compound', 1.001))
for i in range(30):