Update NER training example

This commit is contained in:
Matthew Honnibal 2017-05-31 13:42:12 +02:00
parent fe28602f2e
commit 5c30466c95

View File

@ -3,66 +3,26 @@ import json
import pathlib
import random
import spacy
from spacy.pipeline import EntityRecognizer
from spacy.gold import GoldParse
from spacy.tagger import Tagger
import spacy.lang.en
from spacy.gold import GoldParse, biluo_tags_from_offsets
try:
unicode
except:
unicode = str
def train_ner(nlp, train_data, entity_types):
# Add new words to vocab.
for raw_text, _ in train_data:
doc = nlp.make_doc(raw_text)
for word in doc:
_ = nlp.vocab[word.orth]
# Train NER.
ner = EntityRecognizer(nlp.vocab, entity_types=entity_types)
for itn in range(5):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
ner.update(doc, gold)
return ner
def save_model(ner, model_dir):
model_dir = pathlib.Path(model_dir)
if not model_dir.exists():
model_dir.mkdir()
assert model_dir.is_dir()
with (model_dir / 'config.json').open('wb') as file_:
data = json.dumps(ner.cfg)
if isinstance(data, unicode):
data = data.encode('utf8')
file_.write(data)
ner.model.dump(str(model_dir / 'model'))
if not (model_dir / 'vocab').exists():
(model_dir / 'vocab').mkdir()
ner.vocab.dump(str(model_dir / 'vocab' / 'lexemes.bin'))
with (model_dir / 'vocab' / 'strings.json').open('w', encoding='utf8') as file_:
ner.vocab.strings.dump(file_)
def reformat_train_data(tokenizer, examples):
"""Reformat data to match JSON format"""
output = []
for i, (text, entity_offsets) in enumerate(examples):
doc = tokenizer(text)
ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
words = [w.text for w in doc]
tags = ['-'] * len(doc)
heads = [0] * len(doc)
deps = [''] * len(doc)
sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
output.append((text, [(sentence, [])]))
return output
def main(model_dir=None):
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
# v1.1.2 onwards
if nlp.tagger is None:
print('---- WARNING ----')
print('Data directory not found')
print('please run: `python -m spacy.en.download --force all` for better performance')
print('Using feature templates for tagging')
print('-----------------')
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
train_data = [
(
'Who is Shaka Khan?',
@ -74,23 +34,35 @@ def main(model_dir=None):
(len('I like London and '), len('I like London and Berlin'), 'LOC')]
)
]
ner = train_ner(nlp, train_data, ['PERSON', 'LOC'])
doc = nlp.make_doc('Who is Shaka Khan?')
nlp.tagger(doc)
ner(doc)
for word in doc:
print(word.text, word.orth, word.lower, word.tag_, word.ent_type_, word.ent_iob)
if model_dir is not None:
save_model(ner, model_dir)
nlp = spacy.lang.en.English(pipeline=['tensorizer', 'ner'])
get_data = lambda: reformat_train_data(nlp.tokenizer, train_data)
optimizer = nlp.begin_training(get_data)
for itn in range(100):
random.shuffle(train_data)
losses = {}
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update(
[doc], # Batch of Doc objects
[gold], # Batch of GoldParse objects
drop=0.5, # Dropout -- make it harder to memorise data
sgd=optimizer, # Callable to update weights
losses=losses)
print(losses)
print("Save to", model_dir)
nlp.to_disk(model_dir)
print("Load from", model_dir)
nlp = spacy.lang.en.English(pipeline=['tensorizer', 'ner'])
nlp.from_disk(model_dir)
for raw_text, _ in train_data:
doc = nlp(raw_text)
for word in doc:
print(word.text, word.ent_type_, word.ent_iob_)
if __name__ == '__main__':
main('ner')
import plac
plac.call(main)
# Who "" 2
# is "" 2
# Shaka "" PERSON 3