mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Move new parser to nn_parser.pyx, and restore old parser, to make tests pass.
This commit is contained in:
parent
f8c02b4341
commit
5cac951a16
|
@ -10,6 +10,7 @@ cimport numpy as np
|
|||
|
||||
from .tokens.doc cimport Doc
|
||||
from .syntax.parser cimport Parser
|
||||
from .syntax.parser import get_templates as get_feature_templates
|
||||
#from .syntax.beam_parser cimport BeamParser
|
||||
from .syntax.ner cimport BiluoPushDown
|
||||
from .syntax.arc_eager cimport ArcEager
|
||||
|
@ -113,6 +114,7 @@ cdef class EntityRecognizer(Parser):
|
|||
Annotate named entities on Doc objects.
|
||||
"""
|
||||
TransitionSystem = BiluoPushDown
|
||||
feature_templates = get_feature_templates('ner')
|
||||
|
||||
def add_label(self, label):
|
||||
Parser.add_label(self, label)
|
||||
|
@ -141,6 +143,7 @@ cdef class EntityRecognizer(Parser):
|
|||
|
||||
cdef class DependencyParser(Parser):
|
||||
TransitionSystem = ArcEager
|
||||
feature_templates = get_feature_templates('basic')
|
||||
|
||||
def add_label(self, label):
|
||||
Parser.add_label(self, label)
|
||||
|
|
18
spacy/syntax/nn_parser.pxd
Normal file
18
spacy/syntax/nn_parser.pxd
Normal file
|
@ -0,0 +1,18 @@
|
|||
from thinc.typedefs cimport atom_t
|
||||
|
||||
from .stateclass cimport StateClass
|
||||
from .arc_eager cimport TransitionSystem
|
||||
from ..vocab cimport Vocab
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..structs cimport TokenC
|
||||
from ._state cimport StateC
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly object model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object feature_maps
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
677
spacy/syntax/nn_parser.pyx
Normal file
677
spacy/syntax/nn_parser.pyx
Normal file
|
@ -0,0 +1,677 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
# coding: utf-8
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
from collections import Counter
|
||||
import ujson
|
||||
|
||||
from libc.math cimport exp
|
||||
cimport cython
|
||||
cimport cython.parallel
|
||||
import cytoolz
|
||||
|
||||
import numpy.random
|
||||
cimport numpy as np
|
||||
|
||||
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||
from cpython.exc cimport PyErr_CheckSignals
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport malloc, calloc, free
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
|
||||
from thinc.extra.eg cimport Example
|
||||
from cymem.cymem cimport Pool, Address
|
||||
from murmurhash.mrmr cimport hash64
|
||||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain
|
||||
from thinc.neural import BatchNorm, Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural.ops import NumpyOps
|
||||
|
||||
from ..util import get_cuda_stream
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
|
||||
from . import _parse_features
|
||||
from ._parse_features cimport CONTEXT_SIZE
|
||||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from ._state cimport StateC
|
||||
from .nonproj import PseudoProjectivity
|
||||
from .transition_system import OracleError
|
||||
from .transition_system cimport TransitionSystem, Transition
|
||||
from ..structs cimport TokenC
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..strings cimport StringStore
|
||||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
||||
USE_FTRL = True
|
||||
DEBUG = False
|
||||
def set_debug(val):
|
||||
global DEBUG
|
||||
DEBUG = val
|
||||
|
||||
|
||||
def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
drop=0.):
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
and compute vectors for each (token, position) pair. These vectors can then
|
||||
be reused, especially for beam-search.
|
||||
|
||||
Let's say we're using 12 features for each state, e.g. word at start of
|
||||
buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||
system, a document of length N is processed in 2*N states. This means we'll
|
||||
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||
N*12 vector computations. The saving for beam-search is much better:
|
||||
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||
so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
'''
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
nF = gpu_cached.shape[1]
|
||||
nO = gpu_cached.shape[2]
|
||||
nP = gpu_cached.shape[3]
|
||||
ops = lower_model.ops
|
||||
features = numpy.zeros((batch_size, nO, nP), dtype='f')
|
||||
synchronized = False
|
||||
|
||||
def forward(token_ids, drop=0.):
|
||||
nonlocal synchronized
|
||||
if not synchronized and cuda_stream is not None:
|
||||
cuda_stream.synchronize()
|
||||
synchronized = True
|
||||
# This is tricky, but:
|
||||
# - Input to forward on CPU
|
||||
# - Output from forward on CPU
|
||||
# - Input to backward on GPU!
|
||||
# - Output from backward on GPU
|
||||
nonlocal features
|
||||
features = features[:len(token_ids)]
|
||||
features.fill(0)
|
||||
cdef float[:, :, ::1] feats = features
|
||||
cdef int[:, ::1] ids = token_ids
|
||||
_sum_features(<float*>&feats[0,0,0],
|
||||
<float*>cached.data, &ids[0,0],
|
||||
token_ids.shape[0], nF, nO*nP)
|
||||
|
||||
if nP >= 2:
|
||||
best, which = ops.maxout(features)
|
||||
else:
|
||||
best = features.reshape((features.shape[0], features.shape[1]))
|
||||
which = None
|
||||
|
||||
def backward(d_best, sgd=None):
|
||||
# This will usually be on GPU
|
||||
if isinstance(d_best, numpy.ndarray):
|
||||
d_best = ops.xp.array(d_best)
|
||||
if nP >= 2:
|
||||
d_features = ops.backprop_maxout(d_best, which, nP)
|
||||
else:
|
||||
d_features = d_best.reshape((d_best.shape[0], d_best.shape[1], 1))
|
||||
d_tokens = bp_features((d_features, token_ids), sgd)
|
||||
return d_tokens
|
||||
|
||||
return best, backward
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
cdef void _sum_features(float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
continue
|
||||
idx = token_ids[f] * F * O + f*O
|
||||
feature = &cached[idx]
|
||||
for i in range(O):
|
||||
output[i] += feature[i]
|
||||
output += O
|
||||
token_ids += F
|
||||
|
||||
|
||||
def get_batch_loss(TransitionSystem moves, states, golds, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
cdef Pool mem = Pool()
|
||||
cdef int i
|
||||
is_valid = <int*>mem.alloc(moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), moves.n_moves), dtype='f',
|
||||
order='c')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, moves.n_moves * sizeof(float))
|
||||
moves.set_costs(is_valid, costs, state, gold)
|
||||
cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
#cpu_regression_loss(c_d_scores,
|
||||
# costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
return d_scores
|
||||
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
guess = arg_max_if_valid(scores, is_valid, O)
|
||||
Z = 1e-10
|
||||
gZ = 1e-10
|
||||
max_ = scores[guess]
|
||||
gmax = scores[best]
|
||||
for i in range(O):
|
||||
if is_valid[i]:
|
||||
Z += exp(scores[i] - max_)
|
||||
if costs[i] <= costs[best]:
|
||||
gZ += exp(scores[i] - gmax)
|
||||
for i in range(O):
|
||||
if not is_valid[i]:
|
||||
d_scores[i] = 0.
|
||||
elif costs[i] <= costs[best]:
|
||||
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
|
||||
else:
|
||||
d_scores[i] = exp(scores[i]-max_) / Z
|
||||
|
||||
|
||||
cdef void cpu_regression_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
cdef float eps = 2.
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
for i in range(O):
|
||||
if not is_valid[i]:
|
||||
d_scores[i] = 0.
|
||||
elif scores[i] < scores[best]:
|
||||
d_scores[i] = 0.
|
||||
else:
|
||||
# I doubt this is correct?
|
||||
# Looking for something like Huber loss
|
||||
diff = scores[i] - -costs[i]
|
||||
if diff > eps:
|
||||
d_scores[i] = eps
|
||||
elif diff < -eps:
|
||||
d_scores[i] = -eps
|
||||
else:
|
||||
d_scores[i] = diff
|
||||
|
||||
|
||||
def init_states(TransitionSystem moves, docs):
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
offsets = []
|
||||
states = []
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
offsets.append(offset)
|
||||
offset += len(doc)
|
||||
return states, offsets
|
||||
|
||||
|
||||
def extract_token_ids(states, offsets=None, nF=1, nB=0, nS=2, nL=0, nR=0):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
if offsets is None:
|
||||
offsets = [0] * len(states)
|
||||
for i, (state, offset) in enumerate(zip(states, offsets)):
|
||||
state.set_context_tokens(ids[i], nF, nB, nS, nL, nR)
|
||||
ids[i] += (ids[i] >= 0) * offset
|
||||
return ids
|
||||
|
||||
|
||||
_n_iter = 0
|
||||
@layerize
|
||||
def print_mean_variance(X, drop=0.):
|
||||
global _n_iter
|
||||
_n_iter += 1
|
||||
fwd_iter = _n_iter
|
||||
means = X.mean(axis=0)
|
||||
variance = X.var(axis=0)
|
||||
print(fwd_iter, "M", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "V", ', '.join(('%.2f' % m) for m in variance))
|
||||
def backward(dX, sgd=None):
|
||||
means = dX.mean(axis=0)
|
||||
variance = dX.var(axis=0)
|
||||
print(fwd_iter, "dM", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "dV", ', '.join(('%.2f' % m) for m in variance))
|
||||
return X, backward
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
"""
|
||||
@classmethod
|
||||
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
|
||||
"""
|
||||
Load the statistical model from the supplied path.
|
||||
|
||||
Arguments:
|
||||
path (Path):
|
||||
The path to load from.
|
||||
vocab (Vocab):
|
||||
The vocabulary. Must be shared by the documents to be processed.
|
||||
require (bool):
|
||||
Whether to raise an error if the files are not found.
|
||||
Returns (Parser):
|
||||
The newly constructed object.
|
||||
"""
|
||||
with (path / 'config.json').open() as file_:
|
||||
cfg = ujson.load(file_)
|
||||
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
|
||||
if (path / 'model').exists():
|
||||
self.model.load(str(path / 'model'))
|
||||
elif require:
|
||||
raise IOError(
|
||||
"Required file %s/model not found when loading" % str(path))
|
||||
return self
|
||||
|
||||
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
|
||||
"""
|
||||
Create a Parser.
|
||||
|
||||
Arguments:
|
||||
vocab (Vocab):
|
||||
The vocabulary object. Must be shared with documents to be processed.
|
||||
model (thinc Model):
|
||||
The statistical model.
|
||||
Returns (Parser):
|
||||
The newly constructed object.
|
||||
"""
|
||||
if TransitionSystem is None:
|
||||
TransitionSystem = self.TransitionSystem
|
||||
self.vocab = vocab
|
||||
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
||||
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
||||
if model is None:
|
||||
self.model, self.feature_maps = self.build_model(**cfg)
|
||||
else:
|
||||
self.model, self.feature_maps = model
|
||||
self.cfg = cfg
|
||||
|
||||
def __reduce__(self):
|
||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self,
|
||||
hidden_width=128, token_vector_width=96, nr_vector=1000,
|
||||
nF=1, nB=1, nS=1, nL=1, nR=1, **cfg):
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
Maxout(hidden_width, hidden_width),
|
||||
#print_mean_variance,
|
||||
zero_init(Affine(self.moves.n_moves, hidden_width)))
|
||||
assert isinstance(upper.ops, NumpyOps)
|
||||
lower = PrecomputableMaxouts(hidden_width, nF=nr_context_tokens, nI=token_vector_width,
|
||||
pieces=cfg.get('maxout_pieces', 1))
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
return upper, lower
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to be processed.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.parse_batch([tokens])
|
||||
|
||||
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
||||
"""
|
||||
Process a stream of documents.
|
||||
|
||||
Arguments:
|
||||
stream: The sequence of documents to process.
|
||||
batch_size (int):
|
||||
The number of documents to accumulate into a working set.
|
||||
n_threads (int):
|
||||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
queue = []
|
||||
for doc in stream:
|
||||
queue.append(doc)
|
||||
if len(queue) == batch_size:
|
||||
self.parse_batch(queue)
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
queue = []
|
||||
if queue:
|
||||
self.parse_batch(queue)
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
|
||||
def parse_batch(self, docs_tokvecs):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray py_scores
|
||||
int[500] is_valid # Hacks for now
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lower_model = get_greedy_model_for_batch(len(docs), tokvecs, self.feature_maps,
|
||||
cuda_stream)
|
||||
upper_model = self.model
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
all_states = list(states)
|
||||
todo = [st for st in zip(states, offsets) if not st[0].py_is_final()]
|
||||
|
||||
while todo:
|
||||
states, offsets = zip(*todo)
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
|
||||
py_scores = upper_model(lower_model(token_ids)[0])
|
||||
scores = <float*>py_scores.data
|
||||
nC = py_scores.shape[1]
|
||||
for state, offset in zip(states, offsets):
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(scores, is_valid, nC)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
scores += nC
|
||||
todo = [st for st in todo if not st[0].py_is_final()]
|
||||
|
||||
for state, doc in zip(all_states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
self.moves.finalize_doc(doc)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray scores
|
||||
|
||||
docs, tokvecs = docs_tokvecs
|
||||
cuda_stream = get_cuda_stream()
|
||||
lower_model = get_greedy_model_for_batch(len(docs),
|
||||
tokvecs, self.feature_maps, cuda_stream=cuda_stream,
|
||||
drop=drop)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update(([docs], tokvecs), [golds], drop=drop)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
|
||||
todo = zip(states, offsets, golds)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
|
||||
cdef Pool mem = Pool()
|
||||
is_valid = <int*>mem.alloc(len(states) * self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(len(states) * self.moves.n_moves, sizeof(float))
|
||||
|
||||
upper_model = self.model
|
||||
d_tokens = self.feature_maps.ops.allocate(tokvecs.shape)
|
||||
backprops = []
|
||||
n_tokens = tokvecs.shape[0]
|
||||
nF = self.feature_maps.nF
|
||||
loss = 0.
|
||||
total = 1e-4
|
||||
follow_gold = False
|
||||
cupy = self.feature_maps.ops.xp
|
||||
while len(todo) >= 4:
|
||||
states, offsets, golds = zip(*todo)
|
||||
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
lower, bp_lower = lower_model(token_ids, drop=drop)
|
||||
scores, bp_scores = upper_model.begin_update(lower, drop=drop)
|
||||
|
||||
d_scores = get_batch_loss(self.moves, states, golds, scores)
|
||||
loss += numpy.abs(d_scores).sum()
|
||||
total += d_scores.shape[0]
|
||||
d_lower = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
if isinstance(tokvecs, cupy.ndarray):
|
||||
gpu_tok_ids = cupy.ndarray(token_ids.shape, dtype='i', order='C')
|
||||
gpu_d_lower = cupy.ndarray(d_lower.shape, dtype='f', order='C')
|
||||
gpu_tok_ids.set(token_ids, stream=cuda_stream)
|
||||
gpu_d_lower.set(d_lower, stream=cuda_stream)
|
||||
backprops.append((gpu_tok_ids, gpu_d_lower, bp_lower))
|
||||
else:
|
||||
backprops.append((token_ids, d_lower, bp_lower))
|
||||
|
||||
c_scores = <float*>scores.data
|
||||
for state, gold in zip(states, golds):
|
||||
if follow_gold:
|
||||
self.moves.set_costs(is_valid, costs, state, gold)
|
||||
guess = arg_max_if_gold(c_scores, costs, is_valid, scores.shape[1])
|
||||
else:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
c_scores += scores.shape[1]
|
||||
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
# This tells CUDA to block --- so we know our copies are complete.
|
||||
cuda_stream.synchronize()
|
||||
for token_ids, d_lower, bp_lower in backprops:
|
||||
d_state_features = bp_lower(d_lower, sgd=sgd)
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(self.feature_maps.ops.xp, 'scatter_add'):
|
||||
self.feature_maps.ops.xp.scatter_add(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
self.model.ops.xp.add.at(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokens, loss / total
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
Set up a stepwise state, to introspect and control the transition sequence.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to step through.
|
||||
gold (GoldParse): Optional gold parse
|
||||
Returns (StepwiseState):
|
||||
A state object, to step through the annotation process.
|
||||
"""
|
||||
return StepwiseState(self, doc, gold=gold)
|
||||
|
||||
def from_transition_sequence(self, Doc doc, sequence):
|
||||
"""Control the annotations on a document by specifying a transition sequence
|
||||
to follow.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to annotate.
|
||||
sequence: A sequence of action names, as unicode strings.
|
||||
Returns: None
|
||||
"""
|
||||
with self.step_through(doc) as stepwise:
|
||||
for transition in sequence:
|
||||
stepwise.transition(transition)
|
||||
|
||||
def add_label(self, label):
|
||||
# Doesn't set label into serializer -- subclasses override it to do that.
|
||||
for action in self.moves.action_types:
|
||||
added = self.moves.add_action(action, label)
|
||||
if added:
|
||||
# Important that the labels be stored as a list! We need the
|
||||
# order, or the model goes out of synch
|
||||
self.cfg.setdefault('extra_labels', []).append(label)
|
||||
|
||||
|
||||
cdef class StepwiseState:
|
||||
cdef readonly StateClass stcls
|
||||
cdef readonly Example eg
|
||||
cdef readonly Doc doc
|
||||
cdef readonly GoldParse gold
|
||||
cdef readonly Parser parser
|
||||
|
||||
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
|
||||
self.parser = parser
|
||||
self.doc = doc
|
||||
if gold is not None:
|
||||
self.gold = gold
|
||||
self.parser.moves.preprocess_gold(self.gold)
|
||||
else:
|
||||
self.gold = GoldParse(doc)
|
||||
self.stcls = StateClass.init(doc.c, doc.length)
|
||||
self.parser.moves.initialize_state(self.stcls.c)
|
||||
self.eg = Example(
|
||||
nr_class=self.parser.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.parser.model.nr_feat)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.finish()
|
||||
|
||||
@property
|
||||
def is_final(self):
|
||||
return self.stcls.is_final()
|
||||
|
||||
@property
|
||||
def stack(self):
|
||||
return self.stcls.stack
|
||||
|
||||
@property
|
||||
def queue(self):
|
||||
return self.stcls.queue
|
||||
|
||||
@property
|
||||
def heads(self):
|
||||
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
||||
|
||||
@property
|
||||
def deps(self):
|
||||
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
||||
for i in range(self.stcls.c.length)]
|
||||
|
||||
@property
|
||||
def costs(self):
|
||||
"""
|
||||
Find the action-costs for the current state.
|
||||
"""
|
||||
if not self.gold:
|
||||
raise ValueError("Can't set costs: No GoldParse provided")
|
||||
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
|
||||
self.stcls, self.gold)
|
||||
costs = {}
|
||||
for i in range(self.parser.moves.n_moves):
|
||||
if not self.eg.c.is_valid[i]:
|
||||
continue
|
||||
transition = self.parser.moves.c[i]
|
||||
name = self.parser.moves.move_name(transition.move, transition.label)
|
||||
costs[name] = self.eg.c.costs[i]
|
||||
return costs
|
||||
|
||||
def predict(self):
|
||||
self.eg.reset()
|
||||
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
||||
# self.stcls.c)
|
||||
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
||||
#self.parser.model.set_scoresC(self.eg.c.scores,
|
||||
# self.eg.c.features, self.eg.c.nr_feat)
|
||||
|
||||
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
||||
return self.parser.moves.move_name(action.move, action.label)
|
||||
|
||||
def transition(self, action_name=None):
|
||||
if action_name is None:
|
||||
action_name = self.predict()
|
||||
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
||||
if action_name == '_':
|
||||
action_name = self.predict()
|
||||
action = self.parser.moves.lookup_transition(action_name)
|
||||
elif action_name == 'L' or action_name == 'R':
|
||||
self.predict()
|
||||
move = moves[action_name]
|
||||
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
||||
self.eg.c.nr_class)
|
||||
action = self.parser.moves.c[clas]
|
||||
else:
|
||||
action = self.parser.moves.lookup_transition(action_name)
|
||||
action.do(self.stcls.c, action.label)
|
||||
|
||||
def finish(self):
|
||||
if self.stcls.is_final():
|
||||
self.parser.moves.finalize_state(self.stcls.c)
|
||||
self.doc.set_parse(self.stcls.c._sent)
|
||||
self.parser.moves.finalize_doc(self.doc)
|
||||
|
||||
|
||||
class ParserStateError(ValueError):
|
||||
def __init__(self, doc):
|
||||
ValueError.__init__(self,
|
||||
"Error analysing doc -- no valid actions available. This should "
|
||||
"never happen, so please report the error on the issue tracker. "
|
||||
"Here's the thread to do so --- reopen it if it's closed:\n"
|
||||
"https://github.com/spacy-io/spaCy/issues/429\n"
|
||||
"Please include the text that the parser failed on, which is:\n"
|
||||
"%s" % repr(doc.text))
|
||||
|
||||
|
||||
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil:
|
||||
# Find minimum cost
|
||||
cdef float cost = 1
|
||||
for i in range(n):
|
||||
if is_valid[i] and costs[i] < cost:
|
||||
cost = costs[i]
|
||||
# Now find best-scoring with that cost
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if costs[i] <= cost and is_valid[i]:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
||||
int nr_class) except -1:
|
||||
cdef weight_t score = 0
|
||||
cdef int mode = -1
|
||||
cdef int i
|
||||
for i in range(nr_class):
|
||||
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
||||
mode = i
|
||||
score = scores[i]
|
||||
return mode
|
|
@ -1,4 +1,6 @@
|
|||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.typedefs cimport atom_t
|
||||
from thinc.structs cimport FeatureC
|
||||
|
||||
from .stateclass cimport StateClass
|
||||
from .arc_eager cimport TransitionSystem
|
||||
|
@ -8,11 +10,15 @@ from ..structs cimport TokenC
|
|||
from ._state cimport StateC
|
||||
|
||||
|
||||
cdef class ParserModel(AveragedPerceptron):
|
||||
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||
const StateC* state) nogil
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly object model
|
||||
cdef readonly ParserModel model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object feature_maps
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -1,18 +1,17 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
"""
|
||||
MALT-style dependency parser
|
||||
"""
|
||||
# coding: utf-8
|
||||
from __future__ import unicode_literals, print_function
|
||||
# cython: infer_types=True
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from collections import Counter
|
||||
import ujson
|
||||
|
||||
from libc.math cimport exp
|
||||
cimport cython
|
||||
cimport cython.parallel
|
||||
import cytoolz
|
||||
|
||||
import numpy.random
|
||||
cimport numpy as np
|
||||
|
||||
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||
from cpython.exc cimport PyErr_CheckSignals
|
||||
|
@ -29,13 +28,6 @@ from murmurhash.mrmr cimport hash64
|
|||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain
|
||||
from thinc.neural import BatchNorm, Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural.ops import NumpyOps
|
||||
|
||||
from ..util import get_cuda_stream
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
|
||||
from . import _parse_features
|
||||
from ._parse_features cimport CONTEXT_SIZE
|
||||
from ._parse_features cimport fill_context
|
||||
|
@ -48,12 +40,8 @@ from ..structs cimport TokenC
|
|||
from ..tokens.doc cimport Doc
|
||||
from ..strings cimport StringStore
|
||||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
||||
USE_FTRL = True
|
||||
DEBUG = False
|
||||
def set_debug(val):
|
||||
|
@ -61,205 +49,78 @@ def set_debug(val):
|
|||
DEBUG = val
|
||||
|
||||
|
||||
def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
drop=0.):
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
and compute vectors for each (token, position) pair. These vectors can then
|
||||
be reused, especially for beam-search.
|
||||
|
||||
Let's say we're using 12 features for each state, e.g. word at start of
|
||||
buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||
system, a document of length N is processed in 2*N states. This means we'll
|
||||
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||
N*12 vector computations. The saving for beam-search is much better:
|
||||
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||
so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
'''
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
def get_templates(name):
|
||||
pf = _parse_features
|
||||
if name == 'ner':
|
||||
return pf.ner
|
||||
elif name == 'debug':
|
||||
return pf.unigrams
|
||||
elif name.startswith('embed'):
|
||||
return (pf.words, pf.tags, pf.labels)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
nF = gpu_cached.shape[1]
|
||||
nO = gpu_cached.shape[2]
|
||||
nP = gpu_cached.shape[3]
|
||||
ops = lower_model.ops
|
||||
features = numpy.zeros((batch_size, nO, nP), dtype='f')
|
||||
synchronized = False
|
||||
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
||||
pf.tree_shape + pf.trigrams)
|
||||
|
||||
def forward(token_ids, drop=0.):
|
||||
nonlocal synchronized
|
||||
if not synchronized and cuda_stream is not None:
|
||||
cuda_stream.synchronize()
|
||||
synchronized = True
|
||||
# This is tricky, but:
|
||||
# - Input to forward on CPU
|
||||
# - Output from forward on CPU
|
||||
# - Input to backward on GPU!
|
||||
# - Output from backward on GPU
|
||||
nonlocal features
|
||||
features = features[:len(token_ids)]
|
||||
features.fill(0)
|
||||
cdef float[:, :, ::1] feats = features
|
||||
cdef int[:, ::1] ids = token_ids
|
||||
_sum_features(<float*>&feats[0,0,0],
|
||||
<float*>cached.data, &ids[0,0],
|
||||
token_ids.shape[0], nF, nO*nP)
|
||||
|
||||
if nP >= 2:
|
||||
best, which = ops.maxout(features)
|
||||
cdef class ParserModel(AveragedPerceptron):
|
||||
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||
const StateC* state) nogil:
|
||||
fill_context(context, state)
|
||||
nr_feat = self.extracter.set_features(features, context)
|
||||
return nr_feat
|
||||
|
||||
def update(self, Example eg, itn=0):
|
||||
"""
|
||||
Does regression on negative cost. Sort of cute?
|
||||
"""
|
||||
self.time += 1
|
||||
cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
||||
cdef int guess = eg.guess
|
||||
if guess == best or best == -1:
|
||||
return 0.0
|
||||
cdef FeatureC feat
|
||||
cdef int clas
|
||||
cdef weight_t gradient
|
||||
if USE_FTRL:
|
||||
for feat in eg.c.features[:eg.c.nr_feat]:
|
||||
for clas in range(eg.c.nr_class):
|
||||
if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]:
|
||||
gradient = eg.c.scores[clas] + eg.c.costs[clas]
|
||||
self.update_weight_ftrl(feat.key, clas, feat.value * gradient)
|
||||
else:
|
||||
best = features.reshape((features.shape[0], features.shape[1]))
|
||||
which = None
|
||||
for feat in eg.c.features[:eg.c.nr_feat]:
|
||||
self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
|
||||
self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
|
||||
return eg.c.costs[guess]
|
||||
|
||||
def backward(d_best, sgd=None):
|
||||
# This will usually be on GPU
|
||||
if isinstance(d_best, numpy.ndarray):
|
||||
d_best = ops.xp.array(d_best)
|
||||
if nP >= 2:
|
||||
d_features = ops.backprop_maxout(d_best, which, nP)
|
||||
else:
|
||||
d_features = d_best.reshape((d_best.shape[0], d_best.shape[1], 1))
|
||||
d_tokens = bp_features((d_features, token_ids), sgd)
|
||||
return d_tokens
|
||||
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
|
||||
cdef Pool mem = Pool()
|
||||
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
|
||||
|
||||
return best, backward
|
||||
cdef StateClass stcls
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
cdef void _sum_features(float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
continue
|
||||
idx = token_ids[f] * F * O + f*O
|
||||
feature = &cached[idx]
|
||||
for i in range(O):
|
||||
output[i] += feature[i]
|
||||
output += O
|
||||
token_ids += F
|
||||
|
||||
|
||||
def get_batch_loss(TransitionSystem moves, states, golds, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
cdef Pool mem = Pool()
|
||||
cdef int i
|
||||
is_valid = <int*>mem.alloc(moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), moves.n_moves), dtype='f',
|
||||
order='c')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, moves.n_moves * sizeof(float))
|
||||
moves.set_costs(is_valid, costs, state, gold)
|
||||
cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
#cpu_regression_loss(c_d_scores,
|
||||
# costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
return d_scores
|
||||
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
guess = arg_max_if_valid(scores, is_valid, O)
|
||||
Z = 1e-10
|
||||
gZ = 1e-10
|
||||
max_ = scores[guess]
|
||||
gmax = scores[best]
|
||||
for i in range(O):
|
||||
if is_valid[i]:
|
||||
Z += exp(scores[i] - max_)
|
||||
if costs[i] <= costs[best]:
|
||||
gZ += exp(scores[i] - gmax)
|
||||
for i in range(O):
|
||||
if not is_valid[i]:
|
||||
d_scores[i] = 0.
|
||||
elif costs[i] <= costs[best]:
|
||||
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
|
||||
else:
|
||||
d_scores[i] = exp(scores[i]-max_) / Z
|
||||
|
||||
|
||||
cdef void cpu_regression_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
cdef float eps = 2.
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
for i in range(O):
|
||||
if not is_valid[i]:
|
||||
d_scores[i] = 0.
|
||||
elif scores[i] < scores[best]:
|
||||
d_scores[i] = 0.
|
||||
else:
|
||||
# I doubt this is correct?
|
||||
# Looking for something like Huber loss
|
||||
diff = scores[i] - -costs[i]
|
||||
if diff > eps:
|
||||
d_scores[i] = eps
|
||||
elif diff < -eps:
|
||||
d_scores[i] = -eps
|
||||
else:
|
||||
d_scores[i] = diff
|
||||
|
||||
|
||||
def init_states(TransitionSystem moves, docs):
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
offsets = []
|
||||
states = []
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
offsets.append(offset)
|
||||
offset += len(doc)
|
||||
return states, offsets
|
||||
|
||||
|
||||
def extract_token_ids(states, offsets=None, nF=1, nB=0, nS=2, nL=0, nR=0):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
if offsets is None:
|
||||
offsets = [0] * len(states)
|
||||
for i, (state, offset) in enumerate(zip(states, offsets)):
|
||||
state.set_context_tokens(ids[i], nF, nB, nS, nL, nR)
|
||||
ids[i] += (ids[i] >= 0) * offset
|
||||
return ids
|
||||
|
||||
|
||||
_n_iter = 0
|
||||
@layerize
|
||||
def print_mean_variance(X, drop=0.):
|
||||
global _n_iter
|
||||
_n_iter += 1
|
||||
fwd_iter = _n_iter
|
||||
means = X.mean(axis=0)
|
||||
variance = X.var(axis=0)
|
||||
print(fwd_iter, "M", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "V", ', '.join(('%.2f' % m) for m in variance))
|
||||
def backward(dX, sgd=None):
|
||||
means = dX.mean(axis=0)
|
||||
variance = dX.var(axis=0)
|
||||
print(fwd_iter, "dM", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "dV", ', '.join(('%.2f' % m) for m in variance))
|
||||
return X, backward
|
||||
cdef class_t clas
|
||||
self.time += 1
|
||||
cdef atom_t[CONTEXT_SIZE] atoms
|
||||
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
|
||||
if not histories:
|
||||
return None
|
||||
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
|
||||
for d_loss, history in histories:
|
||||
stcls = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(stcls.c)
|
||||
for clas in history:
|
||||
nr_feat = self.set_featuresC(atoms, features, stcls.c)
|
||||
clas_grad = gradient[clas]
|
||||
for feat in features[:nr_feat]:
|
||||
clas_grad[feat.key] += d_loss * feat.value
|
||||
moves.c[clas].do(stcls.c, moves.c[clas].label)
|
||||
cdef feat_t key
|
||||
cdef weight_t d_feat
|
||||
for clas, clas_grad in enumerate(gradient):
|
||||
for key, d_feat in clas_grad.items():
|
||||
if d_feat != 0:
|
||||
self.update_weight_ftrl(key, clas, d_feat)
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
|
@ -283,6 +144,15 @@ cdef class Parser:
|
|||
"""
|
||||
with (path / 'config.json').open() as file_:
|
||||
cfg = ujson.load(file_)
|
||||
# TODO: remove this shim when we don't have to support older data
|
||||
if 'labels' in cfg and 'actions' not in cfg:
|
||||
cfg['actions'] = cfg.pop('labels')
|
||||
# TODO: remove this shim when we don't have to support older data
|
||||
for action_name, labels in dict(cfg.get('actions', {})).items():
|
||||
# We need this to be sorted
|
||||
if isinstance(labels, dict):
|
||||
labels = list(sorted(labels.keys()))
|
||||
cfg['actions'][action_name] = labels
|
||||
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
|
||||
if (path / 'model').exists():
|
||||
self.model.load(str(path / 'model'))
|
||||
|
@ -291,14 +161,14 @@ cdef class Parser:
|
|||
"Required file %s/model not found when loading" % str(path))
|
||||
return self
|
||||
|
||||
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
|
||||
def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg):
|
||||
"""
|
||||
Create a Parser.
|
||||
|
||||
Arguments:
|
||||
vocab (Vocab):
|
||||
The vocabulary object. Must be shared with documents to be processed.
|
||||
model (thinc Model):
|
||||
model (thinc.linear.AveragedPerceptron):
|
||||
The statistical model.
|
||||
Returns (Parser):
|
||||
The newly constructed object.
|
||||
|
@ -308,41 +178,43 @@ cdef class Parser:
|
|||
self.vocab = vocab
|
||||
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
||||
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
||||
if model is None:
|
||||
self.model, self.feature_maps = self.build_model(**cfg)
|
||||
else:
|
||||
self.model, self.feature_maps = model
|
||||
# TODO: Remove this when we no longer need to support old-style models
|
||||
if isinstance(cfg.get('features'), basestring):
|
||||
cfg['features'] = get_templates(cfg['features'])
|
||||
elif 'features' not in cfg:
|
||||
cfg['features'] = self.feature_templates
|
||||
|
||||
self.model = ParserModel(cfg['features'])
|
||||
self.model.l1_penalty = cfg.get('L1', 0.0)
|
||||
self.model.learn_rate = cfg.get('learn_rate', 0.001)
|
||||
|
||||
self.cfg = cfg
|
||||
# TODO: This is a pretty hacky fix to the problem of adding more
|
||||
# labels. The issue is they come in out of order, if labels are
|
||||
# added during training
|
||||
for label in cfg.get('extra_labels', []):
|
||||
self.add_label(label)
|
||||
|
||||
def __reduce__(self):
|
||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self,
|
||||
hidden_width=128, token_vector_width=96, nr_vector=1000,
|
||||
nF=1, nB=1, nS=1, nL=1, nR=1, **cfg):
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
Maxout(hidden_width, hidden_width),
|
||||
#print_mean_variance,
|
||||
zero_init(Affine(self.moves.n_moves, hidden_width)))
|
||||
assert isinstance(upper.ops, NumpyOps)
|
||||
lower = PrecomputableMaxouts(hidden_width, nF=nr_context_tokens, nI=token_vector_width,
|
||||
pieces=cfg.get('maxout_pieces', 1))
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
return upper, lower
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
|
||||
Apply the entity recognizer, setting the annotations onto the Doc object.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to be processed.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.parse_batch([tokens])
|
||||
cdef int nr_feat = self.model.nr_feat
|
||||
with nogil:
|
||||
status = self.parseC(tokens.c, tokens.length, nr_feat)
|
||||
# Check for KeyboardInterrupt etc. Untested
|
||||
PyErr_CheckSignals()
|
||||
if status != 0:
|
||||
raise ParserStateError(tokens)
|
||||
self.moves.finalize_doc(tokens)
|
||||
|
||||
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
||||
"""
|
||||
|
@ -356,142 +228,124 @@ cdef class Parser:
|
|||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
cdef Pool mem = Pool()
|
||||
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
|
||||
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
|
||||
cdef Doc doc
|
||||
cdef int i
|
||||
cdef int nr_feat = self.model.nr_feat
|
||||
cdef int status
|
||||
queue = []
|
||||
for doc in stream:
|
||||
doc_ptr[len(queue)] = doc.c
|
||||
lengths[len(queue)] = doc.length
|
||||
queue.append(doc)
|
||||
if len(queue) == batch_size:
|
||||
self.parse_batch(queue)
|
||||
with nogil:
|
||||
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
||||
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
||||
if status != 0:
|
||||
with gil:
|
||||
raise ParserStateError(queue[i])
|
||||
PyErr_CheckSignals()
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
queue = []
|
||||
if queue:
|
||||
self.parse_batch(queue)
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
|
||||
def parse_batch(self, docs_tokvecs):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray py_scores
|
||||
int[500] is_valid # Hacks for now
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lower_model = get_greedy_model_for_batch(len(docs), tokvecs, self.feature_maps,
|
||||
cuda_stream)
|
||||
upper_model = self.model
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
all_states = list(states)
|
||||
todo = [st for st in zip(states, offsets) if not st[0].py_is_final()]
|
||||
|
||||
while todo:
|
||||
states, offsets = zip(*todo)
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
|
||||
py_scores = upper_model(lower_model(token_ids)[0])
|
||||
scores = <float*>py_scores.data
|
||||
nC = py_scores.shape[1]
|
||||
for state, offset in zip(states, offsets):
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(scores, is_valid, nC)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
scores += nC
|
||||
todo = [st for st in todo if not st[0].py_is_final()]
|
||||
|
||||
for state, doc in zip(all_states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
batch_size = len(queue)
|
||||
with nogil:
|
||||
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
||||
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
||||
if status != 0:
|
||||
with gil:
|
||||
raise ParserStateError(queue[i])
|
||||
PyErr_CheckSignals()
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray scores
|
||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
|
||||
state = new StateC(tokens, length)
|
||||
# NB: This can change self.moves.n_moves!
|
||||
# I think this causes memory errors if called by .pipe()
|
||||
self.moves.initialize_state(state)
|
||||
nr_class = self.moves.n_moves
|
||||
|
||||
docs, tokvecs = docs_tokvecs
|
||||
cuda_stream = get_cuda_stream()
|
||||
lower_model = get_greedy_model_for_batch(len(docs),
|
||||
tokvecs, self.feature_maps, cuda_stream=cuda_stream,
|
||||
drop=drop)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update(([docs], tokvecs), [golds], drop=drop)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
cdef ExampleC eg
|
||||
eg.nr_feat = nr_feat
|
||||
eg.nr_atom = CONTEXT_SIZE
|
||||
eg.nr_class = nr_class
|
||||
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
|
||||
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
|
||||
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
|
||||
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
|
||||
cdef int i
|
||||
while not state.is_final():
|
||||
eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
|
||||
self.moves.set_valid(eg.is_valid, state)
|
||||
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
||||
if guess < 0:
|
||||
return 1
|
||||
|
||||
todo = zip(states, offsets, golds)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
action = self.moves.c[guess]
|
||||
|
||||
action.do(state, action.label)
|
||||
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
|
||||
for i in range(eg.nr_class):
|
||||
eg.is_valid[i] = 1
|
||||
self.moves.finalize_state(state)
|
||||
for i in range(length):
|
||||
tokens[i] = state._sent[i]
|
||||
del state
|
||||
free(eg.features)
|
||||
free(eg.atoms)
|
||||
free(eg.scores)
|
||||
free(eg.is_valid)
|
||||
return 0
|
||||
|
||||
def update(self, Doc tokens, GoldParse gold, itn=0, double drop=0.0):
|
||||
"""
|
||||
Update the statistical model.
|
||||
|
||||
Arguments:
|
||||
doc (Doc):
|
||||
The example document for the update.
|
||||
gold (GoldParse):
|
||||
The gold-standard annotations, to calculate the loss.
|
||||
Returns (float):
|
||||
The loss on this example.
|
||||
"""
|
||||
self.moves.preprocess_gold(gold)
|
||||
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
||||
self.moves.initialize_state(stcls.c)
|
||||
cdef Pool mem = Pool()
|
||||
is_valid = <int*>mem.alloc(len(states) * self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(len(states) * self.moves.n_moves, sizeof(float))
|
||||
cdef Example eg = Example(
|
||||
nr_class=self.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.model.nr_feat)
|
||||
cdef weight_t loss = 0
|
||||
cdef Transition action
|
||||
cdef double dropout_rate = self.cfg.get('dropout', drop)
|
||||
while not stcls.is_final():
|
||||
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
|
||||
stcls.c)
|
||||
dropout(eg.c.features, eg.c.nr_feat, dropout_rate)
|
||||
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
||||
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||
self.model.update(eg)
|
||||
|
||||
upper_model = self.model
|
||||
d_tokens = self.feature_maps.ops.allocate(tokvecs.shape)
|
||||
backprops = []
|
||||
n_tokens = tokvecs.shape[0]
|
||||
nF = self.feature_maps.nF
|
||||
loss = 0.
|
||||
total = 1e-4
|
||||
follow_gold = False
|
||||
cupy = self.feature_maps.ops.xp
|
||||
while len(todo) >= 4:
|
||||
states, offsets, golds = zip(*todo)
|
||||
action = self.moves.c[guess]
|
||||
action.do(stcls.c, action.label)
|
||||
loss += eg.costs[guess]
|
||||
eg.fill_scores(0, eg.c.nr_class)
|
||||
eg.fill_costs(0, eg.c.nr_class)
|
||||
eg.fill_is_valid(1, eg.c.nr_class)
|
||||
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
lower, bp_lower = lower_model(token_ids, drop=drop)
|
||||
scores, bp_scores = upper_model.begin_update(lower, drop=drop)
|
||||
|
||||
d_scores = get_batch_loss(self.moves, states, golds, scores)
|
||||
loss += numpy.abs(d_scores).sum()
|
||||
total += d_scores.shape[0]
|
||||
d_lower = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
if isinstance(tokvecs, cupy.ndarray):
|
||||
gpu_tok_ids = cupy.ndarray(token_ids.shape, dtype='i', order='C')
|
||||
gpu_d_lower = cupy.ndarray(d_lower.shape, dtype='f', order='C')
|
||||
gpu_tok_ids.set(token_ids, stream=cuda_stream)
|
||||
gpu_d_lower.set(d_lower, stream=cuda_stream)
|
||||
backprops.append((gpu_tok_ids, gpu_d_lower, bp_lower))
|
||||
else:
|
||||
backprops.append((token_ids, d_lower, bp_lower))
|
||||
|
||||
c_scores = <float*>scores.data
|
||||
for state, gold in zip(states, golds):
|
||||
if follow_gold:
|
||||
self.moves.set_costs(is_valid, costs, state, gold)
|
||||
guess = arg_max_if_gold(c_scores, costs, is_valid, scores.shape[1])
|
||||
else:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
c_scores += scores.shape[1]
|
||||
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
# This tells CUDA to block --- so we know our copies are complete.
|
||||
cuda_stream.synchronize()
|
||||
for token_ids, d_lower, bp_lower in backprops:
|
||||
d_state_features = bp_lower(d_lower, sgd=sgd)
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(self.feature_maps.ops.xp, 'scatter_add'):
|
||||
self.feature_maps.ops.xp.scatter_add(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
self.model.ops.xp.add.at(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokens, loss / total
|
||||
self.moves.finalize_state(stcls.c)
|
||||
return loss
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
|
@ -528,6 +382,18 @@ cdef class Parser:
|
|||
self.cfg.setdefault('extra_labels', []).append(label)
|
||||
|
||||
|
||||
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
|
||||
if prob <= 0 or prob >= 1.:
|
||||
return 0
|
||||
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
|
||||
cdef double* probs = &py_probs[0]
|
||||
for i in range(nr_feat):
|
||||
if probs[i] >= prob:
|
||||
feats[i].value /= prob
|
||||
else:
|
||||
feats[i].value = 0.
|
||||
|
||||
|
||||
cdef class StepwiseState:
|
||||
cdef readonly StateClass stcls
|
||||
cdef readonly Example eg
|
||||
|
@ -597,11 +463,11 @@ cdef class StepwiseState:
|
|||
|
||||
def predict(self):
|
||||
self.eg.reset()
|
||||
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
||||
# self.stcls.c)
|
||||
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
||||
self.stcls.c)
|
||||
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
||||
#self.parser.model.set_scoresC(self.eg.c.scores,
|
||||
# self.eg.c.features, self.eg.c.nr_feat)
|
||||
self.parser.model.set_scoresC(self.eg.c.scores,
|
||||
self.eg.c.features, self.eg.c.nr_feat)
|
||||
|
||||
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
||||
return self.parser.moves.move_name(action.move, action.label)
|
||||
|
@ -640,26 +506,10 @@ class ParserStateError(ValueError):
|
|||
"Please include the text that the parser failed on, which is:\n"
|
||||
"%s" % repr(doc.text))
|
||||
|
||||
|
||||
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil:
|
||||
# Find minimum cost
|
||||
cdef float cost = 1
|
||||
for i in range(n):
|
||||
if is_valid[i] and costs[i] < cost:
|
||||
cost = costs[i]
|
||||
# Now find best-scoring with that cost
|
||||
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if costs[i] <= cost and is_valid[i]:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
if costs[i] <= 0:
|
||||
if best == -1 or scores[i] > scores[best]:
|
||||
best = i
|
||||
return best
|
||||
|
|
Loading…
Reference in New Issue
Block a user