mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add NER training docs
This commit is contained in:
parent
1f9f867c70
commit
5cb17b9f33
|
@ -22,6 +22,7 @@
|
|||
"Custom tokenization": "customizing-tokenizer",
|
||||
"Training": "training",
|
||||
"Adding languages": "adding-languages"
|
||||
"Training NER": "training-ner",
|
||||
},
|
||||
"Examples": {
|
||||
"Tutorials": "tutorials",
|
||||
|
@ -106,6 +107,10 @@
|
|||
|
||||
"training": {
|
||||
"title": "Training the tagger, parser and entity recognizer"
|
||||
"training-ner": {
|
||||
"title": "Training the Named Entity Recognizer",
|
||||
"next": "saving-loading"
|
||||
},
|
||||
},
|
||||
|
||||
"pos-tagging": {
|
||||
|
|
174
website/docs/usage/training-ner.jade
Normal file
174
website/docs/usage/training-ner.jade
Normal file
|
@ -0,0 +1,174 @@
|
|||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| All #[+a("/docs/usage/models") spaCy models] support online learning, so
|
||||
| you can update a pre-trained model with new examples. You can even add
|
||||
| new classes to an existing model, to recognise a new entity type,
|
||||
| part-of-speech, or syntactic relation. Updating an existing model is
|
||||
| particularly useful as a "quick and dirty solution", if you have only a
|
||||
| few corrections or annotations.
|
||||
|
||||
+h(2, "improving-accuracy") Improving accuracy on existing entity types
|
||||
|
||||
p
|
||||
| To update the model, you first need to create an instance of
|
||||
| #[+api("goldparse") #[code spacy.gold.GoldParse]], with the entity labels
|
||||
| you want to learn. You will then pass this instance to the
|
||||
| #[+api("entityrecognizer#update") #[code EntityRecognizer.update()]]
|
||||
| method. For example:
|
||||
|
||||
+code.
|
||||
import spacy
|
||||
from spacy.gold import GoldParse
|
||||
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp.make_doc(u'Facebook released React in 2014')
|
||||
gold = GoldParse(doc, entities=['U-ORG', 'O', 'U-TECHNOLOGY', 'O', 'U-DATE'])
|
||||
nlp.entity.update(doc, gold)
|
||||
|
||||
p
|
||||
| You'll usually need to provide many examples to meaningfully improve the
|
||||
| system — a few hundred is a good start, although more is better. You
|
||||
| should avoid iterating over the same few examples multiple times, or the
|
||||
| model is likely to "forget" how to annotate other examples. If you
|
||||
| iterate over the same few examples, you're effectively changing the loss
|
||||
| function. The optimizer will find a way to minimize the loss on your
|
||||
| examples, without regard for the consequences on the examples it's no
|
||||
| longer paying attention to.
|
||||
|
||||
p
|
||||
| One way to avoid this "catastrophic forgetting" problem is to "remind"
|
||||
| the model of other examples by augmenting your annotations with sentences
|
||||
| annotated with entities automatically recognised by the original model.
|
||||
| Ultimately, this is an empirical process: you'll need to
|
||||
| #[strong experiment on your own data] to find a solution that works best
|
||||
| for you.
|
||||
|
||||
+h(2, "adding") Adding a new entity type
|
||||
|
||||
p
|
||||
| You can add new entity types to an existing model. Let's say we want to
|
||||
| recognise the category #[code TECHNOLOGY]. The new category will include
|
||||
| programming languages, frameworks and platforms. First, we need to
|
||||
| register the new entity type:
|
||||
|
||||
+code.
|
||||
nlp.entity.add_label('TECHNOLOGY')
|
||||
|
||||
p
|
||||
| Next, iterate over your examples, calling #[code entity.update()]. As
|
||||
| above, we want to avoid iterating over only a small number of sentences.
|
||||
| A useful compromise is to run the model over a number of plain-text
|
||||
| sentences, and pass the entities to #[code GoldParse], as "true"
|
||||
| annotations. This encourages the optimizer to find a solution that
|
||||
| predicts the new category with minimal difference from the previous
|
||||
| output.
|
||||
|
||||
+h(2, "saving-loading") Saving and loading
|
||||
|
||||
p
|
||||
| After training our model, you'll usually want to save its state, and load
|
||||
| it back later. You can do this with the #[code Language.save_to_directory()]
|
||||
| method:
|
||||
|
||||
+code.
|
||||
nlp.save_to_directory('/home/me/data/en_technology')
|
||||
|
||||
p
|
||||
| To make the model more convenient to deploy, we recommend wrapping it as
|
||||
| a Python package, so that you can install it via pip and load it as a
|
||||
| module. spaCy comes with a handy #[+a("/docs/usage/cli#package") CLI command]
|
||||
| to create all required files and directories.
|
||||
|
||||
+code(false, "bash").
|
||||
python -m spacy package /home/me/data/en_technology /home/me/my_models
|
||||
|
||||
p
|
||||
| To build the package and create a #[code .tar.gz] archive, run
|
||||
| #[code python setup.py sdist] from within its directory.
|
||||
|
||||
+infobox("Saving and loading models")
|
||||
| For more information and a detailed guide on how to package your model,
|
||||
| see the documentation on
|
||||
| #[+a("/docs/usage/saving-loading") saving and loading models].
|
||||
|
||||
p
|
||||
| After you've generated and installed the package, you'll be able to
|
||||
| load the model as follows:
|
||||
|
||||
+code.
|
||||
import en_technology
|
||||
nlp = en_technology.load()
|
||||
|
||||
+h(2, "example") Example: Adding and training an #[code ANIMAL] entity
|
||||
|
||||
p
|
||||
| This script shows how to add a new entity type to an existing pre-trained
|
||||
| NER model. To keep the example short and simple, only four sentences are
|
||||
| provided as examples. In practice, you'll need many more —
|
||||
| #[strong a few hundred] would be a good start. You will also likely need
|
||||
| to mix in #[strong examples of other entity types], which might be
|
||||
| obtained by running the entity recognizer over unlabelled sentences, and
|
||||
| adding their annotations to the training set.
|
||||
|
||||
p
|
||||
| For the full, runnable script of this example, see
|
||||
| #[+src(gh("spacy", "examples/training/train_new_entity_type.py")) train_new_entity_type.py].
|
||||
|
||||
+code("Training the entity recognizer").
|
||||
import spacy
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.tagger import Tagger
|
||||
import random
|
||||
|
||||
model_name = 'en'
|
||||
entity_label = 'ANIMAL'
|
||||
output_directory = '/path/to/model'
|
||||
train_data = [
|
||||
("Horses are too tall and they pretend to care about your feelings",
|
||||
[(0, 6, 'ANIMAL')]),
|
||||
("horses are too tall and they pretend to care about your feelings",
|
||||
[(0, 6, 'ANIMAL')]),
|
||||
("horses pretend to care about your feelings",
|
||||
[(0, 6, 'ANIMAL')]),
|
||||
("they pretend to care about your feelings, those horses",
|
||||
[(48, 54, 'ANIMAL')])
|
||||
]
|
||||
|
||||
nlp = spacy.load(model_name)
|
||||
nlp.entity.add_label(entity_label)
|
||||
ner = train_ner(nlp, train_data, output_directory)
|
||||
|
||||
def train_ner(nlp, train_data, output_dir):
|
||||
# Add new words to vocab
|
||||
for raw_text, _ in train_data:
|
||||
doc = nlp.make_doc(raw_text)
|
||||
for word in doc:
|
||||
_ = nlp.vocab[word.orth]
|
||||
|
||||
for itn in range(20):
|
||||
random.shuffle(train_data)
|
||||
for raw_text, entity_offsets in train_data:
|
||||
gold = GoldParse(doc, entities=entity_offsets)
|
||||
doc = nlp.make_doc(raw_text)
|
||||
nlp.tagger(doc)
|
||||
loss = nlp.entity.update(doc, gold)
|
||||
nlp.end_training()
|
||||
nlp.save_to_directory(output_dir)
|
||||
|
||||
p
|
||||
+button(gh("spaCy", "examples/training/train_new_entity_type.py"), false, "secondary") Full example
|
||||
|
||||
p
|
||||
| The actual training is performed by looping over the examples, and
|
||||
| calling #[code nlp.entity.update()]. The #[code update()] method steps
|
||||
| through the words of the input. At each word, it makes a prediction. It
|
||||
| then consults the annotations provided on the #[code GoldParse] instance,
|
||||
| to see whether it was right. If it was wrong, it adjusts its weights so
|
||||
| that the correct action will score higher next time.
|
||||
|
||||
p
|
||||
| After training your model, you can
|
||||
| #[+a("/docs/usage/saving-loading") save it to a directory]. We recommend wrapping
|
||||
| models as Python packages, for ease of deployment.
|
Loading…
Reference in New Issue
Block a user