mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Add test for Issue #999
This commit is contained in:
		
							parent
							
								
									4d2a659c52
								
							
						
					
					
						commit
						5d8af40445
					
				
							
								
								
									
										75
									
								
								spacy/tests/regression/test_issue999.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								spacy/tests/regression/test_issue999.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,75 @@
 | 
				
			||||||
 | 
					from __future__ import unicode_literals
 | 
				
			||||||
 | 
					import json
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import random
 | 
				
			||||||
 | 
					import contextlib
 | 
				
			||||||
 | 
					import shutil
 | 
				
			||||||
 | 
					import pytest
 | 
				
			||||||
 | 
					import tempfile
 | 
				
			||||||
 | 
					from pathlib import Path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import pathlib
 | 
				
			||||||
 | 
					from ...gold import GoldParse
 | 
				
			||||||
 | 
					from ...pipeline import EntityRecognizer
 | 
				
			||||||
 | 
					from ...en import English
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					try:
 | 
				
			||||||
 | 
					    unicode
 | 
				
			||||||
 | 
					except NameError:
 | 
				
			||||||
 | 
					    unicode = str
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@pytest.fixture
 | 
				
			||||||
 | 
					def train_data():
 | 
				
			||||||
 | 
					    return [
 | 
				
			||||||
 | 
					            ["hey",[]],
 | 
				
			||||||
 | 
					            ["howdy",[]],
 | 
				
			||||||
 | 
					            ["hey there",[]],
 | 
				
			||||||
 | 
					            ["hello",[]],
 | 
				
			||||||
 | 
					            ["hi",[]],
 | 
				
			||||||
 | 
					            ["i'm looking for a place to eat",[]],
 | 
				
			||||||
 | 
					            ["i'm looking for a place in the north of town",[[31,36,"location"]]],
 | 
				
			||||||
 | 
					            ["show me chinese restaurants",[[8,15,"cuisine"]]],
 | 
				
			||||||
 | 
					            ["show me chines restaurants",[[8,14,"cuisine"]]],
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@contextlib.contextmanager
 | 
				
			||||||
 | 
					def temp_save_model(model):
 | 
				
			||||||
 | 
					    model_dir = Path(tempfile.mkdtemp())
 | 
				
			||||||
 | 
					    model.save_to_directory(model_dir)
 | 
				
			||||||
 | 
					    yield model_dir
 | 
				
			||||||
 | 
					    shutil.rmtree(model_dir.as_posix())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def test_issue999(train_data):
 | 
				
			||||||
 | 
					    '''Test that adding entities and resuming training works passably OK.
 | 
				
			||||||
 | 
					    There are two issues here:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    1) We have to readd labels. This isn't very nice.
 | 
				
			||||||
 | 
					    2) There's no way to set the learning rate for the weight update, so we
 | 
				
			||||||
 | 
					        end up out-of-scale, causing it to learn too fast.
 | 
				
			||||||
 | 
					    '''
 | 
				
			||||||
 | 
					    nlp = English(entity=False)
 | 
				
			||||||
 | 
					    nlp.entity = EntityRecognizer(nlp.vocab, features=English.Defaults.entity_features)
 | 
				
			||||||
 | 
					    for _, offsets in train_data:
 | 
				
			||||||
 | 
					        for start, end, ent_type in offsets:
 | 
				
			||||||
 | 
					            nlp.entity.add_label(ent_type)
 | 
				
			||||||
 | 
					    for itn in range(10):
 | 
				
			||||||
 | 
					        random.shuffle(train_data)
 | 
				
			||||||
 | 
					        for raw_text, entity_offsets in train_data:
 | 
				
			||||||
 | 
					            doc = nlp.make_doc(raw_text)
 | 
				
			||||||
 | 
					            gold = GoldParse(doc, entities=entity_offsets)
 | 
				
			||||||
 | 
					            loss = nlp.entity.update(doc, gold)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with temp_save_model(nlp) as model_dir:
 | 
				
			||||||
 | 
					        nlp2 = English(path=model_dir)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for raw_text, entity_offsets in train_data:
 | 
				
			||||||
 | 
					        doc = nlp2(raw_text)
 | 
				
			||||||
 | 
					        ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
 | 
				
			||||||
 | 
					        for start, end, label in entity_offsets:
 | 
				
			||||||
 | 
					            if (start, end) not in ents:
 | 
				
			||||||
 | 
					                print(ents)
 | 
				
			||||||
 | 
					            assert ents[(start, end)] == label
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user