mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Add test for Issue #999
This commit is contained in:
parent
4d2a659c52
commit
5d8af40445
75
spacy/tests/regression/test_issue999.py
Normal file
75
spacy/tests/regression/test_issue999.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
from __future__ import unicode_literals
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import contextlib
|
||||
import shutil
|
||||
import pytest
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
import pathlib
|
||||
from ...gold import GoldParse
|
||||
from ...pipeline import EntityRecognizer
|
||||
from ...en import English
|
||||
|
||||
try:
|
||||
unicode
|
||||
except NameError:
|
||||
unicode = str
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def train_data():
|
||||
return [
|
||||
["hey",[]],
|
||||
["howdy",[]],
|
||||
["hey there",[]],
|
||||
["hello",[]],
|
||||
["hi",[]],
|
||||
["i'm looking for a place to eat",[]],
|
||||
["i'm looking for a place in the north of town",[[31,36,"location"]]],
|
||||
["show me chinese restaurants",[[8,15,"cuisine"]]],
|
||||
["show me chines restaurants",[[8,14,"cuisine"]]],
|
||||
]
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def temp_save_model(model):
|
||||
model_dir = Path(tempfile.mkdtemp())
|
||||
model.save_to_directory(model_dir)
|
||||
yield model_dir
|
||||
shutil.rmtree(model_dir.as_posix())
|
||||
|
||||
|
||||
def test_issue999(train_data):
|
||||
'''Test that adding entities and resuming training works passably OK.
|
||||
There are two issues here:
|
||||
|
||||
1) We have to readd labels. This isn't very nice.
|
||||
2) There's no way to set the learning rate for the weight update, so we
|
||||
end up out-of-scale, causing it to learn too fast.
|
||||
'''
|
||||
nlp = English(entity=False)
|
||||
nlp.entity = EntityRecognizer(nlp.vocab, features=English.Defaults.entity_features)
|
||||
for _, offsets in train_data:
|
||||
for start, end, ent_type in offsets:
|
||||
nlp.entity.add_label(ent_type)
|
||||
for itn in range(10):
|
||||
random.shuffle(train_data)
|
||||
for raw_text, entity_offsets in train_data:
|
||||
doc = nlp.make_doc(raw_text)
|
||||
gold = GoldParse(doc, entities=entity_offsets)
|
||||
loss = nlp.entity.update(doc, gold)
|
||||
|
||||
with temp_save_model(nlp) as model_dir:
|
||||
nlp2 = English(path=model_dir)
|
||||
|
||||
for raw_text, entity_offsets in train_data:
|
||||
doc = nlp2(raw_text)
|
||||
ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
|
||||
for start, end, label in entity_offsets:
|
||||
if (start, end) not in ents:
|
||||
print(ents)
|
||||
assert ents[(start, end)] == label
|
Loading…
Reference in New Issue
Block a user