* Split EnPosTagger up into base class and subclass

This commit is contained in:
Matthew Honnibal 2015-08-24 05:25:55 +02:00
parent bbf07ac253
commit 5dd76be446
5 changed files with 199 additions and 170 deletions

View File

@ -153,7 +153,7 @@ def main(modules, is_pypy):
MOD_NAMES = ['spacy.parts_of_speech', 'spacy.strings',
'spacy.lexeme', 'spacy.vocab', 'spacy.attrs',
'spacy.morphology',
'spacy.morphology', 'spacy.tagger',
'spacy.syntax.stateclass',
'spacy._ml', 'spacy._theano',
'spacy.tokenizer', 'spacy.en.attrs',

View File

@ -1,26 +1,5 @@
from preshed.maps cimport PreshMapArray
from preshed.counter cimport PreshCounter
from cymem.cymem cimport Pool
from .._ml cimport Model
from ..strings cimport StringStore
from ..structs cimport TokenC, LexemeC, Morphology, PosTag
from ..parts_of_speech cimport univ_pos_t
from .lemmatizer import Lemmatizer
from ..tagger cimport Tagger
cdef class EnPosTagger:
cdef readonly Pool mem
cdef readonly StringStore strings
cdef readonly Model model
cdef public object lemmatizer
cdef PreshMapArray _morph_cache
cdef public dict freqs
cdef PosTag* tags
cdef readonly object tag_names
cdef readonly object tag_map
cdef readonly int n_tags
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1
cdef class EnPosTagger(Tagger):
pass

View File

@ -218,155 +218,34 @@ POS_TEMPLATES = (
)
cdef struct _CachedMorph:
Morphology morph
int lemma
def setup_model_dir(tag_names, tag_map, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'templates': templates,
'tag_names': tag_names,
'tag_map': tag_map
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
cdef class EnPosTagger:
cdef class EnPosTagger(Tagger):
"""A part-of-speech tagger for English"""
def __init__(self, StringStore strings, data_dir):
self.mem = Pool()
model_dir = path.join(data_dir, 'pos')
self.strings = strings
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
self.tag_names = sorted(cfg['tag_names'])
assert self.tag_names
self.n_tags = len(self.tag_names)
self.tag_map = cfg['tag_map']
cdef int n_tags = len(self.tag_names) + 1
def make_lemmatizer(self, data_dir):
return Lemmatizer(path.join(data_dir, 'wordnet'), NOUN, VERB, ADJ)
self.model = Model(n_tags, cfg['templates'], model_dir)
self._morph_cache = PreshMapArray(n_tags)
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
for i, tag in enumerate(sorted(self.tag_names)):
pos, props = self.tag_map[tag]
self.tags[i].id = i
self.tags[i].pos = pos
set_morph_from_dict(&self.tags[i].morph, props)
if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')):
self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer',
'morphs.json'))))
self.lemmatizer = Lemmatizer(path.join(data_dir, 'wordnet'), NOUN, VERB, ADJ)
self.freqs = {TAG: defaultdict(int)}
for tag in self.tag_names:
self.freqs[TAG][self.strings[tag]] = 1
self.freqs[TAG][0] = 1
def __call__(self, Doc tokens):
"""Apply the tagger, setting the POS tags onto the Doc object.
Args:
tokens (Doc): The tokens to be tagged.
"""
if tokens.length == 0:
return 0
cdef int i
cdef int predict(self, int i, const TokenC* tokens) except -1:
cdef atom_t[N_CONTEXT_FIELDS] context
cdef const weight_t* scores
for i in range(tokens.length):
if tokens.data[i].pos == 0:
fill_context(context, i, tokens.data)
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
return arg_max(scores, self.model.n_classes)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def tag_from_strings(self, Doc tokens, object tag_strs):
cdef int i
for i in range(tokens.length):
tokens.data[i].tag = self.strings[tag_strs[i]]
self.set_morph(i, &self.tags[self.tag_names.index(tag_strs[i])],
tokens.data)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def train(self, Doc tokens, object gold_tag_strs):
cdef int i
cdef int loss
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
cdef atom_t[N_CONTEXT_FIELDS] context
cdef const weight_t* scores
golds = [self.tag_names.index(g) if g is not None else -1
for g in gold_tag_strs]
correct = 0
for i in range(tokens.length):
fill_context(context, i, tokens.data)
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
loss = guess != golds[i] if golds[i] != -1 else 0
self.model.update(context, guess, golds[i], loss)
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
correct += loss == 0
self.freqs[TAG][tokens.data[i].tag] += 1
return correct
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
loss = guess != gold if gold != -1 else 0
self.model.update(context, guess, gold, loss)
return guess
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1:
tokens[i].pos = tag.pos
cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.orth)
if cached is NULL:
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.lemmatize(tag.pos, tokens[i].lex)
cached.morph = tag.morph
self._morph_cache.set(tag.id, tokens[i].lex.orth, <void*>cached)
tokens[i].lemma = cached.lemma
tokens[i].morph = cached.morph
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1:
if self.lemmatizer is None:
return lex.orth
cdef unicode py_string = self.strings[lex.orth]
if pos != NOUN and pos != VERB and pos != ADJ:
return lex.orth
cdef set lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, pos)
lemma_string = sorted(lemma_strings)[0]
lemma = self.strings[lemma_string]
return lemma
def load_morph_exceptions(self, dict exc):
cdef unicode pos_str
cdef unicode form_str
cdef unicode lemma_str
cdef dict entries
cdef dict props
cdef int lemma
cdef attr_t orth
cdef int pos
for pos_str, entries in exc.items():
pos = self.tag_names.index(pos_str)
for form_str, props in entries.items():
lemma_str = props.get('L', form_str)
orth = self.strings[form_str]
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.strings[lemma_str]
set_morph_from_dict(&cached.morph, props)
self._morph_cache.set(pos, orth, <void*>cached)
cdef int fill_context(atom_t* context, const int i, const TokenC* tokens) except -1:
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:

27
spacy/tagger.pxd Normal file
View File

@ -0,0 +1,27 @@
from preshed.maps cimport PreshMapArray
from preshed.counter cimport PreshCounter
from cymem.cymem cimport Pool
from ._ml cimport Model
from .strings cimport StringStore
from .structs cimport TokenC, LexemeC, Morphology, PosTag
from .parts_of_speech cimport univ_pos_t
cdef class Tagger:
cdef readonly Pool mem
cdef readonly StringStore strings
cdef readonly Model model
cdef public object lemmatizer
cdef PreshMapArray _morph_cache
cdef public dict freqs
cdef PosTag* tags
cdef readonly object tag_names
cdef readonly object tag_map
cdef readonly int n_tags
cdef int predict(self, int i, const TokenC* tokens) except -1
cdef int update(self, int i, const TokenC* tokens, int gold) except -1
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1

144
spacy/tagger.pyx Normal file
View File

@ -0,0 +1,144 @@
import json
from os import path
from collections import defaultdict
from thinc.typedefs cimport atom_t, weight_t
from .typedefs cimport attr_t
from .tokens.doc cimport Doc
from .morphology cimport set_morph_from_dict
from .attrs cimport TAG
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
from .parts_of_speech cimport PRT, VERB, X, PUNCT, EOL, SPACE
cdef struct _CachedMorph:
Morphology morph
int lemma
cdef class Tagger:
"""A part-of-speech tagger for English"""
def make_lemmatizer(self):
return None
def __init__(self, StringStore strings, data_dir):
self.mem = Pool()
model_dir = path.join(data_dir, 'pos')
self.strings = strings
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
self.tag_names = sorted(cfg['tag_names'])
assert self.tag_names
self.n_tags = len(self.tag_names)
self.tag_map = cfg['tag_map']
cdef int n_tags = len(self.tag_names) + 1
self.model = Model(n_tags, cfg['templates'], model_dir)
self._morph_cache = PreshMapArray(n_tags)
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
for i, tag in enumerate(sorted(self.tag_names)):
pos, props = self.tag_map[tag]
self.tags[i].id = i
self.tags[i].pos = pos
set_morph_from_dict(&self.tags[i].morph, props)
if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')):
self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer',
'morphs.json'))))
self.lemmatizer = self.make_lemmatizer(data_dir)
self.freqs = {TAG: defaultdict(int)}
for tag in self.tag_names:
self.freqs[TAG][self.strings[tag]] = 1
self.freqs[TAG][0] = 1
def __call__(self, Doc tokens):
"""Apply the tagger, setting the POS tags onto the Doc object.
Args:
tokens (Doc): The tokens to be tagged.
"""
if tokens.length == 0:
return 0
cdef int i
cdef const weight_t* scores
for i in range(tokens.length):
if tokens.data[i].pos == 0:
guess = self.predict(i, tokens.data)
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def tag_from_strings(self, Doc tokens, object tag_strs):
cdef int i
for i in range(tokens.length):
tokens.data[i].tag = self.strings[tag_strs[i]]
self.set_morph(i, &self.tags[self.tag_names.index(tag_strs[i])],
tokens.data)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def train(self, Doc tokens, object gold_tag_strs):
cdef int i
cdef int loss
cdef const weight_t* scores
golds = [self.tag_names.index(g) if g is not None else -1
for g in gold_tag_strs]
correct = 0
for i in range(tokens.length):
guess = self.update(i, tokens.data, golds[i])
loss = golds[i] != -1 and guess != golds[i]
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
correct += loss == 0
self.freqs[TAG][tokens.data[i].tag] += 1
return correct
cdef int predict(self, int i, const TokenC* tokens) except -1:
raise NotImplementedError
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
raise NotImplementedError
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1:
tokens[i].pos = tag.pos
cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.orth)
if cached is NULL:
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.lemmatize(tag.pos, tokens[i].lex)
cached.morph = tag.morph
self._morph_cache.set(tag.id, tokens[i].lex.orth, <void*>cached)
tokens[i].lemma = cached.lemma
tokens[i].morph = cached.morph
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1:
if self.lemmatizer is None:
return lex.orth
cdef unicode py_string = self.strings[lex.orth]
if pos != NOUN and pos != VERB and pos != ADJ:
return lex.orth
cdef set lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, pos)
lemma_string = sorted(lemma_strings)[0]
lemma = self.strings[lemma_string]
return lemma
def load_morph_exceptions(self, dict exc):
cdef unicode pos_str
cdef unicode form_str
cdef unicode lemma_str
cdef dict entries
cdef dict props
cdef int lemma
cdef attr_t orth
cdef int pos
for pos_str, entries in exc.items():
pos = self.tag_names.index(pos_str)
for form_str, props in entries.items():
lemma_str = props.get('L', form_str)
orth = self.strings[form_str]
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.strings[lemma_str]
set_morph_from_dict(&cached.morph, props)
self._morph_cache.set(pos, orth, <void*>cached)