mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-18 04:02:20 +03:00
Update span predictor docstrings
This commit is contained in:
parent
c4de3e51a2
commit
5e405738d2
|
@ -95,6 +95,8 @@ class SpanPredictor(TrainablePipe):
|
|||
"""Pipeline component to resolve one-token spans to full spans.
|
||||
|
||||
Used in coreference resolution.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -119,6 +121,14 @@ class SpanPredictor(TrainablePipe):
|
|||
}
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
Return the list of predicted span clusters.
|
||||
|
||||
docs (Iterable[Doc]): The documents to predict.
|
||||
RETURNS (List[MentionClusters]): The model's prediction for each document.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor#predict
|
||||
"""
|
||||
# for now pretend there's just one doc
|
||||
|
||||
out = []
|
||||
|
@ -151,6 +161,13 @@ class SpanPredictor(TrainablePipe):
|
|||
return out
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
|
||||
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
clusters: The span clusters, produced by SpanPredictor.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor#set_annotations
|
||||
"""
|
||||
for doc, clusters in zip(docs, clusters_by_doc):
|
||||
for ii, cluster in enumerate(clusters):
|
||||
spans = [doc[mm[0] : mm[1]] for mm in cluster]
|
||||
|
@ -166,6 +183,15 @@ class SpanPredictor(TrainablePipe):
|
|||
) -> Dict[str, float]:
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model. Delegates to predict and get_loss.
|
||||
|
||||
examples (Iterable[Example]): A batch of Example objects.
|
||||
drop (float): The dropout rate.
|
||||
sgd (thinc.api.Optimizer): The optimizer.
|
||||
losses (Dict[str, float]): Optional record of the loss during training.
|
||||
Updated using the component name as the key.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor#update
|
||||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
|
@ -222,6 +248,15 @@ class SpanPredictor(TrainablePipe):
|
|||
examples: Iterable[Example],
|
||||
span_scores: Floats3d,
|
||||
):
|
||||
"""Find the loss and gradient of loss for the batch of documents and
|
||||
their predicted scores.
|
||||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor#get_loss
|
||||
"""
|
||||
ops = self.model.ops
|
||||
|
||||
# NOTE This is doing fake batching, and should always get a list of one example
|
||||
|
@ -258,6 +293,15 @@ class SpanPredictor(TrainablePipe):
|
|||
*,
|
||||
nlp: Optional[Language] = None,
|
||||
) -> None:
|
||||
"""Initialize the pipe for training, using a representative set
|
||||
of data examples.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Function that
|
||||
returns a representative sample of gold-standard Example objects.
|
||||
nlp (Language): The current nlp object the component is part of.
|
||||
|
||||
DOCS: https://spacy.io/api/span_predictor#initialize
|
||||
"""
|
||||
validate_get_examples(get_examples, "SpanPredictor.initialize")
|
||||
|
||||
X = []
|
||||
|
|
Loading…
Reference in New Issue
Block a user