avoid writing temp dir in json2docs, fixing 4402 test

This commit is contained in:
svlandeg 2020-06-22 14:27:35 +02:00
parent ffddff03b8
commit 5e71919322
5 changed files with 28 additions and 26 deletions

View File

@ -2,7 +2,7 @@ import tempfile
import contextlib
import shutil
from pathlib import Path
from ..gold_io import read_json_file
from ..gold_io import json_to_annotations
from ..example import annotations2doc
from ..example import _fix_legacy_dict_data, _parse_example_dict_data
from ...util import load_model
@ -19,13 +19,9 @@ def make_tempdir():
def json2docs(input_data, model=None, **kwargs):
nlp = load_model(model) if model is not None else MultiLanguage()
docs = []
with make_tempdir() as tmp_dir:
json_path = Path(tmp_dir) / "data.json"
with (json_path).open("w") as file_:
file_.write(input_data)
for json_annot in read_json_file(json_path):
example_dict = _fix_legacy_dict_data(json_annot)
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
doc = annotations2doc(nlp.vocab, tok_dict, doc_dict)
docs.append(doc)
for json_annot in json_to_annotations(input_data):
example_dict = _fix_legacy_dict_data(json_annot)
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
doc = annotations2doc(nlp.vocab, tok_dict, doc_dict)
docs.append(doc)
return docs

View File

@ -43,7 +43,7 @@ class Corpus:
locs.append(path)
return locs
def make_examples(self, nlp, reference_docs, **kwargs):
def make_examples(self, nlp, reference_docs):
for reference in reference_docs:
predicted = nlp.make_doc(reference.text)
yield Example(predicted, reference)
@ -72,15 +72,15 @@ class Corpus:
i += 1
return n
def train_dataset(self, nlp, shuffle=True, **kwargs):
def train_dataset(self, nlp, shuffle=True):
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
examples = self.make_examples(nlp, ref_docs, **kwargs)
examples = self.make_examples(nlp, ref_docs)
if shuffle:
examples = list(examples)
random.shuffle(examples)
yield from examples
def dev_dataset(self, nlp, **kwargs):
def dev_dataset(self, nlp):
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.dev_loc))
examples = self.make_examples(nlp, ref_docs, **kwargs)
examples = self.make_examples(nlp, ref_docs)
yield from examples

View File

@ -9,7 +9,6 @@ from .align cimport Alignment
from .iob_utils import biluo_to_iob, biluo_tags_from_offsets, biluo_tags_from_doc
from .align import Alignment
from ..errors import Errors, AlignmentError
from ..structs cimport TokenC
from ..syntax import nonproj
@ -19,6 +18,7 @@ cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
if array.size:
output = output.from_array(attrs, array)
# TODO: links ?!
output.cats.update(doc_annot.get("cats", {}))
return output

View File

@ -2,7 +2,7 @@ import warnings
import srsly
from .. import util
from ..errors import Warnings
from ..tokens import Token, Doc
from ..tokens import Doc
from .iob_utils import biluo_tags_from_offsets

View File

@ -1,24 +1,31 @@
import srsly
from spacy.gold import Corpus
from spacy.lang.en import English
from ..util import make_tempdir
from ...gold.converters import json2docs
from ...tokens import DocBin
def test_issue4402():
nlp = English()
with make_tempdir() as tmpdir:
json_path = tmpdir / "test4402.json"
srsly.write_json(json_path, json_data)
output_file = tmpdir / "test4402.spacy"
docs = json2docs(json_data)
data = DocBin(docs=docs, attrs =["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]).to_bytes()
with output_file.open("wb") as file_:
file_.write(data)
corpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file))
corpus = Corpus(str(json_path), str(json_path))
train_data = list(corpus.train_dataset(nlp))
assert len(train_data) == 2
train_data = list(corpus.train_dataset(nlp, gold_preproc=True, max_length=0))
# assert that the data got split into 4 sentences
assert len(train_data) == 4
split_train_data = []
for eg in train_data:
split_train_data.extend(eg.split_sents())
assert len(split_train_data) == 4
json_data = [
json_data =\
{
"id": 0,
"paragraphs": [
@ -89,4 +96,3 @@ json_data = [
},
],
}
]