mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
* Add greedy pos tagger
This commit is contained in:
parent
12742f4f83
commit
5ebe14f353
21
setup.py
21
setup.py
|
@ -6,6 +6,8 @@ import distutils.core
|
|||
import sys
|
||||
import os
|
||||
import os.path
|
||||
import numpy
|
||||
|
||||
from os import path
|
||||
from glob import glob
|
||||
|
||||
|
@ -33,7 +35,7 @@ compile_args = []
|
|||
link_args = []
|
||||
libs = []
|
||||
|
||||
includes = ['.']
|
||||
includes = ['.', numpy.get_include()]
|
||||
cython_includes = ['.']
|
||||
|
||||
|
||||
|
@ -46,14 +48,11 @@ else:
|
|||
|
||||
exts = [
|
||||
Extension("spacy.lang", ["spacy/lang.pyx"], language="c++", include_dirs=includes),
|
||||
Extension("spacy.word", ["spacy/word.pyx"], language="c++",
|
||||
include_dirs=includes),
|
||||
Extension("spacy.lexeme", ["spacy/lexeme.pyx"], language="c++",
|
||||
include_dirs=includes),
|
||||
Extension("spacy.en", ["spacy/en.pyx"], language="c++",
|
||||
include_dirs=includes),
|
||||
Extension("spacy.tokens", ["spacy/tokens.pyx"], language="c++",
|
||||
include_dirs=includes),
|
||||
Extension("spacy.word", ["spacy/word.pyx"], language="c++", include_dirs=includes),
|
||||
Extension("spacy.lexeme", ["spacy/lexeme.pyx"], language="c++", include_dirs=includes),
|
||||
Extension("spacy.en", ["spacy/en.pyx"], language="c++", include_dirs=includes),
|
||||
Extension("spacy.tokens", ["spacy/tokens.pyx"], language="c++", include_dirs=includes),
|
||||
Extension("spacy.pos", ["spacy/pos.pyx"], language="c++", include_dirs=includes),
|
||||
]
|
||||
|
||||
|
||||
|
@ -62,12 +61,14 @@ if sys.argv[1] == 'clean':
|
|||
map(clean, exts)
|
||||
|
||||
distutils.core.setup(
|
||||
name='spaCy',
|
||||
name='spacy',
|
||||
packages=['spacy'],
|
||||
author='Matthew Honnibal',
|
||||
author_email='honnibal@gmail.com',
|
||||
version='1.0',
|
||||
package_data={"spacy": ["*.pxd"]},
|
||||
cmdclass={'build_ext': Cython.Distutils.build_ext},
|
||||
|
||||
ext_modules=exts,
|
||||
)
|
||||
|
||||
|
|
39
spacy/pos.pxd
Normal file
39
spacy/pos.pxd
Normal file
|
@ -0,0 +1,39 @@
|
|||
from cymem.cymem cimport Pool
|
||||
|
||||
from thinc.learner cimport LinearModel
|
||||
from thinc.features cimport Extractor
|
||||
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
|
||||
|
||||
from .tokens cimport Tokens
|
||||
|
||||
|
||||
cpdef enum PosTag:
|
||||
NONE
|
||||
ADJ
|
||||
ADP
|
||||
ADV
|
||||
CONJ
|
||||
DET
|
||||
NOUN
|
||||
NUM
|
||||
PDT
|
||||
POS
|
||||
PRON
|
||||
PRT
|
||||
PUNCT
|
||||
VERB
|
||||
|
||||
|
||||
cdef class Tagger:
|
||||
cpdef readonly Extractor extractor
|
||||
cpdef readonly LinearModel model
|
||||
|
||||
cpdef class_t predict(self, int i, Tokens tokens, class_t prev, class_t prev_prev) except 0
|
||||
cpdef bint tell_answer(self, class_t gold_tag) except *
|
||||
|
||||
cdef Pool mem
|
||||
cdef class_t _guess
|
||||
cdef atom_t* _atoms
|
||||
cdef feat_t* _feats
|
||||
cdef weight_t* _values
|
||||
cdef weight_t* _scores
|
169
spacy/pos.pyx
Normal file
169
spacy/pos.pyx
Normal file
|
@ -0,0 +1,169 @@
|
|||
from os import path
|
||||
import os
|
||||
import shutil
|
||||
import ujson
|
||||
import random
|
||||
import codecs
|
||||
|
||||
|
||||
from thinc.weights cimport arg_max
|
||||
from thinc.features import NonZeroConjFeat
|
||||
from thinc.features import ConjFeat
|
||||
|
||||
from .en import EN
|
||||
from .lexeme import LexStr_shape, LexStr_suff, LexStr_pre, LexStr_norm
|
||||
from .lexeme import LexDist_upper, LexDist_title
|
||||
from .lexeme import LexDist_upper, LexInt_cluster, LexInt_id
|
||||
|
||||
|
||||
NULL_TAG = 0
|
||||
|
||||
|
||||
cdef class Tagger:
|
||||
tags = {'NULL': NULL_TAG}
|
||||
def __init__(self, model_dir):
|
||||
self.mem = Pool()
|
||||
self.extractor = Extractor(TEMPLATES, [ConjFeat for _ in TEMPLATES])
|
||||
self.model = LinearModel(len(self.tags), self.extractor.n)
|
||||
self._atoms = <atom_t*>self.mem.alloc(CONTEXT_SIZE, sizeof(atom_t))
|
||||
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
|
||||
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
|
||||
self._scores = <weight_t*>self.mem.alloc(len(self.tags), sizeof(weight_t))
|
||||
self._guess = NULL_TAG
|
||||
if path.exists(path.join(model_dir, 'model.gz')):
|
||||
with open(path.join(model_dir, 'model.gz'), 'r') as file_:
|
||||
self.model.load(file_)
|
||||
|
||||
cpdef class_t predict(self, int i, Tokens tokens, class_t prev, class_t prev_prev) except 0:
|
||||
get_atoms(self._atoms, i, tokens, prev, prev_prev)
|
||||
self.extractor.extract(self._feats, self._values, self._atoms, NULL)
|
||||
assert self._feats[self.extractor.n] == 0
|
||||
self._guess = self.model.score(self._scores, self._feats, self._values)
|
||||
return self._guess
|
||||
|
||||
cpdef bint tell_answer(self, class_t gold) except *:
|
||||
cdef class_t guess = self._guess
|
||||
if gold == guess or gold == NULL_TAG:
|
||||
self.model.update({})
|
||||
return 0
|
||||
counts = {guess: {}, gold: {}}
|
||||
self.extractor.count(counts[gold], self._feats, 1)
|
||||
self.extractor.count(counts[guess], self._feats, -1)
|
||||
self.model.update(counts)
|
||||
|
||||
@classmethod
|
||||
def encode_pos(cls, tag):
|
||||
if tag not in cls.tags:
|
||||
cls.tags[tag] = len(cls.tags)
|
||||
return cls.tags[tag]
|
||||
|
||||
|
||||
|
||||
cpdef enum:
|
||||
P2i
|
||||
P2c
|
||||
P2shape
|
||||
P2suff
|
||||
P2pref
|
||||
P2w
|
||||
P2oft_title
|
||||
P2oft_upper
|
||||
|
||||
P1i
|
||||
P1c
|
||||
P1shape
|
||||
P1suff
|
||||
P1pref
|
||||
P1w
|
||||
P1oft_title
|
||||
P1oft_upper
|
||||
|
||||
N0i
|
||||
N0c
|
||||
N0shape
|
||||
N0suff
|
||||
N0pref
|
||||
N0w
|
||||
N0oft_title
|
||||
N0oft_upper
|
||||
|
||||
N1i
|
||||
N1c
|
||||
N1shape
|
||||
N1suff
|
||||
N1pref
|
||||
N1w
|
||||
N1oft_title
|
||||
N1oft_upper
|
||||
|
||||
N2i
|
||||
N2c
|
||||
N2shape
|
||||
N2suff
|
||||
N2pref
|
||||
N2w
|
||||
N2oft_title
|
||||
N2oft_upper
|
||||
|
||||
P1t
|
||||
P2t
|
||||
CONTEXT_SIZE
|
||||
|
||||
|
||||
cdef int get_atoms(atom_t* context, int i, Tokens tokens, class_t prev_tag,
|
||||
class_t prev_prev_tag) except -1:
|
||||
cdef int j
|
||||
for j in range(CONTEXT_SIZE):
|
||||
context[j] = 0
|
||||
indices = [i-2, i-1, i, i+1, i+2]
|
||||
ints = tokens.int_array(indices, [LexInt_id, LexInt_cluster])
|
||||
flags = tokens.bool_array(indices, [LexDist_title, LexDist_upper])
|
||||
strings = tokens.string_hash_array(indices, [LexStr_shape, LexStr_suff,
|
||||
LexStr_pre, LexStr_norm])
|
||||
_fill_token(&context[P2i], flags[0], ints[0], strings[0])
|
||||
_fill_token(&context[P1i], flags[1], ints[1], strings[1])
|
||||
_fill_token(&context[N0i], flags[2], ints[2], strings[2])
|
||||
_fill_token(&context[N1i], flags[3], ints[3], strings[3])
|
||||
_fill_token(&context[N2i], flags[4], ints[4], strings[4])
|
||||
context[P1t] = prev_tag
|
||||
context[P2t] = prev_prev_tag
|
||||
|
||||
|
||||
cdef int _fill_token(atom_t* c, flags, ints, strings) except -1:
|
||||
cdef int i = 0
|
||||
c[i] = ints[0]; i += 1
|
||||
c[i] = ints[1]; i += 1
|
||||
c[i] = strings[0]; i += 1
|
||||
c[i] = strings[1]; i += 1
|
||||
c[i] = strings[2]; i += 1
|
||||
c[i] = strings[3]; i += 1
|
||||
c[i] = flags[0]; i += 1
|
||||
c[i] = flags[1]; i += 1
|
||||
|
||||
|
||||
TEMPLATES = (
|
||||
(N0i,),
|
||||
#(N0w,),
|
||||
#(N0suff,),
|
||||
#(N0pref,),
|
||||
(P1t,),
|
||||
(P2t,),
|
||||
#(P1t, P2t),
|
||||
#(P1t, N0w),
|
||||
#(P1w,),
|
||||
#(P1suff,),
|
||||
#(P2w,),
|
||||
#(N1w,),
|
||||
#(N1suff,),
|
||||
#(N2w,),
|
||||
|
||||
#(N0shape,),
|
||||
#(N0c,),
|
||||
#(N1c,),
|
||||
#(N2c,),
|
||||
#(P1c,),
|
||||
#(P2c,),
|
||||
#(N0oft_upper,),
|
||||
#(N0oft_title,),
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user