* Add greedy pos tagger

This commit is contained in:
Matthew Honnibal 2014-10-22 10:17:26 +11:00
parent 12742f4f83
commit 5ebe14f353
3 changed files with 219 additions and 10 deletions

View File

@ -6,6 +6,8 @@ import distutils.core
import sys
import os
import os.path
import numpy
from os import path
from glob import glob
@ -33,7 +35,7 @@ compile_args = []
link_args = []
libs = []
includes = ['.']
includes = ['.', numpy.get_include()]
cython_includes = ['.']
@ -46,14 +48,11 @@ else:
exts = [
Extension("spacy.lang", ["spacy/lang.pyx"], language="c++", include_dirs=includes),
Extension("spacy.word", ["spacy/word.pyx"], language="c++",
include_dirs=includes),
Extension("spacy.lexeme", ["spacy/lexeme.pyx"], language="c++",
include_dirs=includes),
Extension("spacy.en", ["spacy/en.pyx"], language="c++",
include_dirs=includes),
Extension("spacy.tokens", ["spacy/tokens.pyx"], language="c++",
include_dirs=includes),
Extension("spacy.word", ["spacy/word.pyx"], language="c++", include_dirs=includes),
Extension("spacy.lexeme", ["spacy/lexeme.pyx"], language="c++", include_dirs=includes),
Extension("spacy.en", ["spacy/en.pyx"], language="c++", include_dirs=includes),
Extension("spacy.tokens", ["spacy/tokens.pyx"], language="c++", include_dirs=includes),
Extension("spacy.pos", ["spacy/pos.pyx"], language="c++", include_dirs=includes),
]
@ -62,12 +61,14 @@ if sys.argv[1] == 'clean':
map(clean, exts)
distutils.core.setup(
name='spaCy',
name='spacy',
packages=['spacy'],
author='Matthew Honnibal',
author_email='honnibal@gmail.com',
version='1.0',
package_data={"spacy": ["*.pxd"]},
cmdclass={'build_ext': Cython.Distutils.build_ext},
ext_modules=exts,
)

39
spacy/pos.pxd Normal file
View File

@ -0,0 +1,39 @@
from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
from .tokens cimport Tokens
cpdef enum PosTag:
NONE
ADJ
ADP
ADV
CONJ
DET
NOUN
NUM
PDT
POS
PRON
PRT
PUNCT
VERB
cdef class Tagger:
cpdef readonly Extractor extractor
cpdef readonly LinearModel model
cpdef class_t predict(self, int i, Tokens tokens, class_t prev, class_t prev_prev) except 0
cpdef bint tell_answer(self, class_t gold_tag) except *
cdef Pool mem
cdef class_t _guess
cdef atom_t* _atoms
cdef feat_t* _feats
cdef weight_t* _values
cdef weight_t* _scores

169
spacy/pos.pyx Normal file
View File

@ -0,0 +1,169 @@
from os import path
import os
import shutil
import ujson
import random
import codecs
from thinc.weights cimport arg_max
from thinc.features import NonZeroConjFeat
from thinc.features import ConjFeat
from .en import EN
from .lexeme import LexStr_shape, LexStr_suff, LexStr_pre, LexStr_norm
from .lexeme import LexDist_upper, LexDist_title
from .lexeme import LexDist_upper, LexInt_cluster, LexInt_id
NULL_TAG = 0
cdef class Tagger:
tags = {'NULL': NULL_TAG}
def __init__(self, model_dir):
self.mem = Pool()
self.extractor = Extractor(TEMPLATES, [ConjFeat for _ in TEMPLATES])
self.model = LinearModel(len(self.tags), self.extractor.n)
self._atoms = <atom_t*>self.mem.alloc(CONTEXT_SIZE, sizeof(atom_t))
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
self._scores = <weight_t*>self.mem.alloc(len(self.tags), sizeof(weight_t))
self._guess = NULL_TAG
if path.exists(path.join(model_dir, 'model.gz')):
with open(path.join(model_dir, 'model.gz'), 'r') as file_:
self.model.load(file_)
cpdef class_t predict(self, int i, Tokens tokens, class_t prev, class_t prev_prev) except 0:
get_atoms(self._atoms, i, tokens, prev, prev_prev)
self.extractor.extract(self._feats, self._values, self._atoms, NULL)
assert self._feats[self.extractor.n] == 0
self._guess = self.model.score(self._scores, self._feats, self._values)
return self._guess
cpdef bint tell_answer(self, class_t gold) except *:
cdef class_t guess = self._guess
if gold == guess or gold == NULL_TAG:
self.model.update({})
return 0
counts = {guess: {}, gold: {}}
self.extractor.count(counts[gold], self._feats, 1)
self.extractor.count(counts[guess], self._feats, -1)
self.model.update(counts)
@classmethod
def encode_pos(cls, tag):
if tag not in cls.tags:
cls.tags[tag] = len(cls.tags)
return cls.tags[tag]
cpdef enum:
P2i
P2c
P2shape
P2suff
P2pref
P2w
P2oft_title
P2oft_upper
P1i
P1c
P1shape
P1suff
P1pref
P1w
P1oft_title
P1oft_upper
N0i
N0c
N0shape
N0suff
N0pref
N0w
N0oft_title
N0oft_upper
N1i
N1c
N1shape
N1suff
N1pref
N1w
N1oft_title
N1oft_upper
N2i
N2c
N2shape
N2suff
N2pref
N2w
N2oft_title
N2oft_upper
P1t
P2t
CONTEXT_SIZE
cdef int get_atoms(atom_t* context, int i, Tokens tokens, class_t prev_tag,
class_t prev_prev_tag) except -1:
cdef int j
for j in range(CONTEXT_SIZE):
context[j] = 0
indices = [i-2, i-1, i, i+1, i+2]
ints = tokens.int_array(indices, [LexInt_id, LexInt_cluster])
flags = tokens.bool_array(indices, [LexDist_title, LexDist_upper])
strings = tokens.string_hash_array(indices, [LexStr_shape, LexStr_suff,
LexStr_pre, LexStr_norm])
_fill_token(&context[P2i], flags[0], ints[0], strings[0])
_fill_token(&context[P1i], flags[1], ints[1], strings[1])
_fill_token(&context[N0i], flags[2], ints[2], strings[2])
_fill_token(&context[N1i], flags[3], ints[3], strings[3])
_fill_token(&context[N2i], flags[4], ints[4], strings[4])
context[P1t] = prev_tag
context[P2t] = prev_prev_tag
cdef int _fill_token(atom_t* c, flags, ints, strings) except -1:
cdef int i = 0
c[i] = ints[0]; i += 1
c[i] = ints[1]; i += 1
c[i] = strings[0]; i += 1
c[i] = strings[1]; i += 1
c[i] = strings[2]; i += 1
c[i] = strings[3]; i += 1
c[i] = flags[0]; i += 1
c[i] = flags[1]; i += 1
TEMPLATES = (
(N0i,),
#(N0w,),
#(N0suff,),
#(N0pref,),
(P1t,),
(P2t,),
#(P1t, P2t),
#(P1t, N0w),
#(P1w,),
#(P1suff,),
#(P2w,),
#(N1w,),
#(N1suff,),
#(N2w,),
#(N0shape,),
#(N0c,),
#(N1c,),
#(N2c,),
#(P1c,),
#(P2c,),
#(N0oft_upper,),
#(N0oft_title,),
)