mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
* Add Displacy mixin. Needs to pull the data from the web
This commit is contained in:
parent
005074c31e
commit
5ee645d742
|
@ -0,0 +1,18 @@
|
|||
mixin Displacy(sentence, caption_text, height)
|
||||
- var url = "http://ines.io/displacy/?full=" + sentence.replace(" ", "%20")
|
||||
|
||||
.displacy
|
||||
iframe.displacy(src="displacy/displacy_demo.html" height=height)
|
||||
|
||||
a.view-displacy(href=url)
|
||||
| View on displaCy
|
||||
|
||||
p.caption.
|
||||
#{caption_text}
|
||||
|
||||
|
||||
+Displacy(
|
||||
"Click the button to see this sentence in displaCy.",
|
||||
"The best parse-tree visualizer and annotation tool in all the land.",
|
||||
275
|
||||
)
|
141
examples/twitter_filter.py
Normal file
141
examples/twitter_filter.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from __future__ import unicode_literals, print_function
|
||||
import plac
|
||||
import codecs
|
||||
import sys
|
||||
import math
|
||||
|
||||
import spacy.en
|
||||
from spacy.parts_of_speech import VERB, NOUN, ADV, ADJ
|
||||
|
||||
from termcolor import colored
|
||||
from twython import TwythonStreamer
|
||||
|
||||
from os import path
|
||||
from math import sqrt
|
||||
|
||||
from numpy import dot
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
class Meaning(object):
|
||||
def __init__(self, vectors):
|
||||
if vectors:
|
||||
self.vector = sum(vectors) / len(vectors)
|
||||
self.norm = norm(self.vector)
|
||||
else:
|
||||
self.vector = None
|
||||
self.norm = 0
|
||||
|
||||
@classmethod
|
||||
def from_path(cls, nlp, loc):
|
||||
with codecs.open(loc, 'r', 'utf8') as file_:
|
||||
terms = file_.read().strip().split()
|
||||
return cls.from_terms(nlp, terms)
|
||||
|
||||
@classmethod
|
||||
def from_tokens(cls, nlp, tokens):
|
||||
vectors = [t.repvec for t in tokens]
|
||||
return cls(vectors)
|
||||
|
||||
@classmethod
|
||||
def from_terms(cls, nlp, examples):
|
||||
lexemes = [nlp.vocab[eg] for eg in examples]
|
||||
vectors = [eg.repvec for eg in lexemes]
|
||||
return cls(vectors)
|
||||
|
||||
def similarity(self, other):
|
||||
if not self.norm or not other.norm:
|
||||
return -1
|
||||
return dot(self.vector, other.vector) / (self.norm * other.norm)
|
||||
|
||||
|
||||
def print_colored(model, stream=sys.stdout):
|
||||
if model['is_match']:
|
||||
color = 'green'
|
||||
elif model['is_reject']:
|
||||
color = 'red'
|
||||
else:
|
||||
color = 'grey'
|
||||
|
||||
if not model['is_rare'] and model['is_match'] and not model['is_reject']:
|
||||
match_score = colored('%.3f' % model['match_score'], 'green')
|
||||
reject_score = colored('%.3f' % model['reject_score'], 'red')
|
||||
prob = '%.5f' % model['prob']
|
||||
|
||||
print(match_score, reject_score, prob)
|
||||
print(repr(model['text']), color)
|
||||
print('')
|
||||
|
||||
|
||||
class TextMatcher(object):
|
||||
def __init__(self, nlp, get_target, get_reject, min_prob, min_match, max_reject):
|
||||
self.nlp = nlp
|
||||
self.get_target = get_target
|
||||
self.get_reject = get_reject
|
||||
self.min_prob = min_prob
|
||||
self.min_match = min_match
|
||||
self.max_reject = max_reject
|
||||
|
||||
def __call__(self, text):
|
||||
tweet = self.nlp(text)
|
||||
target_terms = self.get_target()
|
||||
reject_terms = self.get_reject()
|
||||
|
||||
prob = sum(math.exp(w.prob) for w in tweet) / len(tweet)
|
||||
meaning = Meaning.from_tokens(self, tweet)
|
||||
|
||||
match_score = meaning.similarity(self.get_target())
|
||||
reject_score = meaning.similarity(self.get_reject())
|
||||
return {
|
||||
'text': tweet.string,
|
||||
'prob': prob,
|
||||
'match_score': match_score,
|
||||
'reject_score': reject_score,
|
||||
'is_rare': prob < self.min_prob,
|
||||
'is_match': prob >= self.min_prob and match_score >= self.min_match,
|
||||
'is_reject': prob >= self.min_prob and reject_score >= self.max_reject
|
||||
}
|
||||
|
||||
|
||||
class Connection(TwythonStreamer):
|
||||
def __init__(self, keys_dir, handler, view):
|
||||
keys = Secrets(keys_dir)
|
||||
TwythonStreamer.__init__(self, keys.key, keys.secret, keys.token, keys.token_secret)
|
||||
self.handler = handler
|
||||
self.view = view
|
||||
|
||||
def on_success(self, data):
|
||||
text = data.get('text', u'')
|
||||
# Twython returns either bytes or unicode, depending on tweet.
|
||||
# #APIshaming
|
||||
try:
|
||||
model = self.handler(text)
|
||||
except TypeError:
|
||||
model = self.handler(text.decode('utf8'))
|
||||
status = self.view(model, sys.stdin)
|
||||
|
||||
def on_error(self, status_code, data):
|
||||
print(status_code)
|
||||
|
||||
|
||||
class Secrets(object):
|
||||
def __init__(self, key_dir):
|
||||
self.key = open(path.join(key_dir, 'key.txt')).read().strip()
|
||||
self.secret = open(path.join(key_dir, 'secret.txt')).read().strip()
|
||||
self.token = open(path.join(key_dir, 'token.txt')).read().strip()
|
||||
self.token_secret = open(path.join(key_dir, 'token_secret.txt')).read().strip()
|
||||
|
||||
|
||||
def main(keys_dir, term, target_loc, reject_loc, min_prob=-20, min_match=0.8, max_reject=0.5):
|
||||
# We don't need the parser for this demo, so may as well save the loading time
|
||||
nlp = spacy.en.English(Parser=None)
|
||||
get_target = lambda: Meaning.from_path(nlp, target_loc)
|
||||
get_reject = lambda: Meaning.from_path(nlp, reject_loc)
|
||||
matcher = TextMatcher(nlp, get_target, get_reject, min_prob, min_match, max_reject)
|
||||
|
||||
twitter = Connection(keys_dir, matcher, print_colored)
|
||||
twitter.statuses.filter(track=term)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user