mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Tidy up code
This commit is contained in:
parent
93572dc12a
commit
5eeb25f043
|
@ -4,6 +4,7 @@ import sys
|
|||
|
||||
# set library-specific custom warning handling before doing anything else
|
||||
from .errors import setup_default_warnings
|
||||
|
||||
setup_default_warnings()
|
||||
|
||||
# These are imported as part of the API
|
||||
|
|
|
@ -139,7 +139,10 @@ def debug_model(
|
|||
upstream_component = None
|
||||
if model.has_ref("tok2vec") and "tok2vec-listener" in model.get_ref("tok2vec").name:
|
||||
upstream_component = nlp.get_pipe("tok2vec")
|
||||
if model.has_ref("tok2vec") and "transformer-listener" in model.get_ref("tok2vec").name:
|
||||
if (
|
||||
model.has_ref("tok2vec")
|
||||
and "transformer-listener" in model.get_ref("tok2vec").name
|
||||
):
|
||||
upstream_component = nlp.get_pipe("transformer")
|
||||
goldY = None
|
||||
for e in range(3):
|
||||
|
|
|
@ -127,7 +127,9 @@ def evaluate(
|
|||
data["ents_per_type"] = scores["ents_per_type"]
|
||||
if f"spans_{spans_key}_per_type" in scores:
|
||||
if scores[f"spans_{spans_key}_per_type"]:
|
||||
print_prf_per_type(msg, scores[f"spans_{spans_key}_per_type"], "SPANS", "type")
|
||||
print_prf_per_type(
|
||||
msg, scores[f"spans_{spans_key}_per_type"], "SPANS", "type"
|
||||
)
|
||||
data[f"spans_{spans_key}_per_type"] = scores[f"spans_{spans_key}_per_type"]
|
||||
if "cats_f_per_type" in scores:
|
||||
if scores["cats_f_per_type"]:
|
||||
|
|
|
@ -120,7 +120,9 @@ def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
|
|||
doc (Doc): Document do parse.
|
||||
RETURNS (dict): Generated dependency parse keyed by words and arcs.
|
||||
"""
|
||||
doc = Doc(orig_doc.vocab).from_bytes(orig_doc.to_bytes(exclude=["user_data", "user_hooks"]))
|
||||
doc = Doc(orig_doc.vocab).from_bytes(
|
||||
orig_doc.to_bytes(exclude=["user_data", "user_hooks"])
|
||||
)
|
||||
if not doc.has_annotation("DEP"):
|
||||
warnings.warn(Warnings.W005)
|
||||
if options.get("collapse_phrases", False):
|
||||
|
|
|
@ -22,13 +22,13 @@ _num_words = [
|
|||
"тринадесет",
|
||||
"тринайсет",
|
||||
"четиринадесет",
|
||||
"четиринайсет"
|
||||
"четиринайсет",
|
||||
"петнадесет",
|
||||
"петнайсет"
|
||||
"петнайсет",
|
||||
"шестнадесет",
|
||||
"шестнайсет",
|
||||
"седемнадесет",
|
||||
"седемнайсет"
|
||||
"седемнайсет",
|
||||
"осемнадесет",
|
||||
"осемнайсет",
|
||||
"деветнадесет",
|
||||
|
@ -36,7 +36,7 @@ _num_words = [
|
|||
"двадесет",
|
||||
"двайсет",
|
||||
"тридесет",
|
||||
"трийсет"
|
||||
"трийсет",
|
||||
"четиридесет",
|
||||
"четиресет",
|
||||
"петдесет",
|
||||
|
|
|
@ -58,7 +58,6 @@ _abbr_dot_exc = [
|
|||
{ORTH: "стр.", NORM: "страница"},
|
||||
{ORTH: "ул.", NORM: "улица"},
|
||||
{ORTH: "чл.", NORM: "член"},
|
||||
|
||||
]
|
||||
|
||||
for abbr in _abbr_dot_exc:
|
||||
|
|
|
@ -81,16 +81,32 @@ for exc_data in [
|
|||
|
||||
# Source: https://kaino.kotus.fi/visk/sisallys.php?p=141
|
||||
conj_contraction_bases = [
|
||||
("ett", "että"), ("jott", "jotta"), ("kosk", "koska"), ("mutt", "mutta"),
|
||||
("vaikk", "vaikka"), ("ehk", "ehkä"), ("miks", "miksi"), ("siks", "siksi"),
|
||||
("joll", "jos"), ("ell", "jos")
|
||||
("ett", "että"),
|
||||
("jott", "jotta"),
|
||||
("kosk", "koska"),
|
||||
("mutt", "mutta"),
|
||||
("vaikk", "vaikka"),
|
||||
("ehk", "ehkä"),
|
||||
("miks", "miksi"),
|
||||
("siks", "siksi"),
|
||||
("joll", "jos"),
|
||||
("ell", "jos"),
|
||||
]
|
||||
conj_contraction_negations = [
|
||||
("en", "en"), ("et", "et"), ("ei", "ei"), ("emme", "emme"),
|
||||
("ette", "ette"), ("eivat", "eivät"), ("eivät", "eivät")]
|
||||
("en", "en"),
|
||||
("et", "et"),
|
||||
("ei", "ei"),
|
||||
("emme", "emme"),
|
||||
("ette", "ette"),
|
||||
("eivat", "eivät"),
|
||||
("eivät", "eivät"),
|
||||
]
|
||||
for (base_lower, base_norm) in conj_contraction_bases:
|
||||
for base in [base_lower, base_lower.title()]:
|
||||
for (suffix, suffix_norm) in conj_contraction_negations:
|
||||
_exc[base + suffix] = [{ORTH: base, NORM: base_norm}, {ORTH: suffix, NORM: suffix_norm}]
|
||||
_exc[base + suffix] = [
|
||||
{ORTH: base, NORM: base_norm},
|
||||
{ORTH: suffix, NORM: suffix_norm},
|
||||
]
|
||||
|
||||
TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc)
|
||||
|
|
|
@ -4,12 +4,12 @@ from ...pipeline import Lemmatizer
|
|||
from ...tokens import Token
|
||||
|
||||
|
||||
|
||||
class ItalianLemmatizer(Lemmatizer):
|
||||
"""This lemmatizer was adapted from the Polish one (version of April 2021).
|
||||
It implements lookup lemmatization based on the morphological lexicon
|
||||
morph-it (Baroni and Zanchetta). The table lemma_lookup with non-POS-aware
|
||||
entries is used as a backup for words that aren't handled by morph-it."""
|
||||
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]:
|
||||
if mode == "pos_lookup":
|
||||
|
|
|
@ -25,7 +25,7 @@ for orth in [
|
|||
"artt.",
|
||||
"att.",
|
||||
"avv.",
|
||||
"Avv."
|
||||
"Avv.",
|
||||
"by-pass",
|
||||
"c.d.",
|
||||
"c/c",
|
||||
|
|
|
@ -687,9 +687,11 @@ class Language:
|
|||
if not isinstance(source, Language):
|
||||
raise ValueError(Errors.E945.format(name=source_name, source=type(source)))
|
||||
# Check vectors, with faster checks first
|
||||
if self.vocab.vectors.shape != source.vocab.vectors.shape or \
|
||||
self.vocab.vectors.key2row != source.vocab.vectors.key2row or \
|
||||
self.vocab.vectors.to_bytes() != source.vocab.vectors.to_bytes():
|
||||
if (
|
||||
self.vocab.vectors.shape != source.vocab.vectors.shape
|
||||
or self.vocab.vectors.key2row != source.vocab.vectors.key2row
|
||||
or self.vocab.vectors.to_bytes() != source.vocab.vectors.to_bytes()
|
||||
):
|
||||
warnings.warn(Warnings.W113.format(name=source_name))
|
||||
if not source_name in source.component_names:
|
||||
raise KeyError(
|
||||
|
@ -1539,15 +1541,21 @@ class Language:
|
|||
|
||||
# Cycle channels not to break the order of docs.
|
||||
# The received object is a batch of byte-encoded docs, so flatten them with chain.from_iterable.
|
||||
byte_tuples = chain.from_iterable(recv.recv() for recv in cycle(bytedocs_recv_ch))
|
||||
byte_tuples = chain.from_iterable(
|
||||
recv.recv() for recv in cycle(bytedocs_recv_ch)
|
||||
)
|
||||
try:
|
||||
for i, (_, (byte_doc, byte_error)) in enumerate(zip(raw_texts, byte_tuples), 1):
|
||||
for i, (_, (byte_doc, byte_error)) in enumerate(
|
||||
zip(raw_texts, byte_tuples), 1
|
||||
):
|
||||
if byte_doc is not None:
|
||||
doc = Doc(self.vocab).from_bytes(byte_doc)
|
||||
yield doc
|
||||
elif byte_error is not None:
|
||||
error = srsly.msgpack_loads(byte_error)
|
||||
self.default_error_handler(None, None, None, ValueError(Errors.E871.format(error=error)))
|
||||
self.default_error_handler(
|
||||
None, None, None, ValueError(Errors.E871.format(error=error))
|
||||
)
|
||||
if i % batch_size == 0:
|
||||
# tell `sender` that one batch was consumed.
|
||||
sender.step()
|
||||
|
@ -1707,7 +1715,9 @@ class Language:
|
|||
if "replace_listeners" in pipe_cfg:
|
||||
for name, proc in source_nlps[model].pipeline:
|
||||
if source_name in getattr(proc, "listening_components", []):
|
||||
source_nlps[model].replace_listeners(name, source_name, pipe_cfg["replace_listeners"])
|
||||
source_nlps[model].replace_listeners(
|
||||
name, source_name, pipe_cfg["replace_listeners"]
|
||||
)
|
||||
listeners_replaced = True
|
||||
nlp.add_pipe(source_name, source=source_nlps[model], name=pipe_name)
|
||||
# Delete from cache if listeners were replaced
|
||||
|
@ -1727,12 +1737,16 @@ class Language:
|
|||
for name, proc in nlp.pipeline:
|
||||
# Remove listeners not in the pipeline
|
||||
listener_names = getattr(proc, "listening_components", [])
|
||||
unused_listener_names = [ll for ll in listener_names if ll not in nlp.pipe_names]
|
||||
unused_listener_names = [
|
||||
ll for ll in listener_names if ll not in nlp.pipe_names
|
||||
]
|
||||
for listener_name in unused_listener_names:
|
||||
for listener in proc.listener_map.get(listener_name, []):
|
||||
proc.remove_listener(listener, listener_name)
|
||||
|
||||
for listener in getattr(proc, "listening_components", []): # e.g. tok2vec/transformer
|
||||
for listener in getattr(
|
||||
proc, "listening_components", []
|
||||
): # e.g. tok2vec/transformer
|
||||
# If it's a component sourced from another pipeline, we check if
|
||||
# the tok2vec listeners should be replaced with standalone tok2vec
|
||||
# models (e.g. so component can be frozen without its performance
|
||||
|
@ -1827,7 +1841,9 @@ class Language:
|
|||
new_config = tok2vec_cfg["model"]
|
||||
if "replace_listener_cfg" in tok2vec_model.attrs:
|
||||
replace_func = tok2vec_model.attrs["replace_listener_cfg"]
|
||||
new_config = replace_func(tok2vec_cfg["model"], pipe_cfg["model"]["tok2vec"])
|
||||
new_config = replace_func(
|
||||
tok2vec_cfg["model"], pipe_cfg["model"]["tok2vec"]
|
||||
)
|
||||
util.set_dot_to_object(pipe_cfg, listener_path, new_config)
|
||||
# Go over the listener layers and replace them
|
||||
for listener in pipe_listeners:
|
||||
|
@ -1866,8 +1882,11 @@ class Language:
|
|||
util.to_disk(path, serializers, exclude)
|
||||
|
||||
def from_disk(
|
||||
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList(),
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
self,
|
||||
path: Union[str, Path],
|
||||
*,
|
||||
exclude: Iterable[str] = SimpleFrozenList(),
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
) -> "Language":
|
||||
"""Loads state from a directory. Modifies the object in place and
|
||||
returns it. If the saved `Language` object contains a model, the
|
||||
|
|
|
@ -12,9 +12,7 @@ from .strings import get_string_id
|
|||
UNSET = object()
|
||||
|
||||
|
||||
def load_lookups(
|
||||
lang: str, tables: List[str], strict: bool = True
|
||||
) -> 'Lookups':
|
||||
def load_lookups(lang: str, tables: List[str], strict: bool = True) -> "Lookups":
|
||||
"""Load the data from the spacy-lookups-data package for a given language,
|
||||
if available. Returns an empty `Lookups` container if there's no data or if the package
|
||||
is not installed.
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from .entity_linker import * # noqa
|
||||
from .multi_task import * # noqa
|
||||
from .parser import * # noqa
|
||||
from .spancat import * # noqa
|
||||
from .spancat import * # noqa
|
||||
from .tagger import * # noqa
|
||||
from .textcat import * # noqa
|
||||
from .tok2vec import * # noqa
|
||||
|
|
|
@ -309,9 +309,7 @@ class EntityLinker(TrainablePipe):
|
|||
assert sent_index >= 0
|
||||
# get n_neighbour sentences, clipped to the length of the document
|
||||
start_sentence = max(0, sent_index - self.n_sents)
|
||||
end_sentence = min(
|
||||
len(sentences) - 1, sent_index + self.n_sents
|
||||
)
|
||||
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
|
||||
start_token = sentences[start_sentence].start
|
||||
end_token = sentences[end_sentence].end
|
||||
sent_doc = doc[start_token:end_token].as_doc()
|
||||
|
@ -337,22 +335,16 @@ class EntityLinker(TrainablePipe):
|
|||
else:
|
||||
random.shuffle(candidates)
|
||||
# set all prior probabilities to 0 if incl_prior=False
|
||||
prior_probs = xp.asarray(
|
||||
[c.prior_prob for c in candidates]
|
||||
)
|
||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||
if not self.incl_prior:
|
||||
prior_probs = xp.asarray(
|
||||
[0.0 for _ in candidates]
|
||||
)
|
||||
prior_probs = xp.asarray([0.0 for _ in candidates])
|
||||
scores = prior_probs
|
||||
# add in similarity from the context
|
||||
if self.incl_context:
|
||||
entity_encodings = xp.asarray(
|
||||
[c.entity_vector for c in candidates]
|
||||
)
|
||||
entity_norm = xp.linalg.norm(
|
||||
entity_encodings, axis=1
|
||||
)
|
||||
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
||||
if len(entity_encodings) != len(prior_probs):
|
||||
raise RuntimeError(
|
||||
Errors.E147.format(
|
||||
|
@ -361,14 +353,12 @@ class EntityLinker(TrainablePipe):
|
|||
)
|
||||
)
|
||||
# cosine similarity
|
||||
sims = xp.dot(
|
||||
entity_encodings, sentence_encoding_t
|
||||
) / (sentence_norm * entity_norm)
|
||||
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
|
||||
sentence_norm * entity_norm
|
||||
)
|
||||
if sims.shape != prior_probs.shape:
|
||||
raise ValueError(Errors.E161)
|
||||
scores = (
|
||||
prior_probs + sims - (prior_probs * sims)
|
||||
)
|
||||
scores = prior_probs + sims - (prior_probs * sims)
|
||||
# TODO: thresholding
|
||||
best_index = scores.argmax().item()
|
||||
best_candidate = candidates[best_index]
|
||||
|
|
|
@ -278,9 +278,7 @@ class EntityRuler(Pipe):
|
|||
if self == pipe:
|
||||
current_index = i
|
||||
break
|
||||
subsequent_pipes = [
|
||||
pipe for pipe in self.nlp.pipe_names[current_index :]
|
||||
]
|
||||
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
|
||||
except ValueError:
|
||||
subsequent_pipes = []
|
||||
with self.nlp.select_pipes(disable=subsequent_pipes):
|
||||
|
|
|
@ -61,7 +61,7 @@ def build_ngram_suggester(sizes: List[int]) -> Callable[[List[Doc]], Ragged]:
|
|||
length = 0
|
||||
for size in sizes:
|
||||
if size <= len(doc):
|
||||
starts_size = starts[:len(doc) - (size - 1)]
|
||||
starts_size = starts[: len(doc) - (size - 1)]
|
||||
spans.append(ops.xp.hstack((starts_size, starts_size + size)))
|
||||
length += spans[-1].shape[0]
|
||||
if spans:
|
||||
|
@ -70,7 +70,7 @@ def build_ngram_suggester(sizes: List[int]) -> Callable[[List[Doc]], Ragged]:
|
|||
if len(spans) > 0:
|
||||
output = Ragged(ops.xp.vstack(spans), ops.asarray(lengths, dtype="i"))
|
||||
else:
|
||||
output = Ragged(ops.xp.zeros((0,0)), ops.asarray(lengths, dtype="i"))
|
||||
output = Ragged(ops.xp.zeros((0, 0)), ops.asarray(lengths, dtype="i"))
|
||||
|
||||
assert output.dataXd.ndim == 2
|
||||
return output
|
||||
|
|
|
@ -299,7 +299,9 @@ class TextCategorizer(TrainablePipe):
|
|||
self._allow_extra_label()
|
||||
self.cfg["labels"].append(label)
|
||||
if self.model and "resize_output" in self.model.attrs:
|
||||
self.model = self.model.attrs["resize_output"](self.model, len(self.cfg["labels"]))
|
||||
self.model = self.model.attrs["resize_output"](
|
||||
self.model, len(self.cfg["labels"])
|
||||
)
|
||||
self.vocab.strings.add(label)
|
||||
return 1
|
||||
|
||||
|
|
|
@ -365,7 +365,9 @@ class Scorer:
|
|||
gold_spans.add(gold_span)
|
||||
gold_per_type[span.label_].add(gold_span)
|
||||
pred_per_type = {label: set() for label in labels}
|
||||
for span in example.get_aligned_spans_x2y(getter(pred_doc, attr), allow_overlap):
|
||||
for span in example.get_aligned_spans_x2y(
|
||||
getter(pred_doc, attr), allow_overlap
|
||||
):
|
||||
if labeled:
|
||||
pred_span = (span.label_, span.start, span.end - 1)
|
||||
else:
|
||||
|
@ -381,10 +383,10 @@ class Scorer:
|
|||
score.score_set(pred_spans, gold_spans)
|
||||
# Assemble final result
|
||||
final_scores = {
|
||||
f"{attr}_p": None,
|
||||
f"{attr}_r": None,
|
||||
f"{attr}_f": None,
|
||||
}
|
||||
f"{attr}_p": None,
|
||||
f"{attr}_r": None,
|
||||
f"{attr}_f": None,
|
||||
}
|
||||
if labeled:
|
||||
final_scores[f"{attr}_per_type"] = None
|
||||
if len(score) > 0:
|
||||
|
@ -392,7 +394,9 @@ class Scorer:
|
|||
final_scores[f"{attr}_r"] = score.recall
|
||||
final_scores[f"{attr}_f"] = score.fscore
|
||||
if labeled:
|
||||
final_scores[f"{attr}_per_type"] = {k: v.to_dict() for k, v in score_per_type.items()}
|
||||
final_scores[f"{attr}_per_type"] = {
|
||||
k: v.to_dict() for k, v in score_per_type.items()
|
||||
}
|
||||
return final_scores
|
||||
|
||||
@staticmethod
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import pytest
|
||||
from spacy.lang.bg.lex_attrs import like_num
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"word,match",
|
||||
[
|
||||
|
|
|
@ -40,20 +40,21 @@ CONTRACTION_TESTS = [
|
|||
(
|
||||
"Päätimme ettemme tule.",
|
||||
["Päätimme", "ett", "emme", "tule", "."],
|
||||
["päätimme", "että", "emme", "tule", "."]
|
||||
["päätimme", "että", "emme", "tule", "."],
|
||||
),
|
||||
(
|
||||
"Miksei puhuttaisi?",
|
||||
["Miks", "ei", "puhuttaisi", "?"],
|
||||
["miksi", "ei", "puhuttaisi", "?"]
|
||||
["miksi", "ei", "puhuttaisi", "?"],
|
||||
),
|
||||
(
|
||||
"He tottelivat vaikkeivat halunneet",
|
||||
["He", "tottelivat", "vaikk", "eivat", "halunneet"],
|
||||
["he", "tottelivat", "vaikka", "eivät", "halunneet"]
|
||||
["he", "tottelivat", "vaikka", "eivät", "halunneet"],
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", ABBREVIATION_TESTS)
|
||||
def test_fi_tokenizer_abbreviations(fi_tokenizer, text, expected_tokens):
|
||||
tokens = fi_tokenizer(text)
|
||||
|
|
|
@ -255,13 +255,23 @@ def test_matcher_with_alignments_nongreedy(en_vocab):
|
|||
(0, "aaab", "a* b", [[0, 1], [0, 0, 1], [0, 0, 0, 1], [1]]),
|
||||
(1, "baab", "b a* b", [[0, 1, 1, 2]]),
|
||||
(2, "aaab", "a a a b", [[0, 1, 2, 3]]),
|
||||
(3, "aaab", "a+ b", [[0, 1], [0, 0, 1], [0, 0, 0, 1]]),
|
||||
(3, "aaab", "a+ b", [[0, 1], [0, 0, 1], [0, 0, 0, 1]]),
|
||||
(4, "aaba", "a+ b a+", [[0, 1, 2], [0, 0, 1, 2]]),
|
||||
(5, "aabaa", "a+ b a+", [[0, 1, 2], [0, 0, 1, 2], [0, 0, 1, 2, 2], [0, 1, 2, 2] ]),
|
||||
(
|
||||
5,
|
||||
"aabaa",
|
||||
"a+ b a+",
|
||||
[[0, 1, 2], [0, 0, 1, 2], [0, 0, 1, 2, 2], [0, 1, 2, 2]],
|
||||
),
|
||||
(6, "aaba", "a+ b a*", [[0, 1], [0, 0, 1], [0, 0, 1, 2], [0, 1, 2]]),
|
||||
(7, "aaaa", "a*", [[0], [0, 0], [0, 0, 0], [0, 0, 0, 0]]),
|
||||
(8, "baab", "b a* b b*", [[0, 1, 1, 2]]),
|
||||
(9, "aabb", "a* b* a*", [[1], [2], [2, 2], [0, 1], [0, 0, 1], [0, 0, 1, 1], [0, 1, 1], [1, 1]]),
|
||||
(
|
||||
9,
|
||||
"aabb",
|
||||
"a* b* a*",
|
||||
[[1], [2], [2, 2], [0, 1], [0, 0, 1], [0, 0, 1, 1], [0, 1, 1], [1, 1]],
|
||||
),
|
||||
(10, "aaab", "a+ a+ a b", [[0, 1, 2, 3]]),
|
||||
(11, "aaab", "a+ a+ a+ b", [[0, 1, 2, 3]]),
|
||||
(12, "aaab", "a+ a a b", [[0, 1, 2, 3]]),
|
||||
|
|
|
@ -557,7 +557,11 @@ def test_neg_annotation(neg_key):
|
|||
ner.add_label("PERSON")
|
||||
ner.add_label("ORG")
|
||||
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
|
||||
example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "ORG"), Span(neg_doc, 2, 3, "PERSON"), Span(neg_doc, 1, 4, "PERSON")]
|
||||
example.reference.spans[neg_key] = [
|
||||
Span(neg_doc, 2, 4, "ORG"),
|
||||
Span(neg_doc, 2, 3, "PERSON"),
|
||||
Span(neg_doc, 1, 4, "PERSON"),
|
||||
]
|
||||
|
||||
optimizer = nlp.initialize()
|
||||
for i in range(2):
|
||||
|
|
|
@ -254,7 +254,9 @@ def test_nel_nsents(nlp):
|
|||
"""Test that n_sents can be set through the configuration"""
|
||||
entity_linker = nlp.add_pipe("entity_linker", config={})
|
||||
assert entity_linker.n_sents == 0
|
||||
entity_linker = nlp.replace_pipe("entity_linker", "entity_linker", config={"n_sents": 2})
|
||||
entity_linker = nlp.replace_pipe(
|
||||
"entity_linker", "entity_linker", config={"n_sents": 2}
|
||||
)
|
||||
assert entity_linker.n_sents == 2
|
||||
|
||||
|
||||
|
@ -596,7 +598,9 @@ def test_kb_to_bytes():
|
|||
kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
|
||||
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
|
||||
kb_1.add_alias(alias="Boeing", entities=["Q66"], probabilities=[0.5])
|
||||
kb_1.add_alias(alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2])
|
||||
kb_1.add_alias(
|
||||
alias="Randomness", entities=["Q66", "Q2146908"], probabilities=[0.1, 0.2]
|
||||
)
|
||||
assert kb_1.contains_alias("Russ Cochran")
|
||||
kb_bytes = kb_1.to_bytes()
|
||||
kb_2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
|
||||
|
@ -611,8 +615,12 @@ def test_kb_to_bytes():
|
|||
assert kb_2.contains_alias("Russ Cochran")
|
||||
assert kb_1.get_size_aliases() == kb_2.get_size_aliases()
|
||||
assert kb_1.get_alias_strings() == kb_2.get_alias_strings()
|
||||
assert len(kb_1.get_alias_candidates("Russ Cochran")) == len(kb_2.get_alias_candidates("Russ Cochran"))
|
||||
assert len(kb_1.get_alias_candidates("Randomness")) == len(kb_2.get_alias_candidates("Randomness"))
|
||||
assert len(kb_1.get_alias_candidates("Russ Cochran")) == len(
|
||||
kb_2.get_alias_candidates("Russ Cochran")
|
||||
)
|
||||
assert len(kb_1.get_alias_candidates("Randomness")) == len(
|
||||
kb_2.get_alias_candidates("Randomness")
|
||||
)
|
||||
|
||||
|
||||
def test_nel_to_bytes():
|
||||
|
@ -640,7 +648,9 @@ def test_nel_to_bytes():
|
|||
kb_2 = nlp_2.get_pipe("entity_linker").kb
|
||||
assert kb_2.contains_alias("Russ Cochran")
|
||||
assert kb_2.get_vector("Q2146908") == [6, -4, 3]
|
||||
assert_almost_equal(kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8)
|
||||
assert_almost_equal(
|
||||
kb_2.get_prior_prob(entity="Q2146908", alias="Russ Cochran"), 0.8
|
||||
)
|
||||
|
||||
|
||||
def test_scorer_links():
|
||||
|
|
|
@ -82,7 +82,9 @@ def util_batch_unbatch_docs_list(
|
|||
Y_batched = model.predict(in_data)
|
||||
Y_not_batched = [model.predict([u])[0] for u in in_data]
|
||||
for i in range(len(Y_batched)):
|
||||
assert_almost_equal(OPS.to_numpy(Y_batched[i]), OPS.to_numpy(Y_not_batched[i]), decimal=4)
|
||||
assert_almost_equal(
|
||||
OPS.to_numpy(Y_batched[i]), OPS.to_numpy(Y_not_batched[i]), decimal=4
|
||||
)
|
||||
|
||||
|
||||
def util_batch_unbatch_docs_array(
|
||||
|
|
|
@ -351,9 +351,21 @@ def test_language_factories_invalid():
|
|||
([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.0}, {"a": 0.0, "b": 1.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {}, {"a": 0.0, "b": 0.0, "c": 0.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 1.0}], {}, {"a": 0.0, "b": 0.0, "c": 1.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {"c": 0.2}, {"a": 0.0, "b": 0.0, "c": 1.0}),
|
||||
([{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}], {"a": 0.0, "b": 0.0}, {"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5}),
|
||||
([{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}], {"a": 0.0, "b": 0.0, "f": 0.0}, {"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5, "f": 0.0}),
|
||||
(
|
||||
[{"a": 0.0, "b": 0.0}, {"c": 0.0}],
|
||||
{"c": 0.2},
|
||||
{"a": 0.0, "b": 0.0, "c": 1.0},
|
||||
),
|
||||
(
|
||||
[{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}],
|
||||
{"a": 0.0, "b": 0.0},
|
||||
{"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5},
|
||||
),
|
||||
(
|
||||
[{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}],
|
||||
{"a": 0.0, "b": 0.0, "f": 0.0},
|
||||
{"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5, "f": 0.0},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_language_factories_combine_score_weights(weights, override, expected):
|
||||
|
|
|
@ -446,7 +446,12 @@ def test_update_with_annotates():
|
|||
for text in texts:
|
||||
examples.append(Example(nlp.make_doc(text), nlp.make_doc(text)))
|
||||
|
||||
for components_to_annotate in [[], [f"{name}1"], [f"{name}1", f"{name}2"], [f"{name}2", f"{name}1"]]:
|
||||
for components_to_annotate in [
|
||||
[],
|
||||
[f"{name}1"],
|
||||
[f"{name}1", f"{name}2"],
|
||||
[f"{name}2", f"{name}1"],
|
||||
]:
|
||||
for key in results:
|
||||
results[key] = ""
|
||||
nlp = English(vocab=nlp.vocab)
|
||||
|
|
|
@ -79,10 +79,7 @@ def test_ngram_suggester(en_tokenizer):
|
|||
assert spans.shape[0] == len(spans_set)
|
||||
offset += ngrams.lengths[i]
|
||||
# the number of spans is correct
|
||||
assert_equal(
|
||||
ngrams.lengths,
|
||||
[max(0, len(doc) - (size - 1)) for doc in docs]
|
||||
)
|
||||
assert_equal(ngrams.lengths, [max(0, len(doc) - (size - 1)) for doc in docs])
|
||||
|
||||
# test 1-3-gram suggestions
|
||||
ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1, 2, 3])
|
||||
|
|
|
@ -131,7 +131,7 @@ def test_implicit_label(name, get_examples):
|
|||
nlp.initialize(get_examples=get_examples(nlp))
|
||||
|
||||
|
||||
#fmt: off
|
||||
# fmt: off
|
||||
@pytest.mark.parametrize(
|
||||
"name,textcat_config",
|
||||
[
|
||||
|
@ -150,7 +150,7 @@ def test_implicit_label(name, get_examples):
|
|||
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
||||
],
|
||||
)
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
def test_no_resize(name, textcat_config):
|
||||
"""The old textcat architectures weren't resizable"""
|
||||
nlp = Language()
|
||||
|
@ -165,7 +165,7 @@ def test_no_resize(name, textcat_config):
|
|||
textcat.add_label("NEUTRAL")
|
||||
|
||||
|
||||
#fmt: off
|
||||
# fmt: off
|
||||
@pytest.mark.parametrize(
|
||||
"name,textcat_config",
|
||||
[
|
||||
|
@ -179,7 +179,7 @@ def test_no_resize(name, textcat_config):
|
|||
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
||||
],
|
||||
)
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
def test_resize(name, textcat_config):
|
||||
"""The new textcat architectures are resizable"""
|
||||
nlp = Language()
|
||||
|
@ -194,7 +194,7 @@ def test_resize(name, textcat_config):
|
|||
assert textcat.model.maybe_get_dim("nO") in [3, None]
|
||||
|
||||
|
||||
#fmt: off
|
||||
# fmt: off
|
||||
@pytest.mark.parametrize(
|
||||
"name,textcat_config",
|
||||
[
|
||||
|
@ -208,7 +208,7 @@ def test_resize(name, textcat_config):
|
|||
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
|
||||
],
|
||||
)
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
def test_resize_same_results(name, textcat_config):
|
||||
# Ensure that the resized textcat classifiers still produce the same results for old labels
|
||||
fix_random_seed(0)
|
||||
|
@ -511,7 +511,9 @@ def test_textcat_threshold():
|
|||
macro_f = scores["cats_score"]
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"})
|
||||
scores = nlp.evaluate(
|
||||
train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
|
||||
)
|
||||
pos_f = scores["cats_score"]
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
assert pos_f > macro_f
|
||||
|
|
|
@ -129,8 +129,14 @@ cfg_string = """
|
|||
"""
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"], "cats": {"preference": 1.0, "imperative": 0.0}}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"], "cats": {"preference": 0.0, "imperative": 1.0}}),
|
||||
(
|
||||
"I like green eggs",
|
||||
{"tags": ["N", "V", "J", "N"], "cats": {"preference": 1.0, "imperative": 0.0}},
|
||||
),
|
||||
(
|
||||
"Eat blue ham",
|
||||
{"tags": ["V", "J", "N"], "cats": {"preference": 0.0, "imperative": 1.0}},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
@ -405,5 +411,5 @@ def test_tok2vec_listeners_textcat():
|
|||
cats1 = docs[1].cats
|
||||
assert cats1["preference"] > 0.1
|
||||
assert cats1["imperative"] < 0.9
|
||||
assert([t.tag_ for t in docs[0]] == ["V", "J", "N"])
|
||||
assert([t.tag_ for t in docs[1]] == ["N", "V", "J", "N"])
|
||||
assert [t.tag_ for t in docs[0]] == ["V", "J", "N"]
|
||||
assert [t.tag_ for t in docs[1]] == ["N", "V", "J", "N"]
|
||||
|
|
|
@ -152,7 +152,8 @@ labels = ['label1', 'label2']
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"component_name", ["textcat", "textcat_multilabel"],
|
||||
"component_name",
|
||||
["textcat", "textcat_multilabel"],
|
||||
)
|
||||
def test_issue6908(component_name):
|
||||
"""Test intializing textcat with labels in a list"""
|
||||
|
|
|
@ -8,8 +8,7 @@ def test_issue7056():
|
|||
sentence segmentation errors."""
|
||||
vocab = Vocab()
|
||||
ae = ArcEager(
|
||||
vocab.strings,
|
||||
ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
|
||||
vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
|
||||
)
|
||||
doc = Doc(vocab, words="Severe pain , after trauma".split())
|
||||
state = ae.init_batch([doc])[0]
|
||||
|
|
|
@ -41,7 +41,7 @@ def test_partial_links():
|
|||
nlp.add_pipe("sentencizer", first=True)
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]}
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
|
|
@ -8,7 +8,17 @@ def test_issue7065():
|
|||
nlp = English()
|
||||
nlp.add_pipe("sentencizer")
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
patterns = [{"label": "THING", "pattern": [{"LOWER": "symphony"}, {"LOWER": "no"}, {"LOWER": "."}, {"LOWER": "8"}]}]
|
||||
patterns = [
|
||||
{
|
||||
"label": "THING",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
}
|
||||
]
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp(text)
|
||||
|
@ -28,11 +38,15 @@ def test_issue7065_b():
|
|||
|
||||
text = "Mahler 's Symphony No. 8 was beautiful."
|
||||
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
|
||||
links = {(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
||||
(10, 24): {"Q7304": 0.0, "Q270853": 1.0}}
|
||||
links = {
|
||||
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
||||
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
|
||||
}
|
||||
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
||||
doc = nlp(text)
|
||||
example = Example.from_dict(doc, {"entities": entities, "links": links, "sent_starts": sent_starts})
|
||||
example = Example.from_dict(
|
||||
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
||||
)
|
||||
train_examples = [example]
|
||||
|
||||
def create_kb(vocab):
|
||||
|
@ -65,7 +79,15 @@ def test_issue7065_b():
|
|||
# Add a custom rule-based component to mimick NER
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
|
||||
{"label": "WORK", "pattern": [{"LOWER": "symphony"}, {"LOWER": "no"}, {"LOWER": "."}, {"LOWER": "8"}]}
|
||||
{
|
||||
"label": "WORK",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
|
|
@ -1,11 +1,22 @@
|
|||
from spacy.lang.en import English
|
||||
|
||||
|
||||
def test_issue8168():
|
||||
nlp = English()
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
patterns = [{"label": "ORG", "pattern": "Apple"},
|
||||
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}], "id": "san-francisco"},
|
||||
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "fran"}], "id": "san-francisco"}]
|
||||
patterns = [
|
||||
{"label": "ORG", "pattern": "Apple"},
|
||||
{
|
||||
"label": "GPE",
|
||||
"pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}],
|
||||
"id": "san-francisco",
|
||||
},
|
||||
{
|
||||
"label": "GPE",
|
||||
"pattern": [{"LOWER": "san"}, {"LOWER": "fran"}],
|
||||
"id": "san-francisco",
|
||||
},
|
||||
]
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
assert ruler._ent_ids == {8043148519967183733: ('GPE', 'san-francisco')}
|
||||
assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")}
|
||||
|
|
|
@ -9,20 +9,13 @@ def test_issue8190():
|
|||
"nlp": {
|
||||
"lang": "en",
|
||||
},
|
||||
"custom": {
|
||||
"key": "value"
|
||||
}
|
||||
|
||||
"custom": {"key": "value"},
|
||||
}
|
||||
source_nlp = English.from_config(source_cfg)
|
||||
with make_tempdir() as dir_path:
|
||||
# We need to create a loadable source pipeline
|
||||
source_path = dir_path / "test_model"
|
||||
source_nlp.to_disk(source_path)
|
||||
nlp = spacy.load(source_path, config={
|
||||
"custom": {
|
||||
"key": "updated_value"
|
||||
}
|
||||
})
|
||||
nlp = spacy.load(source_path, config={"custom": {"key": "updated_value"}})
|
||||
|
||||
assert nlp.config["custom"]["key"] == "updated_value"
|
||||
|
|
|
@ -4,7 +4,12 @@ import spacy
|
|||
from spacy.lang.en import English
|
||||
from spacy.lang.de import German
|
||||
from spacy.language import Language, DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH
|
||||
from spacy.util import registry, load_model_from_config, load_config, load_config_from_str
|
||||
from spacy.util import (
|
||||
registry,
|
||||
load_model_from_config,
|
||||
load_config,
|
||||
load_config_from_str,
|
||||
)
|
||||
from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
|
||||
from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder
|
||||
from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
|
||||
|
@ -493,4 +498,4 @@ def test_hyphen_in_config():
|
|||
self.punctuation = punctuation
|
||||
|
||||
nlp = English.from_config(load_config_from_str(hyphen_config_str))
|
||||
assert nlp.get_pipe("my_punctual_component").punctuation == ['?', '-']
|
||||
assert nlp.get_pipe("my_punctual_component").punctuation == ["?", "-"]
|
||||
|
|
|
@ -64,7 +64,9 @@ def test_serialize_doc_span_groups(en_vocab):
|
|||
|
||||
|
||||
def test_serialize_doc_bin():
|
||||
doc_bin = DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE", "NORM", "ENT_ID"], store_user_data=True)
|
||||
doc_bin = DocBin(
|
||||
attrs=["LEMMA", "ENT_IOB", "ENT_TYPE", "NORM", "ENT_ID"], store_user_data=True
|
||||
)
|
||||
texts = ["Some text", "Lots of texts...", "..."]
|
||||
cats = {"A": 0.5}
|
||||
nlp = English()
|
||||
|
|
|
@ -5,7 +5,6 @@ from catalogue import RegistryError
|
|||
|
||||
|
||||
def test_get_architecture():
|
||||
|
||||
@registry.architectures("my_test_function")
|
||||
def create_model(nr_in, nr_out):
|
||||
return Linear(nr_in, nr_out)
|
||||
|
|
|
@ -143,7 +143,9 @@ def sample_vectors():
|
|||
|
||||
@pytest.fixture
|
||||
def nlp2(nlp, sample_vectors):
|
||||
Language.component("test_language_vector_modification_pipe", func=vector_modification_pipe)
|
||||
Language.component(
|
||||
"test_language_vector_modification_pipe", func=vector_modification_pipe
|
||||
)
|
||||
Language.component("test_language_userdata_pipe", func=userdata_pipe)
|
||||
Language.component("test_language_ner_pipe", func=ner_pipe)
|
||||
add_vecs_to_vocab(nlp.vocab, sample_vectors)
|
||||
|
|
|
@ -444,7 +444,9 @@ def test_score_spans():
|
|||
assert f"{key}_per_type" in scores
|
||||
|
||||
# Discard labels from the evaluation
|
||||
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True, labeled=False)
|
||||
scores = Scorer.score_spans(
|
||||
[eg], attr=key, getter=span_getter, allow_overlap=True, labeled=False
|
||||
)
|
||||
assert scores[f"{key}_p"] == 1.0
|
||||
assert scores[f"{key}_r"] == 1.0
|
||||
assert f"{key}_per_type" not in scores
|
||||
|
@ -467,4 +469,6 @@ def test_prf_score():
|
|||
assert (c.precision, c.recall, c.fscore) == approx((0.25, 0.5, 0.33333333))
|
||||
|
||||
a += b
|
||||
assert (a.precision, a.recall, a.fscore) == approx((c.precision, c.recall, c.fscore))
|
||||
assert (a.precision, a.recall, a.fscore) == approx(
|
||||
(c.precision, c.recall, c.fscore)
|
||||
)
|
||||
|
|
|
@ -278,7 +278,9 @@ def test_pretraining_training():
|
|||
filled = filled.interpolate()
|
||||
P = filled["pretraining"]
|
||||
nlp_base = init_nlp(filled)
|
||||
model_base = nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
model_base = (
|
||||
nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
)
|
||||
embed_base = None
|
||||
for node in model_base.walk():
|
||||
if node.name == "hashembed":
|
||||
|
@ -331,11 +333,12 @@ def write_sample_training(tmp_dir):
|
|||
|
||||
def write_vectors_model(tmp_dir):
|
||||
import numpy
|
||||
|
||||
vocab = Vocab()
|
||||
vector_data = {
|
||||
"dog": numpy.random.uniform(-1, 1, (300,)),
|
||||
"cat": numpy.random.uniform(-1, 1, (300,)),
|
||||
"orange": numpy.random.uniform(-1, 1, (300,))
|
||||
"orange": numpy.random.uniform(-1, 1, (300,)),
|
||||
}
|
||||
for word, vector in vector_data.items():
|
||||
vocab.set_vector(word, vector)
|
||||
|
|
|
@ -434,8 +434,14 @@ def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
|
|||
gold_doc = nlp.make_doc(text)
|
||||
spans = []
|
||||
prefix = "I flew to "
|
||||
spans.append(gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY"))
|
||||
spans.append(gold_doc.char_span(len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"))
|
||||
spans.append(
|
||||
gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY")
|
||||
)
|
||||
spans.append(
|
||||
gold_doc.char_span(
|
||||
len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"
|
||||
)
|
||||
)
|
||||
spans_key = "overlap_ents"
|
||||
gold_doc.spans[spans_key] = spans
|
||||
example = Example(doc, gold_doc)
|
||||
|
@ -443,7 +449,9 @@ def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
|
|||
assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)]
|
||||
|
||||
# Ensure that 'get_aligned_spans_y2x' has the aligned entities correct
|
||||
spans_y2x_no_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=False)
|
||||
spans_y2x_no_overlap = example.get_aligned_spans_y2x(
|
||||
spans_gold, allow_overlap=False
|
||||
)
|
||||
assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)]
|
||||
spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True)
|
||||
assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)]
|
||||
|
|
|
@ -12,6 +12,7 @@ from ..util import add_vecs_to_vocab, get_cosine, make_tempdir
|
|||
|
||||
OPS = get_current_ops()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def strings():
|
||||
return ["apple", "orange"]
|
||||
|
|
|
@ -66,7 +66,11 @@ def configure_minibatch_by_words(
|
|||
"""
|
||||
optionals = {"get_length": get_length} if get_length is not None else {}
|
||||
return partial(
|
||||
minibatch_by_words, size=size, tolerance=tolerance, discard_oversize=discard_oversize, **optionals
|
||||
minibatch_by_words,
|
||||
size=size,
|
||||
tolerance=tolerance,
|
||||
discard_oversize=discard_oversize,
|
||||
**optionals
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -70,14 +70,18 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
|
|||
nlp._link_components()
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
if T["max_epochs"] == -1:
|
||||
logger.debug("Due to streamed train corpus, using only first 100 examples for initialization. If necessary, provide all labels in [initialize]. More info: https://spacy.io/api/cli#init_labels")
|
||||
logger.debug(
|
||||
"Due to streamed train corpus, using only first 100 examples for initialization. If necessary, provide all labels in [initialize]. More info: https://spacy.io/api/cli#init_labels"
|
||||
)
|
||||
nlp.initialize(lambda: islice(train_corpus(nlp), 100), sgd=optimizer)
|
||||
else:
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
|
||||
logger.info(f"Initialized pipeline components: {nlp.pipe_names}")
|
||||
# Detect components with listeners that are not frozen consistently
|
||||
for name, proc in nlp.pipeline:
|
||||
for listener in getattr(proc, "listening_components", []): # e.g. tok2vec/transformer
|
||||
for listener in getattr(
|
||||
proc, "listening_components", []
|
||||
): # e.g. tok2vec/transformer
|
||||
# Don't warn about components not in the pipeline
|
||||
if listener not in nlp.pipe_names:
|
||||
continue
|
||||
|
|
|
@ -96,8 +96,7 @@ def train(
|
|||
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
||||
if annotating_components:
|
||||
stdout.write(
|
||||
msg.info(f"Set annotations on update for: {annotating_components}")
|
||||
+ "\n"
|
||||
msg.info(f"Set annotations on update for: {annotating_components}") + "\n"
|
||||
)
|
||||
stdout.write(msg.info(f"Initial learn rate: {optimizer.learn_rate}") + "\n")
|
||||
with nlp.select_pipes(disable=frozen_components):
|
||||
|
|
|
@ -57,13 +57,13 @@ if TYPE_CHECKING:
|
|||
from .vocab import Vocab # noqa: F401
|
||||
|
||||
|
||||
# fmt: off
|
||||
OOV_RANK = numpy.iinfo(numpy.uint64).max
|
||||
DEFAULT_OOV_PROB = -20
|
||||
LEXEME_NORM_LANGS = ["cs", "da", "de", "el", "en", "id", "lb", "mk", "pt", "ru", "sr", "ta", "th"]
|
||||
|
||||
# Default order of sections in the config.cfg. Not all sections needs to exist,
|
||||
# and additional sections are added at the end, in alphabetical order.
|
||||
# fmt: off
|
||||
CONFIG_SECTION_ORDER = ["paths", "variables", "system", "nlp", "components", "corpora", "training", "pretraining", "initialize"]
|
||||
# fmt: on
|
||||
|
||||
|
@ -649,8 +649,7 @@ def get_model_version_range(spacy_version: str) -> str:
|
|||
|
||||
|
||||
def get_model_lower_version(constraint: str) -> Optional[str]:
|
||||
"""From a version range like >=1.2.3,<1.3.0 return the lower pin.
|
||||
"""
|
||||
"""From a version range like >=1.2.3,<1.3.0 return the lower pin."""
|
||||
try:
|
||||
specset = SpecifierSet(constraint)
|
||||
for spec in specset:
|
||||
|
|
Loading…
Reference in New Issue
Block a user