mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
* Update conll_train for tagger, to use neural network tagger
This commit is contained in:
parent
c3f334cef1
commit
5f53ef1a43
181
bin/tagger/conll_train.py
Executable file
181
bin/tagger/conll_train.py
Executable file
|
@ -0,0 +1,181 @@
|
|||
#!/usr/bin/env python
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
from os import path
|
||||
import shutil
|
||||
import codecs
|
||||
import random
|
||||
import time
|
||||
import gzip
|
||||
|
||||
import plac
|
||||
import cProfile
|
||||
import pstats
|
||||
import numpy.random
|
||||
|
||||
from spacy.en import English
|
||||
from spacy.de import German
|
||||
|
||||
import spacy.util
|
||||
from spacy.syntax.util import Config
|
||||
|
||||
from spacy.scorer import Scorer
|
||||
from spacy.tagger import Tagger
|
||||
|
||||
|
||||
from spacy.tagger import P2_orth, P2_shape, P2_prefix, P2_suffix, P2_pos, P2_flags
|
||||
from spacy.tagger import P1_orth, P1_shape, P1_prefix, P1_suffix, P1_pos, P1_flags
|
||||
from spacy.tagger import W_orth, W_shape, W_prefix, W_suffix, W_pos, W_flags
|
||||
from spacy.tagger import N1_orth, N1_shape, N1_prefix, N1_suffix, N1_pos, N1_flags
|
||||
from spacy.tagger import N2_orth, N2_shape, N2_prefix, N2_suffix, N2_pos, N2_flags
|
||||
|
||||
|
||||
templates = {
|
||||
'de': [
|
||||
(W_orth,),
|
||||
(P1_orth, P1_pos),
|
||||
(P2_orth, P2_pos),
|
||||
(N1_orth,),
|
||||
(N2_orth,),
|
||||
|
||||
(W_suffix,),
|
||||
(W_prefix,),
|
||||
|
||||
(P1_pos,),
|
||||
(P2_pos,),
|
||||
(P1_pos, P2_pos),
|
||||
(P1_pos, W_orth),
|
||||
(P1_suffix,),
|
||||
(N1_suffix,),
|
||||
|
||||
(W_shape,),
|
||||
|
||||
(W_flags,),
|
||||
(N1_flags,),
|
||||
(N2_flags,),
|
||||
(P1_flags,),
|
||||
(P2_flags,)
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
def read_conll(file_):
|
||||
"""Read a standard CoNLL/MALT-style format"""
|
||||
sents = []
|
||||
for sent_str in file_.read().strip().split('\n\n'):
|
||||
words = []
|
||||
tags = []
|
||||
for i, line in enumerate(sent_str.split('\n')):
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
idx, word, pos_string = _parse_line(line)
|
||||
words.append(word)
|
||||
tags.append(pos_string)
|
||||
sents.append((words, tags))
|
||||
return sents
|
||||
|
||||
|
||||
def _parse_line(line):
|
||||
pieces = line.split()
|
||||
id_ = int(pieces[0].split('_')[-1])-1
|
||||
word = pieces[1]
|
||||
pos = pieces[4]
|
||||
return id_, word, pos
|
||||
|
||||
|
||||
def score_model(nlp, gold_tuples, verbose=False):
|
||||
scorer = Scorer()
|
||||
for words, gold_tags in gold_tuples:
|
||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||
nlp.tagger(tokens)
|
||||
for token, gold in zip(tokens, gold_tags):
|
||||
scorer.tags.tp += token.tag_ == gold
|
||||
scorer.tags.fp += token.tag_ != gold
|
||||
scorer.tags.fn += token.tag_ != gold
|
||||
return scorer.tags_acc
|
||||
|
||||
|
||||
def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
||||
gold_preproc=False, eta=0.005):
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
if path.exists(pos_model_dir):
|
||||
shutil.rmtree(pos_model_dir)
|
||||
os.mkdir(pos_model_dir)
|
||||
nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
|
||||
# Insert words into the vocab. Yes, confusing...
|
||||
for words, tags in train_sents:
|
||||
for word in words:
|
||||
_ = nlp.vocab[word]
|
||||
nlp.tagger = Tagger.blank(nlp.vocab, templates['de'], learn_rate=eta)
|
||||
print(nlp.tagger.model.widths)
|
||||
print("Itn.\tTrain\tCheck\tDev")
|
||||
nr_train = len(train_sents)
|
||||
random.shuffle(train_sents)
|
||||
heldout_sents = train_sents[:int(nr_train * 0.1)]
|
||||
train_sents = train_sents[len(heldout_sents):]
|
||||
assert len(heldout_sents) < len(train_sents)
|
||||
prev_score = 0.0
|
||||
variance = 0.001
|
||||
last_good_learn_rate = nlp.tagger.model.eta
|
||||
for itn in range(n_iter):
|
||||
random.shuffle(train_sents)
|
||||
acc = 0
|
||||
total = 0
|
||||
for words, gold_tags in train_sents:
|
||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||
acc += nlp.tagger.train(tokens, gold_tags)
|
||||
total += len(tokens)
|
||||
dev_score = score_model(nlp, heldout_sents)
|
||||
eval_score = score_model(nlp, dev_sents)
|
||||
if dev_score >= prev_score:
|
||||
nlp.tagger.model.keep_update()
|
||||
prev_score = dev_score
|
||||
variance = 0.001
|
||||
last_good_learn_rate = nlp.tagger.model.eta
|
||||
nlp.tagger.model.eta *= 1.05
|
||||
print('%d:\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
||||
else:
|
||||
nlp.tagger.model.backtrack()
|
||||
new_eta = numpy.random.normal(loc=last_good_learn_rate, scale=variance)
|
||||
if new_eta >= 0.00001:
|
||||
nlp.tagger.model.eta = new_eta
|
||||
else:
|
||||
nlp.tagger.model.eta = 0.00001
|
||||
print('X:\t%.3f\t%.3f\t%.3f\t%.4f' % (acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
||||
variance *= 1.1
|
||||
prev_score *= 0.9999
|
||||
nlp.end_training(data_dir=model_dir)
|
||||
return nlp
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
train_loc=("Location of training file or directory"),
|
||||
dev_loc=("Location of development file or directory"),
|
||||
model_dir=("Location of output model directory",),
|
||||
eta=("Learning rate for Adagrad optimizer", "option", "e", float),
|
||||
n_iter=("Number of training iterations", "option", "i", int),
|
||||
)
|
||||
def main(lang_id, train_loc, dev_loc, model_dir, n_iter=5, eta=0.005):
|
||||
if lang_id == 'en':
|
||||
Language = English
|
||||
elif lang_id == 'de':
|
||||
Language = German
|
||||
elif lang_id == 'fi':
|
||||
Language = Finnish
|
||||
elif lang_id == 'it':
|
||||
Language = Italian
|
||||
with codecs.open(train_loc, 'r', 'utf8') as file_:
|
||||
train_sents = read_conll(file_)
|
||||
dev_sents = read_conll(codecs.open(dev_loc, 'r', 'utf8'))
|
||||
nlp = train(Language, train_sents, dev_sents, model_dir, n_iter=n_iter, eta=eta)
|
||||
#nlp = Language(data_dir=model_dir)
|
||||
scorer = score_model(nlp, dev_sents)
|
||||
print('TOK', 100-scorer.token_acc)
|
||||
print('POS', scorer.tags_acc)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user