This commit is contained in:
Peter Baumgartner 2022-08-31 14:00:43 -04:00
parent 6723d76f24
commit 6007404682

View File

@ -16,6 +16,7 @@ from ..schemas import ConfigSchemaTraining
from ..pipeline._parser_internals import nonproj
from ..pipeline._parser_internals.nonproj import DELIMITER
from ..pipeline import Morphologizer, SpanCategorizer
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
from ..morphology import Morphology
from ..language import Language
from ..util import registry, resolve_dot_names
@ -670,6 +671,41 @@ def debug_data(
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
)
if "trainable_lemmatizer" in factory_names:
msg.divider("Trainable Lemmatizer")
# NOTE: label_list is the string version of the trees
label_list: Set[str] = gold_train_data["lemmatizer_trees"]
# NOTE: label_list_full is the set of strigified trees from
# iterating through all trees after all lemmas have been added
label_list_full: Set[str] = gold_train_data["lemmatizer_trees_full"]
# NOTE: model_labels is the tree IDs from iterating through the tree_id
# values in the component.
model_labels = _get_labels_from_trainable_lemmatizer(nlp)
# from IPython import embed
# embed()
msg.info(
f"{len(label_list)} label(s) in train data (created from trees.add and trees.tree_to_str)"
)
msg.info(
f"{len(label_list_full)} label(s) in train data (from iterating through tree_id)"
)
msg.info(
f"{len(model_labels)} label(s) in component (from iterating through tree_id on component.trees"
)
labels = set(label_list)
missing_labels = model_labels - labels
if missing_labels:
msg.warn(
f"{len(missing_labels)} label(s) in model (component.tree)"
" and not present in the train data (trees.add and trees.tree_to_str)."
)
msg.divider("Summary")
good_counts = msg.counts[MESSAGES.GOOD]
warn_counts = msg.counts[MESSAGES.WARN]
@ -731,7 +767,11 @@ def _compile_gold(
"n_cats_multilabel": 0,
"n_cats_bad_values": 0,
"texts": set(),
"lemmatizer_trees": set(),
"lemmatizer_trees_full": set(),
"lemmatizer_total": 0,
}
trees = EditTrees(nlp.vocab.strings)
for eg in examples:
gold = eg.reference
doc = eg.predicted
@ -861,6 +901,20 @@ def _compile_gold(
data["n_nonproj"] += 1
if nonproj.contains_cycle(aligned_heads):
data["n_cycles"] += 1
if "trainable_lemmatizer" in factory_names:
# NOTE: From EditTreeLemmatizer._labels_from_data
for token in eg.reference:
if token.lemma != 0:
tree_id = trees.add(token.text, token.lemma_)
tree_str = trees.tree_to_str(tree_id)
data["lemmatizer_trees"].add(tree_str)
if "trainable_lemmatizer" in factory_names:
# After the edittree is built, let's try and capture all the
# string trees in that structure
all_trees = set()
for tree_id in range(len(trees)):
all_trees.add(trees.tree_to_str(tree_id))
data["lemmatizer_trees_full"] = all_trees
return data
@ -954,6 +1008,24 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
return labels
def _get_labels_from_trainable_lemmatizer(nlp: Language) -> Set[str]:
pipe_names = [
pipe_name
for pipe_name in nlp.pipe_names
if nlp.get_pipe_meta(pipe_name).factory == "trainable_lemmatizer"
]
labels: Set[str] = set()
for pipe_name in pipe_names:
pipe = nlp.get_pipe(pipe_name)
for tree_id in range(len(pipe.trees)):
labels.add(pipe.trees.tree_to_str(tree_id))
print("Component Len", len(pipe.trees))
# from IPython import embed
# embed()
return labels
def _gmean(l: List) -> float:
"""Compute geometric mean of a list"""
return math.exp(math.fsum(math.log(i) for i in l) / len(l))