mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-30 19:24:07 +03:00
WIP
This commit is contained in:
parent
6723d76f24
commit
6007404682
|
@ -16,6 +16,7 @@ from ..schemas import ConfigSchemaTraining
|
|||
from ..pipeline._parser_internals import nonproj
|
||||
from ..pipeline._parser_internals.nonproj import DELIMITER
|
||||
from ..pipeline import Morphologizer, SpanCategorizer
|
||||
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
|
||||
from ..morphology import Morphology
|
||||
from ..language import Language
|
||||
from ..util import registry, resolve_dot_names
|
||||
|
@ -670,6 +671,41 @@ def debug_data(
|
|||
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
|
||||
)
|
||||
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
msg.divider("Trainable Lemmatizer")
|
||||
# NOTE: label_list is the string version of the trees
|
||||
label_list: Set[str] = gold_train_data["lemmatizer_trees"]
|
||||
|
||||
# NOTE: label_list_full is the set of strigified trees from
|
||||
# iterating through all trees after all lemmas have been added
|
||||
label_list_full: Set[str] = gold_train_data["lemmatizer_trees_full"]
|
||||
|
||||
# NOTE: model_labels is the tree IDs from iterating through the tree_id
|
||||
# values in the component.
|
||||
model_labels = _get_labels_from_trainable_lemmatizer(nlp)
|
||||
|
||||
# from IPython import embed
|
||||
|
||||
# embed()
|
||||
msg.info(
|
||||
f"{len(label_list)} label(s) in train data (created from trees.add and trees.tree_to_str)"
|
||||
)
|
||||
msg.info(
|
||||
f"{len(label_list_full)} label(s) in train data (from iterating through tree_id)"
|
||||
)
|
||||
msg.info(
|
||||
f"{len(model_labels)} label(s) in component (from iterating through tree_id on component.trees"
|
||||
)
|
||||
|
||||
labels = set(label_list)
|
||||
missing_labels = model_labels - labels
|
||||
|
||||
if missing_labels:
|
||||
msg.warn(
|
||||
f"{len(missing_labels)} label(s) in model (component.tree)"
|
||||
" and not present in the train data (trees.add and trees.tree_to_str)."
|
||||
)
|
||||
|
||||
msg.divider("Summary")
|
||||
good_counts = msg.counts[MESSAGES.GOOD]
|
||||
warn_counts = msg.counts[MESSAGES.WARN]
|
||||
|
@ -731,7 +767,11 @@ def _compile_gold(
|
|||
"n_cats_multilabel": 0,
|
||||
"n_cats_bad_values": 0,
|
||||
"texts": set(),
|
||||
"lemmatizer_trees": set(),
|
||||
"lemmatizer_trees_full": set(),
|
||||
"lemmatizer_total": 0,
|
||||
}
|
||||
trees = EditTrees(nlp.vocab.strings)
|
||||
for eg in examples:
|
||||
gold = eg.reference
|
||||
doc = eg.predicted
|
||||
|
@ -861,6 +901,20 @@ def _compile_gold(
|
|||
data["n_nonproj"] += 1
|
||||
if nonproj.contains_cycle(aligned_heads):
|
||||
data["n_cycles"] += 1
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
# NOTE: From EditTreeLemmatizer._labels_from_data
|
||||
for token in eg.reference:
|
||||
if token.lemma != 0:
|
||||
tree_id = trees.add(token.text, token.lemma_)
|
||||
tree_str = trees.tree_to_str(tree_id)
|
||||
data["lemmatizer_trees"].add(tree_str)
|
||||
if "trainable_lemmatizer" in factory_names:
|
||||
# After the edittree is built, let's try and capture all the
|
||||
# string trees in that structure
|
||||
all_trees = set()
|
||||
for tree_id in range(len(trees)):
|
||||
all_trees.add(trees.tree_to_str(tree_id))
|
||||
data["lemmatizer_trees_full"] = all_trees
|
||||
return data
|
||||
|
||||
|
||||
|
@ -954,6 +1008,24 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
|
|||
return labels
|
||||
|
||||
|
||||
def _get_labels_from_trainable_lemmatizer(nlp: Language) -> Set[str]:
|
||||
pipe_names = [
|
||||
pipe_name
|
||||
for pipe_name in nlp.pipe_names
|
||||
if nlp.get_pipe_meta(pipe_name).factory == "trainable_lemmatizer"
|
||||
]
|
||||
labels: Set[str] = set()
|
||||
for pipe_name in pipe_names:
|
||||
pipe = nlp.get_pipe(pipe_name)
|
||||
for tree_id in range(len(pipe.trees)):
|
||||
labels.add(pipe.trees.tree_to_str(tree_id))
|
||||
print("Component Len", len(pipe.trees))
|
||||
# from IPython import embed
|
||||
|
||||
# embed()
|
||||
return labels
|
||||
|
||||
|
||||
def _gmean(l: List) -> float:
|
||||
"""Compute geometric mean of a list"""
|
||||
return math.exp(math.fsum(math.log(i) for i in l) / len(l))
|
||||
|
|
Loading…
Reference in New Issue
Block a user