mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
bulk entity writing and experiment with regex wikidata reader to speed up processing
This commit is contained in:
parent
653b7d9c87
commit
60b54ae8ce
|
@ -49,7 +49,8 @@ def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False):
|
|||
print()
|
||||
print("1. _read_wikidata_entities", datetime.datetime.now())
|
||||
print()
|
||||
title_to_id = _read_wikidata_entities(limit=100000)
|
||||
# title_to_id = _read_wikidata_entities_regex(limit=1000)
|
||||
title_to_id = _read_wikidata_entities_json(limit=1000)
|
||||
|
||||
title_list = list(title_to_id.keys())
|
||||
entity_list = [title_to_id[x] for x in title_list]
|
||||
|
@ -62,19 +63,13 @@ def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False):
|
|||
print()
|
||||
print("3. _add_entities", datetime.datetime.now())
|
||||
print()
|
||||
_add_entities(kb,
|
||||
entities=entity_list,
|
||||
probs=entity_frequencies,
|
||||
to_print=to_print)
|
||||
kb.set_entities(entity_list=entity_list, prob_list=entity_frequencies, vector_list=None, feature_list=None)
|
||||
# _add_entities(kb, entities=entity_list, probs=entity_frequencies, to_print=to_print)
|
||||
|
||||
print()
|
||||
print("4. _add_aliases", datetime.datetime.now())
|
||||
print()
|
||||
_add_aliases(kb,
|
||||
title_to_id=title_to_id,
|
||||
max_entities_per_alias=max_entities_per_alias,
|
||||
min_occ=min_occ,
|
||||
to_print=to_print)
|
||||
_add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ,)
|
||||
|
||||
# TODO: read wikipedia texts for entity context
|
||||
# _read_wikipedia()
|
||||
|
@ -83,6 +78,8 @@ def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False):
|
|||
print()
|
||||
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
|
||||
|
||||
print("done with kb", datetime.datetime.now())
|
||||
|
||||
return kb
|
||||
|
||||
|
||||
|
@ -131,8 +128,7 @@ def _write_entity_counts(to_print=False):
|
|||
print("Total count:", total_count)
|
||||
|
||||
|
||||
def _add_entities(kb, entities, probs, to_print=False):
|
||||
# TODO: this should be a bulk method
|
||||
def _add_entities_depr(kb, entities, probs, to_print=False):
|
||||
for entity, prob in zip(entities, probs):
|
||||
kb.add_entity(entity=entity, prob=prob)
|
||||
|
||||
|
@ -193,7 +189,7 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, to_print=Fals
|
|||
print("added", kb.get_size_aliases(), "aliases:", kb.get_alias_strings())
|
||||
|
||||
|
||||
def _read_wikidata_entities(limit=None, to_print=False):
|
||||
def _read_wikidata_entities_json(limit=None, to_print=False):
|
||||
""" Read the JSON wiki data and parse out the entities. Takes about 7u30 to parse 55M lines. """
|
||||
|
||||
languages = {'en', 'de'}
|
||||
|
@ -259,6 +255,7 @@ def _read_wikidata_entities(limit=None, to_print=False):
|
|||
if to_print:
|
||||
print(site_filter, ":", site)
|
||||
title_to_id[site] = unique_id
|
||||
# print(site, "for", unique_id)
|
||||
|
||||
if parse_labels:
|
||||
labels = obj["labels"]
|
||||
|
@ -296,6 +293,56 @@ def _read_wikidata_entities(limit=None, to_print=False):
|
|||
return title_to_id
|
||||
|
||||
|
||||
def _read_wikidata_entities_regex_depr(limit=None, to_print=False):
|
||||
""" Read the JSON wiki data and parse out the entities with regular expressions. Takes XXX to parse 55M lines. """
|
||||
|
||||
regex_p31 = re.compile(r'mainsnak[^}]*\"P31\"[^}]*}', re.UNICODE)
|
||||
regex_id = re.compile(r'\"id\":"Q[0-9]*"', re.UNICODE)
|
||||
regex_enwiki = re.compile(r'\"enwiki\":[^}]*}', re.UNICODE)
|
||||
regex_title = re.compile(r'\"title\":"[^"]*"', re.UNICODE)
|
||||
|
||||
title_to_id = dict()
|
||||
|
||||
with bz2.open(WIKIDATA_JSON, mode='rb') as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
while line and (not limit or cnt < limit):
|
||||
if cnt % 100000 == 0:
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of WikiData dump")
|
||||
clean_line = line.strip()
|
||||
if clean_line.endswith(b","):
|
||||
clean_line = clean_line[:-1]
|
||||
if len(clean_line) > 1:
|
||||
clean_line = line.strip().decode("utf-8")
|
||||
keep = False
|
||||
|
||||
p31_matches = regex_p31.findall(clean_line)
|
||||
if p31_matches:
|
||||
for p31_match in p31_matches:
|
||||
id_matches = regex_id.findall(p31_match)
|
||||
for id_match in id_matches:
|
||||
id_match = id_match[6:][:-1]
|
||||
if id_match == "Q5" or id_match == "Q15632617":
|
||||
keep = True
|
||||
|
||||
if keep:
|
||||
id_match = regex_id.search(clean_line).group(0)
|
||||
id_match = id_match[6:][:-1]
|
||||
|
||||
enwiki_matches = regex_enwiki.findall(clean_line)
|
||||
if enwiki_matches:
|
||||
for enwiki_match in enwiki_matches:
|
||||
title_match = regex_title.search(enwiki_match).group(0)
|
||||
title = title_match[9:][:-1]
|
||||
title_to_id[title] = id_match
|
||||
# print(title, "for", id_match)
|
||||
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
|
||||
return title_to_id
|
||||
|
||||
|
||||
def _read_wikipedia_prior_probs():
|
||||
""" Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities
|
||||
The full file takes about 2h to parse 1100M lines (update printed every 5M lines)
|
||||
|
@ -499,50 +546,65 @@ def capitalize_first(text):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("START", datetime.datetime.now())
|
||||
|
||||
to_create_prior_probs = False
|
||||
to_create_entity_counts = False
|
||||
to_create_kb = True
|
||||
to_read_kb = False
|
||||
to_read_kb = True
|
||||
|
||||
# STEP 1 : create prior probabilities from WP
|
||||
# run only once !
|
||||
if to_create_prior_probs:
|
||||
print("STEP 1: to_create_prior_probs", datetime.datetime.now())
|
||||
_read_wikipedia_prior_probs()
|
||||
print()
|
||||
|
||||
# STEP 2 : deduce entity frequencies from WP
|
||||
# run only once !
|
||||
if to_create_entity_counts:
|
||||
print("STEP 2: to_create_entity_counts", datetime.datetime.now())
|
||||
_write_entity_counts()
|
||||
print()
|
||||
|
||||
if to_create_kb:
|
||||
# STEP 3 : create KB
|
||||
print("STEP 3: to_create_kb", datetime.datetime.now())
|
||||
my_nlp = spacy.load('en_core_web_sm')
|
||||
my_vocab = my_nlp.vocab
|
||||
my_kb = create_kb(my_vocab, max_entities_per_alias=10, min_occ=5, to_print=False)
|
||||
print("kb entities:", my_kb.get_size_entities())
|
||||
print("kb aliases:", my_kb.get_size_aliases())
|
||||
print()
|
||||
|
||||
# STEP 4 : write KB to file
|
||||
print("STEP 4: write KB", datetime.datetime.now())
|
||||
my_kb.dump(KB_FILE)
|
||||
my_vocab.to_disk(VOCAB_DIR)
|
||||
print()
|
||||
|
||||
if to_read_kb:
|
||||
# STEP 5 : read KB back in from file
|
||||
print("STEP 5: to_read_kb", datetime.datetime.now())
|
||||
my_vocab = Vocab()
|
||||
my_vocab.from_disk(VOCAB_DIR)
|
||||
my_kb = KnowledgeBase(vocab=my_vocab)
|
||||
my_kb.load_bulk(KB_FILE)
|
||||
print("kb entities:", my_kb.get_size_entities())
|
||||
print("kb aliases:", my_kb.get_size_aliases())
|
||||
print()
|
||||
|
||||
# test KB
|
||||
candidates = my_kb.get_candidates("Bush")
|
||||
for c in candidates:
|
||||
print()
|
||||
print("entity:", c.entity_)
|
||||
print("entity freq:", c.entity_freq)
|
||||
print("alias:", c.alias_)
|
||||
print("prior prob:", c.prior_prob)
|
||||
print()
|
||||
|
||||
# STEP 6: add KB to NLP pipeline
|
||||
# print("STEP 6: use KB", datetime.datetime.now())
|
||||
# add_el(my_kb, nlp)
|
||||
|
||||
print("STOP", datetime.datetime.now())
|
||||
|
|
|
@ -131,6 +131,8 @@ cdef class KnowledgeBase:
|
|||
self._aliases_table.push_back(alias)
|
||||
|
||||
cpdef load_bulk(self, loc)
|
||||
cpdef set_entities(self, entity_list, prob_list, vector_list, feature_list)
|
||||
cpdef set_aliases(self, alias_list, entities_list, probabilities_list)
|
||||
|
||||
|
||||
cdef class Writer:
|
||||
|
|
56
spacy/kb.pyx
56
spacy/kb.pyx
|
@ -111,6 +111,62 @@ cdef class KnowledgeBase:
|
|||
|
||||
return entity_hash
|
||||
|
||||
cpdef set_entities(self, entity_list, prob_list, vector_list, feature_list):
|
||||
nr_entities = len(entity_list)
|
||||
self._entry_index = PreshMap(nr_entities+1)
|
||||
self._entries = entry_vec(nr_entities+1)
|
||||
|
||||
i = 0
|
||||
cdef EntryC entry
|
||||
cdef int32_t dummy_value = 342
|
||||
while i < nr_entities:
|
||||
# TODO features and vectors
|
||||
entity_hash = self.vocab.strings.add(entity_list[i])
|
||||
entry.entity_hash = entity_hash
|
||||
entry.prob = prob_list[i]
|
||||
entry.vector_rows = &dummy_value
|
||||
entry.feats_row = dummy_value
|
||||
|
||||
self._entries[i+1] = entry
|
||||
self._entry_index[entity_hash] = i+1
|
||||
|
||||
i += 1
|
||||
|
||||
# TODO: this method is untested
|
||||
cpdef set_aliases(self, alias_list, entities_list, probabilities_list):
|
||||
nr_aliases = len(alias_list)
|
||||
self._alias_index = PreshMap(nr_aliases+1)
|
||||
self._aliases_table = alias_vec(nr_aliases+1)
|
||||
|
||||
i = 0
|
||||
cdef AliasC alias
|
||||
cdef int32_t dummy_value = 342
|
||||
while i <= nr_aliases:
|
||||
alias_hash = self.vocab.strings.add(alias_list[i])
|
||||
entities = entities_list[i]
|
||||
probabilities = probabilities_list[i]
|
||||
|
||||
nr_candidates = len(entities)
|
||||
entry_indices = vector[int64_t](nr_candidates)
|
||||
probs = vector[float](nr_candidates)
|
||||
|
||||
for j in range(0, nr_candidates):
|
||||
entity = entities[j]
|
||||
entity_hash = self.vocab.strings[entity]
|
||||
if not entity_hash in self._entry_index:
|
||||
raise ValueError(Errors.E134.format(alias=alias, entity=entity))
|
||||
|
||||
entry_index = <int64_t>self._entry_index.get(entity_hash)
|
||||
entry_indices[j] = entry_index
|
||||
|
||||
alias.entry_indices = entry_indices
|
||||
alias.probs = probs
|
||||
|
||||
self._aliases_table[i] = alias
|
||||
self._alias_index[alias_hash] = i
|
||||
|
||||
i += 1
|
||||
|
||||
def add_alias(self, unicode alias, entities, probabilities):
|
||||
"""
|
||||
For a given alias, add its potential entities and prior probabilies to the KB.
|
||||
|
|
Loading…
Reference in New Issue
Block a user