mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Fiddle with sizings for parser
This commit is contained in:
parent
e6d71e1778
commit
613ba79e2e
|
@ -41,23 +41,23 @@ class TokenVectorEncoder(object):
|
|||
Softmax(self.vocab.morphology.n_tags,
|
||||
token_vector_width))
|
||||
|
||||
def build_model(self, lang, width, embed_size=1000, **cfg):
|
||||
def build_model(self, lang, width, embed_size=5000, **cfg):
|
||||
cols = self.doc2feats.cols
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
lower = get_col(cols.index(LOWER)) >> (HashEmbed(width, embed_size*3)
|
||||
+HashEmbed(width, embed_size*3))
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size)
|
||||
lower = get_col(cols.index(LOWER)) >> (HashEmbed(width, embed_size)
|
||||
+HashEmbed(width, embed_size))
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
|
||||
|
||||
tok2vec = (
|
||||
flatten
|
||||
>> (lower | prefix | suffix | shape )
|
||||
>> BN(Maxout(width, pieces=3))
|
||||
>> Residual(ExtractWindow(nW=1) >> BN(Maxout(width, width*3)))
|
||||
>> Residual(ExtractWindow(nW=1) >> BN(Maxout(width, width*3)))
|
||||
>> Residual(ExtractWindow(nW=1) >> BN(Maxout(width, width*3)))
|
||||
>> Residual(ExtractWindow(nW=1) >> BN(Maxout(width, width*3)))
|
||||
>> Maxout(width, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
return tok2vec
|
||||
|
||||
|
@ -80,7 +80,9 @@ class TokenVectorEncoder(object):
|
|||
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
|
||||
scores, _ = self.tagger.begin_update(feats, drop=drop)
|
||||
idx = 0
|
||||
guesses = scores.argmax(axis=1).get()
|
||||
guesses = scores.argmax(axis=1)
|
||||
if not isinstance(guesses, numpy.ndarray):
|
||||
guesses = guesses.get()
|
||||
for i, doc in enumerate(docs):
|
||||
tag_ids = guesses[idx:idx+len(doc)]
|
||||
for j, tag_id in enumerate(tag_ids):
|
||||
|
|
Loading…
Reference in New Issue
Block a user