Update train_new_entity_type example to use disable_pipes

This commit is contained in:
ines 2017-10-25 14:56:53 +02:00
parent 6a00de4f77
commit 615c315d70

View File

@ -21,103 +21,121 @@ After training your model, you can save it to a directory. We recommend
wrapping models as Python packages, for ease of deployment.
For more details, see the documentation:
* Training the Named Entity Recognizer: https://spacy.io/docs/usage/train-ner
* Saving and loading models: https://spacy.io/docs/usage/saving-loading
* Training: https://alpha.spacy.io/usage/training
* NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
Developed for: spaCy 1.7.6
Last updated for: spaCy 2.0.0a13
Developed for: spaCy 2.0.0a18
Last updated for: spaCy 2.0.0a18
"""
from __future__ import unicode_literals, print_function
import random
from pathlib import Path
import random
import spacy
from spacy.gold import GoldParse, minibatch
from spacy.pipeline import NeuralEntityRecognizer
from spacy.pipeline import TokenVectorEncoder
# new entity label
LABEL = 'ANIMAL'
# training data
TRAIN_DATA = [
("Horses are too tall and they pretend to care about your feelings",
[(0, 6, 'ANIMAL')]),
("Do they bite?", []),
("horses are too tall and they pretend to care about your feelings",
[(0, 6, 'ANIMAL')]),
("horses pretend to care about your feelings", [(0, 6, 'ANIMAL')]),
("they pretend to care about your feelings, those horses",
[(48, 54, 'ANIMAL')]),
("horses?", [(0, 6, 'ANIMAL')])
]
def main(model=None, new_model_name='animal', output_dir=None):
"""Set up the pipeline and entity recognizer, and train the new entity.
model (unicode): Model name to start off with. If None, a blank English
Language class is created.
new_model_name (unicode): Name of new model to create. Will be added to the
model meta and prefixed by the language code, e.g. 'en_animal'.
output_dir (unicode / Path): Optional output directory. If None, no model
will be saved.
"""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# Add entity recognizer to model if it's not in the pipeline
if 'ner' not in nlp.pipe_names:
nlp.add_pipe(NeuralEntityRecognizer(nlp.vocab))
ner = nlp.get_pipe('ner') # get entity recognizer
ner.add_label(LABEL) # add new entity label to entity recognizer
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes) as disabled: # only train NER
random.seed(0)
optimizer = nlp.begin_training(lambda: [])
for itn in range(50):
losses = {}
gold_parses = get_gold_parses(nlp.make_doc, TRAIN_DATA)
for batch in minibatch(gold_parses, size=3):
docs, golds = zip(*batch)
nlp.update(docs, golds, losses=losses, sgd=optimizer,
drop=0.35)
print(losses)
print(nlp.pipeline)
print(disabled.original_pipeline)
# test the trained model
test_text = 'Do you like horses?'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
print(ent.label_, ent.text)
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
for ent in doc2.ents:
print(ent.label_, ent.text)
def get_gold_parses(tokenizer, train_data):
'''Shuffle and create GoldParse objects'''
"""Shuffle and create GoldParse objects.
tokenizer (Tokenizer): Tokenizer to processs the raw text.
train_data (list): The training data.
YIELDS (tuple): (doc, gold) tuples.
"""
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = tokenizer(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
yield doc, gold
def train_ner(nlp, train_data, output_dir):
random.seed(0)
optimizer = nlp.begin_training(lambda: [])
nlp.meta['name'] = 'en_ent_animal'
for itn in range(50):
losses = {}
for batch in minibatch(get_gold_parses(nlp.make_doc, train_data), size=3):
docs, golds = zip(*batch)
nlp.update(docs, golds, losses=losses, sgd=optimizer, drop=0.35)
print(losses)
if not output_dir:
return
elif not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
def main(model_name, output_directory=None):
print("Creating initial model", model_name)
nlp = spacy.blank(model_name)
if output_directory is not None:
output_directory = Path(output_directory)
train_data = [
(
"Horses are too tall and they pretend to care about your feelings",
[(0, 6, 'ANIMAL')],
),
(
"Do they bite?",
[],
),
(
"horses are too tall and they pretend to care about your feelings",
[(0, 6, 'ANIMAL')]
),
(
"horses pretend to care about your feelings",
[(0, 6, 'ANIMAL')]
),
(
"they pretend to care about your feelings, those horses",
[(48, 54, 'ANIMAL')]
),
(
"horses?",
[(0, 6, 'ANIMAL')]
)
]
nlp.add_pipe(TokenVectorEncoder(nlp.vocab))
ner = NeuralEntityRecognizer(nlp.vocab)
ner.add_label('ANIMAL')
nlp.add_pipe(ner)
train_ner(nlp, train_data, output_directory)
# Test that the entity is recognized
text = 'Do you like horses?'
print("Ents in 'Do you like horses?':")
doc = nlp(text)
for ent in doc.ents:
print(ent.label_, ent.text)
if output_directory:
print("Loading from", output_directory)
nlp2 = spacy.load(output_directory)
doc2 = nlp2('Do you like horses?')
for ent in doc2.ents:
print(ent.label_, ent.text)
if __name__ == '__main__':
import plac