mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
* Add parser training script
This commit is contained in:
parent
c918de68fa
commit
61904e590f
167
bin/parser/train.py
Executable file
167
bin/parser/train.py
Executable file
|
@ -0,0 +1,167 @@
|
|||
#!/usr/bin/env python
|
||||
from __future__ import division
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
from os import path
|
||||
import shutil
|
||||
import codecs
|
||||
import random
|
||||
import time
|
||||
import gzip
|
||||
|
||||
import plac
|
||||
import cProfile
|
||||
import pstats
|
||||
|
||||
import spacy.util
|
||||
from spacy.en import English
|
||||
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
|
||||
|
||||
from spacy.syntax.parser import GreedyParser
|
||||
from spacy.syntax.util import Config
|
||||
|
||||
|
||||
def read_tokenized_gold(file_):
|
||||
"""Read a standard CoNLL/MALT-style format"""
|
||||
sents = []
|
||||
for sent_str in file_.read().strip().split('\n\n'):
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
for i, line in enumerate(sent_str.split('\n')):
|
||||
word, pos_string, head_idx, label = _parse_line(line)
|
||||
words.append(word)
|
||||
if head_idx == -1:
|
||||
head_idx = i
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
sents.append((words, heads, labels, tags))
|
||||
return sents
|
||||
|
||||
|
||||
def read_docparse_gold(file_):
|
||||
sents = []
|
||||
for sent_str in file_.read().strip().split('\n\n'):
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
lines = sent_str.strip().split('\n')
|
||||
raw_text = lines[0]
|
||||
tok_text = lines[1]
|
||||
for i, line in enumerate(lines[2:]):
|
||||
word, pos_string, head_idx, label = _parse_line(line)
|
||||
words.append(word)
|
||||
if head_idx == -1:
|
||||
head_idx = i
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
words = tok_text.replace('<SEP>', ' ').replace('<SENT>', ' ').split(' ')
|
||||
sents.append((words, heads, labels, tags))
|
||||
return sents
|
||||
|
||||
def _parse_line(line):
|
||||
pieces = line.split()
|
||||
if len(pieces) == 4:
|
||||
return pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
|
||||
else:
|
||||
word = pieces[1]
|
||||
pos = pieces[3]
|
||||
head_idx = int(pieces[6]) - 1
|
||||
label = pieces[7]
|
||||
return word, pos, head_idx, label
|
||||
|
||||
def get_labels(sents):
|
||||
left_labels = set()
|
||||
right_labels = set()
|
||||
for _, heads, labels, _ in sents:
|
||||
for child, (head, label) in enumerate(zip(heads, labels)):
|
||||
if head > child:
|
||||
left_labels.add(label)
|
||||
elif head < child:
|
||||
right_labels.add(label)
|
||||
return list(sorted(left_labels)), list(sorted(right_labels))
|
||||
|
||||
|
||||
def train(Language, sents, model_dir, n_iter=15, feat_set=u'basic', seed=0):
|
||||
dep_model_dir = path.join(model_dir, 'deps')
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
if path.exists(dep_model_dir):
|
||||
shutil.rmtree(dep_model_dir)
|
||||
if path.exists(pos_model_dir):
|
||||
shutil.rmtree(pos_model_dir)
|
||||
os.mkdir(dep_model_dir)
|
||||
os.mkdir(pos_model_dir)
|
||||
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES,
|
||||
pos_model_dir)
|
||||
|
||||
left_labels, right_labels = get_labels(sents)
|
||||
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
|
||||
left_labels=left_labels, right_labels=right_labels)
|
||||
|
||||
nlp = Language()
|
||||
|
||||
for itn in range(n_iter):
|
||||
heads_corr = 0
|
||||
pos_corr = 0
|
||||
n_tokens = 0
|
||||
for words, heads, labels, tags in sents:
|
||||
tags = [nlp.tagger.tag_names.index(tag) for tag in tags]
|
||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||
nlp.tagger(tokens)
|
||||
heads_corr += nlp.parser.train_sent(tokens, heads, labels)
|
||||
pos_corr += nlp.tagger.train(tokens, tags)
|
||||
n_tokens += len(tokens)
|
||||
acc = float(heads_corr) / n_tokens
|
||||
pos_acc = float(pos_corr) / n_tokens
|
||||
print '%d: ' % itn, '%.3f' % acc, '%.3f' % pos_acc
|
||||
random.shuffle(sents)
|
||||
nlp.parser.model.end_training()
|
||||
nlp.tagger.model.end_training()
|
||||
#nlp.parser.model.dump(path.join(dep_model_dir, 'model'), freq_thresh=0)
|
||||
return acc
|
||||
|
||||
|
||||
def evaluate(Language, dev_loc, model_dir):
|
||||
nlp = Language()
|
||||
n_corr = 0
|
||||
total = 0
|
||||
with codecs.open(dev_loc, 'r', 'utf8') as file_:
|
||||
sents = read_tokenized_gold(file_)
|
||||
for words, heads, labels, tags in sents:
|
||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||
nlp.tagger(tokens)
|
||||
nlp.parser.parse(tokens)
|
||||
for i, token in enumerate(tokens):
|
||||
#print i, token.string, i + token.head, heads[i], labels[i]
|
||||
if labels[i] == 'P' or labels[i] == 'punct':
|
||||
continue
|
||||
n_corr += token.head.i == heads[i]
|
||||
total += 1
|
||||
return float(n_corr) / total
|
||||
|
||||
|
||||
PROFILE = False
|
||||
|
||||
|
||||
def main(train_loc, dev_loc, model_dir):
|
||||
with codecs.open(train_loc, 'r', 'utf8') as file_:
|
||||
train_sents = read_tokenized_gold(file_)
|
||||
if PROFILE:
|
||||
import cProfile
|
||||
import pstats
|
||||
cmd = "train(EN, train_sents, tag_names, model_dir, n_iter=2)"
|
||||
cProfile.runctx(cmd, globals(), locals(), "Profile.prof")
|
||||
s = pstats.Stats("Profile.prof")
|
||||
s.strip_dirs().sort_stats("time").print_stats()
|
||||
else:
|
||||
train(English, train_sents, model_dir)
|
||||
print evaluate(English, dev_loc, model_dir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user