mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 01:16:28 +03:00
Merge pull request #1438 from explosion/feature/fast-parser
💫 Improve runtime CPU efficiency of parser/NER
This commit is contained in:
commit
61bc203f3f
3
setup.py
3
setup.py
|
@ -53,7 +53,8 @@ MOD_NAMES = [
|
|||
COMPILE_OPTIONS = {
|
||||
'msvc': ['/Ox', '/EHsc'],
|
||||
'mingw32' : ['-O3', '-Wno-strict-prototypes', '-Wno-unused-function'],
|
||||
'other' : ['-O3', '-Wno-strict-prototypes', '-Wno-unused-function']
|
||||
'other' : ['-O3', '-Wno-strict-prototypes', '-Wno-unused-function',
|
||||
'-march=native']
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ from collections import OrderedDict
|
|||
import itertools
|
||||
import weakref
|
||||
import functools
|
||||
import tqdm
|
||||
|
||||
from .tokenizer import Tokenizer
|
||||
from .vocab import Vocab
|
||||
|
@ -447,11 +448,9 @@ class Language(object):
|
|||
golds = list(golds)
|
||||
for name, pipe in self.pipeline:
|
||||
if not hasattr(pipe, 'pipe'):
|
||||
for doc in docs:
|
||||
pipe(doc)
|
||||
docs = (pipe(doc) for doc in docs)
|
||||
else:
|
||||
docs = list(pipe.pipe(docs))
|
||||
assert len(docs) == len(golds)
|
||||
docs = pipe.pipe(docs, batch_size=256)
|
||||
for doc, gold in zip(docs, golds):
|
||||
if verbose:
|
||||
print(doc)
|
||||
|
|
|
@ -15,8 +15,6 @@ cdef class Parser:
|
|||
cdef readonly object cfg
|
||||
cdef public object _multitasks
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
cdef void _parseC(self, StateC* state,
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil
|
||||
|
|
|
@ -9,6 +9,7 @@ from collections import Counter, OrderedDict
|
|||
import ujson
|
||||
import json
|
||||
import contextlib
|
||||
import numpy
|
||||
|
||||
from libc.math cimport exp
|
||||
cimport cython
|
||||
|
@ -27,7 +28,7 @@ from libc.string cimport memset, memcpy
|
|||
from libc.stdlib cimport malloc, calloc, free
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
|
||||
from thinc.extra.eg cimport Example
|
||||
from thinc.extra.search cimport Beam
|
||||
|
@ -37,7 +38,7 @@ from murmurhash.mrmr cimport hash64
|
|||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain, noop, clone, with_flatten
|
||||
from thinc.api import layerize, chain, clone, with_flatten
|
||||
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu, SELU
|
||||
from thinc.misc import LayerNorm
|
||||
|
||||
|
@ -240,54 +241,32 @@ cdef class Parser:
|
|||
@classmethod
|
||||
def Model(cls, nr_class, **cfg):
|
||||
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
|
||||
if depth != 1:
|
||||
raise ValueError("Currently parser depth is hard-coded to 1.")
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
|
||||
if parser_maxout_pieces != 2:
|
||||
raise ValueError("Currently parser_maxout_pieces is hard-coded to 2")
|
||||
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 128))
|
||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 200))
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
|
||||
hist_size = util.env_opt('history_feats', cfg.get('hist_size', 0))
|
||||
hist_width = util.env_opt('history_width', cfg.get('hist_width', 0))
|
||||
if hist_size >= 1 and depth == 0:
|
||||
raise ValueError("Inconsistent hyper-params: "
|
||||
"history_feats >= 1 but parser_hidden_depth==0")
|
||||
if hist_size != 0:
|
||||
raise ValueError("Currently history size is hard-coded to 0")
|
||||
if hist_width != 0:
|
||||
raise ValueError("Currently history width is hard-coded to 0")
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
pretrained_dims=cfg.get('pretrained_dims', 0))
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
if parser_maxout_pieces == 1:
|
||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature,
|
||||
nI=token_vector_width)
|
||||
else:
|
||||
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature,
|
||||
nP=parser_maxout_pieces,
|
||||
nI=token_vector_width)
|
||||
lower = PrecomputableMaxouts(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature, nP=parser_maxout_pieces,
|
||||
nI=token_vector_width)
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
if depth == 0:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
elif hist_size and depth == 1:
|
||||
upper = chain(
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=hist_size,
|
||||
nr_dim=hist_width),
|
||||
zero_init(Affine(nr_class, hidden_width+hist_size*hist_width,
|
||||
drop_factor=0.0)))
|
||||
upper.is_noop = False
|
||||
elif hist_size:
|
||||
upper = chain(
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=hist_size,
|
||||
nr_dim=hist_width),
|
||||
LayerNorm(Maxout(hidden_width, hidden_width+hist_size*hist_width)),
|
||||
clone(LayerNorm(Maxout(hidden_width, hidden_width)), depth-2),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
else:
|
||||
upper = chain(
|
||||
clone(LayerNorm(Maxout(hidden_width, hidden_width)), depth-1),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
upper = chain(
|
||||
clone(LayerNorm(Maxout(hidden_width, hidden_width)), depth-1),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
|
@ -391,90 +370,100 @@ cdef class Parser:
|
|||
beam_density = self.cfg.get('beam_density', 0.0)
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
for docs in cytoolz.partition_all(batch_size, docs):
|
||||
docs = list(docs)
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(docs)
|
||||
beams = []
|
||||
else:
|
||||
beams = self.beam_parse(docs,
|
||||
beam_width=beam_width, beam_density=beam_density)
|
||||
parse_states = []
|
||||
for beam in beams:
|
||||
parse_states.append(<StateClass>beam.at(0))
|
||||
self.set_annotations(docs, parse_states)
|
||||
yield from docs
|
||||
for batch in cytoolz.partition_all(batch_size, docs):
|
||||
batch = list(batch)
|
||||
by_length = sorted(list(batch), key=lambda doc: len(doc))
|
||||
for subbatch in cytoolz.partition_all(8, by_length):
|
||||
subbatch = list(subbatch)
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(subbatch)
|
||||
beams = []
|
||||
else:
|
||||
beams = self.beam_parse(subbatch,
|
||||
beam_width=beam_width, beam_density=beam_density)
|
||||
parse_states = []
|
||||
for beam in beams:
|
||||
parse_states.append(<StateClass>beam.at(0))
|
||||
self.set_annotations(subbatch, parse_states)
|
||||
yield from batch
|
||||
|
||||
def parse_batch(self, docs):
|
||||
cdef:
|
||||
precompute_hiddens state2vec
|
||||
StateClass state
|
||||
StateClass stcls
|
||||
Pool mem
|
||||
const float* feat_weights
|
||||
StateC* st
|
||||
vector[StateC*] next_step, this_step
|
||||
int nr_class, nr_feat, nr_piece, nr_dim, nr_state
|
||||
vector[StateC*] states
|
||||
int guess, nr_class, nr_feat, nr_piece, nr_dim, nr_state, nr_step
|
||||
int j
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
(tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
|
||||
0.0)
|
||||
|
||||
nr_state = len(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
nr_dim = tokvecs.shape[1]
|
||||
nr_feat = self.nr_feature
|
||||
nr_piece = state2vec.nP
|
||||
|
||||
states = self.moves.init_batch(docs)
|
||||
for state in states:
|
||||
if not state.c.is_final():
|
||||
next_step.push_back(state.c)
|
||||
|
||||
state_objs = self.moves.init_batch(docs)
|
||||
for stcls in state_objs:
|
||||
if not stcls.c.is_final():
|
||||
states.push_back(stcls.c)
|
||||
|
||||
feat_weights = state2vec.get_feat_weights()
|
||||
cdef int i
|
||||
cdef np.ndarray token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
|
||||
cdef np.ndarray is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
|
||||
cdef np.ndarray scores
|
||||
c_token_ids = <int*>token_ids.data
|
||||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
cdef int nr_step
|
||||
while not next_step.empty():
|
||||
nr_step = next_step.size()
|
||||
if not has_hidden:
|
||||
for i in cython.parallel.prange(nr_step, num_threads=6,
|
||||
nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, nr_class, nr_feat, nr_piece)
|
||||
else:
|
||||
hists = []
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
hists.append([st.get_hist(j+1) for j in range(8)])
|
||||
hists = numpy.asarray(hists)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
if self.cfg.get('hist_size'):
|
||||
scores = vec2scores((vectors, hists))
|
||||
else:
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
guess = arg_max_if_valid(
|
||||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
st.push_hist(guess)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
if not st.is_final():
|
||||
next_step.push_back(st)
|
||||
return states
|
||||
cdef np.ndarray hidden_weights = numpy.ascontiguousarray(vec2scores._layers[-1].W.T)
|
||||
cdef np.ndarray hidden_bias = vec2scores._layers[-1].b
|
||||
|
||||
hW = <float*>hidden_weights.data
|
||||
hb = <float*>hidden_bias.data
|
||||
cdef int nr_hidden = hidden_weights.shape[0]
|
||||
cdef int nr_task = states.size()
|
||||
with nogil:
|
||||
for i in cython.parallel.prange(nr_task, num_threads=2,
|
||||
schedule='guided'):
|
||||
self._parseC(states[i],
|
||||
feat_weights, hW, hb,
|
||||
nr_class, nr_hidden, nr_feat, nr_piece)
|
||||
return state_objs
|
||||
|
||||
cdef void _parseC(self, StateC* state,
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
|
||||
while not state.is_final():
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
|
||||
memset(scores, 0, nr_class * sizeof(float))
|
||||
sum_state_features(vectors,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
|
||||
V = vectors
|
||||
W = hW
|
||||
for i in range(nr_hidden):
|
||||
feature = V[0] if V[0] >= V[1] else V[1]
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * W[j]
|
||||
W += nr_class
|
||||
V += nr_piece
|
||||
for i in range(nr_class):
|
||||
scores[i] += hb[i]
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_max_if_valid(scores, is_valid, nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
free(token_ids)
|
||||
free(is_valid)
|
||||
free(vectors)
|
||||
free(scores)
|
||||
|
||||
def beam_parse(self, docs, int beam_width=3, float beam_density=0.001):
|
||||
cdef Beam beam
|
||||
|
@ -527,27 +516,6 @@ cdef class Parser:
|
|||
beams.append(beam)
|
||||
return beams
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil:
|
||||
'''This only works with no hidden layers -- fast but inaccurate'''
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(scores,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
if not any(self.moves.has_gold(gold) for gold in golds):
|
||||
return None
|
||||
|
@ -800,20 +768,11 @@ cdef class Parser:
|
|||
if self.model not in (True, False, None) and resized:
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
if self.model[-1].is_noop:
|
||||
smaller = self.model[1]
|
||||
dims = dict(self.model[1]._dims)
|
||||
dims['nO'] = self.moves.n_moves
|
||||
larger = self.model[1].__class__(**dims)
|
||||
copy_array(larger.W[:, :smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model = (self.model[0], larger, self.model[2])
|
||||
else:
|
||||
smaller = self.model[-1]._layers[-1]
|
||||
larger = Affine(self.moves.n_moves, smaller.nI)
|
||||
copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model[-1]._layers[-1] = larger
|
||||
smaller = self.model[-1]._layers[-1]
|
||||
larger = Affine(self.moves.n_moves, smaller.nI)
|
||||
copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model[-1]._layers[-1] = larger
|
||||
|
||||
def begin_training(self, gold_tuples, pipeline=None, **cfg):
|
||||
if 'model' in cfg:
|
||||
|
@ -969,31 +928,6 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
|
|||
return best
|
||||
|
||||
|
||||
cdef int arg_maxout_if_valid(const weight_t* scores, const int* is_valid,
|
||||
int n, int nP) nogil:
|
||||
cdef int best = -1
|
||||
cdef float best_score = 0
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
for j in range(nP):
|
||||
if best == -1 or scores[i*nP+j] > best_score:
|
||||
best = i
|
||||
best_score = scores[i*nP+j]
|
||||
return best
|
||||
|
||||
|
||||
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
||||
int nr_class) except -1:
|
||||
cdef weight_t score = 0
|
||||
cdef int mode = -1
|
||||
cdef int i
|
||||
for i in range(nr_class):
|
||||
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
||||
mode = i
|
||||
score = scores[i]
|
||||
return mode
|
||||
|
||||
|
||||
# These are passed as callbacks to thinc.search.Beam
|
||||
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
|
||||
dest = <StateClass>_dest
|
||||
|
|
|
@ -148,7 +148,8 @@ cdef class TransitionSystem:
|
|||
|
||||
def add_action(self, int action, label_name):
|
||||
cdef attr_t label_id
|
||||
if not isinstance(label_name, (int, long)):
|
||||
if not isinstance(label_name, int) and \
|
||||
not isinstance(label_name, long):
|
||||
label_id = self.strings.add(label_name)
|
||||
else:
|
||||
label_id = label_name
|
||||
|
|
|
@ -315,30 +315,30 @@ p
|
|||
+cell Number of rows in embedding tables.
|
||||
+cell #[code 7500]
|
||||
|
||||
+row
|
||||
+cell #[code parser_maxout_pieces]
|
||||
+cell Number of pieces in the parser's and NER's first maxout layer.
|
||||
+cell #[code 2]
|
||||
//- +row
|
||||
//- +cell #[code parser_maxout_pieces]
|
||||
//- +cell Number of pieces in the parser's and NER's first maxout layer.
|
||||
//- +cell #[code 2]
|
||||
|
||||
+row
|
||||
+cell #[code parser_hidden_depth]
|
||||
+cell Number of hidden layers in the parser and NER.
|
||||
+cell #[code 1]
|
||||
//- +row
|
||||
//- +cell #[code parser_hidden_depth]
|
||||
//- +cell Number of hidden layers in the parser and NER.
|
||||
//- +cell #[code 1]
|
||||
|
||||
+row
|
||||
+cell #[code hidden_width]
|
||||
+cell Size of the parser's and NER's hidden layers.
|
||||
+cell #[code 128]
|
||||
|
||||
+row
|
||||
+cell #[code history_feats]
|
||||
+cell Number of previous action ID features for parser and NER.
|
||||
+cell #[code 128]
|
||||
//- +row
|
||||
//- +cell #[code history_feats]
|
||||
//- +cell Number of previous action ID features for parser and NER.
|
||||
//- +cell #[code 128]
|
||||
|
||||
+row
|
||||
+cell #[code history_width]
|
||||
+cell Number of embedding dimensions for each action ID.
|
||||
+cell #[code 128]
|
||||
//- +row
|
||||
//- +cell #[code history_width]
|
||||
//- +cell Number of embedding dimensions for each action ID.
|
||||
//- +cell #[code 128]
|
||||
|
||||
+row
|
||||
+cell #[code learn_rate]
|
||||
|
|
Loading…
Reference in New Issue
Block a user