mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
61dfdd9fbd
|
@ -377,54 +377,64 @@ serialization by passing in the string names via the `exclude` argument.
|
||||||
|
|
||||||
## TransformerData {#transformerdata tag="dataclass"}
|
## TransformerData {#transformerdata tag="dataclass"}
|
||||||
|
|
||||||
Transformer tokens and outputs for one `Doc` object.
|
Transformer tokens and outputs for one `Doc` object. The transformer models
|
||||||
|
return tensors that refer to a whole padded batch of documents. These tensors
|
||||||
|
are wrapped into the
|
||||||
|
[FullTransformerBatch](/api/transformer#fulltransformerbatch) object. The
|
||||||
|
`FullTransformerBatch` then splits out the per-document data, which is handled
|
||||||
|
by this class. Instances of this class
|
||||||
|
are`typically assigned to the [Doc._.trf_data`](/api/transformer#custom-attributes)
|
||||||
|
extension attribute.
|
||||||
|
|
||||||
<!-- TODO: finish API docs, also mention "width" is property -->
|
| Name | Type | Description |
|
||||||
|
| --------- | -------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||||
| Name | Type | Description |
|
| `tokens` | `Dict` | A slice of the tokens data produced by the tokenizer. This may have several fields, including the token IDs, the texts, and the attention mask. See the [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) object for details. |
|
||||||
| --------- | -------------------------------------------------- | ----------- |
|
| `tensors` | `List[FloatsXd]` | The activations for the Doc from the transformer. Usually the last tensor that is 3-dimensional will be the most important, as that will provide the final hidden state. Generally activations that are 2-dimensional will be attention weights. Details of this variable will differ depending on the underlying transformer model. |
|
||||||
| `tokens` | `Dict` | |
|
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | Alignment from the `Doc`'s tokenization to the wordpieces. This is a ragged array, where `align.lengths[i]` indicates the number of wordpiece tokens that token `i` aligns against. The actual indices are provided at `align[i].dataXd`. |
|
||||||
| `tensors` | `List[FloatsXd]` | |
|
| `width` | int | The width of the last hidden layer. |
|
||||||
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | |
|
|
||||||
| `width` | int | |
|
|
||||||
|
|
||||||
### TransformerData.empty {#transformerdata-emoty tag="classmethod"}
|
### TransformerData.empty {#transformerdata-emoty tag="classmethod"}
|
||||||
|
|
||||||
<!-- TODO: finish API docs -->
|
Create an empty `TransformerData` container.
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| ----------- | ----------------- | ----------- |
|
| ----------- | ----------------- | -------------- |
|
||||||
| **RETURNS** | `TransformerData` | |
|
| **RETURNS** | `TransformerData` | The container. |
|
||||||
|
|
||||||
## FullTransformerBatch {#fulltransformerbatch tag="dataclass"}
|
## FullTransformerBatch {#fulltransformerbatch tag="dataclass"}
|
||||||
|
|
||||||
<!-- TODO: write, also mention doc_data is property -->
|
Holds a batch of input and output objects for a transformer model. The data can
|
||||||
|
then be split to a list of [`TransformerData`](/api/transformer#transformerdata)
|
||||||
|
objects to associate the outputs to each [`Doc`](/api/doc) in the batch.
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| ---------- | -------------------------------------------------------------------------------------------------------------------------- | ----------- |
|
| ---------- | -------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `spans` | `List[List[Span]]` | |
|
| `spans` | `List[List[Span]]` | The batch of input spans. The outer list refers to the Doc objects in the batch, and the inner list are the spans for that `Doc`. Note that spans are allowed to overlap or exclude tokens, but each Span can only refer to one `Doc` (by definition). This means that within a `Doc`, the regions of the output tensors that correspond to each Span may overlap or have gaps, but for each `Doc`, there is a non-overlapping contiguous slice of the outputs. |
|
||||||
| `tokens` | [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) | |
|
| `tokens` | [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) | The output of the tokenizer. |
|
||||||
| `tensors` | `List[torch.Tensor]` | |
|
| `tensors` | `List[torch.Tensor]` | The output of the transformer model. |
|
||||||
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | |
|
| `align` | [`Ragged`](https://thinc.ai/docs/api-types#ragged) | Alignment from the spaCy tokenization to the wordpieces. This is a ragged array, where `align.lengths[i]` indicates the number of wordpiece tokens that token `i` aligns against. The actual indices are provided at `align[i].dataXd`. |
|
||||||
| `doc_data` | `List[TransformerData]` | |
|
| `doc_data` | `List[TransformerData]` | The outputs, split per `Doc` object. |
|
||||||
|
|
||||||
### FullTransformerBatch.unsplit_by_doc {#fulltransformerbatch-unsplit_by_doc tag="method"}
|
### FullTransformerBatch.unsplit_by_doc {#fulltransformerbatch-unsplit_by_doc tag="method"}
|
||||||
|
|
||||||
<!-- TODO: write -->
|
Return a new `FullTransformerBatch` from a split batch of activations, using the
|
||||||
|
current object's spans, tokens and alignment. This is used during the backward
|
||||||
|
pass, in order to construct the gradients to pass back into the transformer
|
||||||
|
model.
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| ----------- | ---------------------- | ----------- |
|
| ----------- | ---------------------- | ------------------------------- |
|
||||||
| `arrays` | `List[List[Floats3d]]` | |
|
| `arrays` | `List[List[Floats3d]]` | The split batch of activations. |
|
||||||
| **RETURNS** | `FullTransformerBatch` | |
|
| **RETURNS** | `FullTransformerBatch` | The transformer batch. |
|
||||||
|
|
||||||
### FullTransformerBatch.split_by_doc {#fulltransformerbatch-split_by_doc tag="method"}
|
### FullTransformerBatch.split_by_doc {#fulltransformerbatch-split_by_doc tag="method"}
|
||||||
|
|
||||||
Split a `TransformerData` object that represents a batch into a list with one
|
Split a `TransformerData` object that represents a batch into a list with one
|
||||||
`TransformerData` per `Doc`.
|
`TransformerData` per `Doc`.
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| ----------- | ----------------------- | ----------- |
|
| ----------- | ----------------------- | ---------------- |
|
||||||
| **RETURNS** | `List[TransformerData]` | |
|
| **RETURNS** | `List[TransformerData]` | The split batch. |
|
||||||
|
|
||||||
## Span getters {#span_getters source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/span_getters.py"}
|
## Span getters {#span_getters source="github.com/explosion/spacy-transformers/blob/master/spacy_transformers/span_getters.py"}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user