Update v3 docs [ci skip]

This commit is contained in:
Ines Montani 2020-07-05 16:11:16 +02:00
parent 3f6f087113
commit 63247cbe87
27 changed files with 383 additions and 1276 deletions

View File

@ -40,6 +40,11 @@ redirects = [
{from = "/tutorials", to = "/usage/examples", force = true},
# Old documentation pages (v2.x)
{from = "/usage/adding-languages", to = "/usage/linguistic-features", force = true},
{from = "/usage/vectors-similarity", to = "/usage/vectors-embeddings", force = true},
{from = "/api/goldparse", to = "/api/top-level", force = true},
{from = "/api/goldcorpus", to = "/api/corpus", force = true},
{from = "/api/annotation", to = "/api/data-formats", force = true},
{from = "/usage/examples", to = "/usage/projects", force = true},
# Rewrite all other docs pages to /
{from = "/docs/*", to = "/:splat"},
# Updated documentation pages

View File

@ -1,621 +0,0 @@
---
title: Annotation Specifications
teaser: Schemes used for labels, tags and training data
menu:
- ['Text Processing', 'text-processing']
- ['POS Tagging', 'pos-tagging']
- ['Dependencies', 'dependency-parsing']
- ['Named Entities', 'named-entities']
- ['Models & Training', 'training']
---
## Text processing {#text-processing}
> #### Example
>
> ```python
> from spacy.lang.en import English
> nlp = English()
> tokens = nlp("Some\\nspaces and\\ttab characters")
> tokens_text = [t.text for t in tokens]
> assert tokens_text == ["Some", "\\n", "spaces", " ", "and", "\\t", "tab", "characters"]
> ```
Tokenization standards are based on the
[OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) corpus. The tokenizer
differs from most by including **tokens for significant whitespace**. Any
sequence of whitespace characters beyond a single space (`' '`) is included as a
token. The whitespace tokens are useful for much the same reason punctuation is
it's often an important delimiter in the text. By preserving it in the token
output, we are able to maintain a simple alignment between the tokens and the
original string, and we ensure that **no information is lost** during
processing.
### Lemmatization {#lemmatization}
> #### Examples
>
> In English, this means:
>
> - **Adjectives**: happier, happiest → happy
> - **Adverbs**: worse, worst → badly
> - **Nouns**: dogs, children → dog, child
> - **Verbs**: writes, writing, wrote, written → write
As of v2.2, lemmatization data is stored in a separate package,
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) that can
be installed if needed via `pip install spacy[lookups]`. Some languages provide
full lemmatization rules and exceptions, while other languages currently only
rely on simple lookup tables.
<Infobox title="About spaCy's custom pronoun lemma for English" variant="warning">
spaCy adds a **special case for English pronouns**: all English pronouns are
lemmatized to the special token `-PRON-`. Unlike verbs and common nouns,
there's no clear base form of a personal pronoun. Should the lemma of "me" be
"I", or should we normalize person as well, giving "it" — or maybe "he"?
spaCy's solution is to introduce a novel symbol, `-PRON-`, which is used as the
lemma for all personal pronouns.
</Infobox>
### Sentence boundary detection {#sentence-boundary}
Sentence boundaries are calculated from the syntactic parse tree, so features
such as punctuation and capitalization play an important but non-decisive role
in determining the sentence boundaries. Usually this means that the sentence
boundaries will at least coincide with clause boundaries, even given poorly
punctuated text.
## Part-of-speech tagging {#pos-tagging}
> #### Tip: Understanding tags
>
> You can also use `spacy.explain` to get the description for the string
> representation of a tag. For example, `spacy.explain("RB")` will return
> "adverb".
This section lists the fine-grained and coarse-grained part-of-speech tags
assigned by spaCy's [models](/models). The individual mapping is specific to the
training corpus and can be defined in the respective language data's
[`tag_map.py`](/usage/adding-languages#tag-map).
<Accordion title="Universal Part-of-speech Tags" id="pos-universal">
spaCy maps all language-specific part-of-speech tags to a small, fixed set of
word type tags following the
[Universal Dependencies scheme](http://universaldependencies.org/u/pos/). The
universal tags don't code for any morphological features and only cover the word
type. They're available as the [`Token.pos`](/api/token#attributes) and
[`Token.pos_`](/api/token#attributes) attributes.
| POS | Description | Examples |
| ------- | ------------------------- | --------------------------------------------- |
| `ADJ` | adjective | big, old, green, incomprehensible, first |
| `ADP` | adposition | in, to, during |
| `ADV` | adverb | very, tomorrow, down, where, there |
| `AUX` | auxiliary | is, has (done), will (do), should (do) |
| `CONJ` | conjunction | and, or, but |
| `CCONJ` | coordinating conjunction | and, or, but |
| `DET` | determiner | a, an, the |
| `INTJ` | interjection | psst, ouch, bravo, hello |
| `NOUN` | noun | girl, cat, tree, air, beauty |
| `NUM` | numeral | 1, 2017, one, seventy-seven, IV, MMXIV |
| `PART` | particle | 's, not, |
| `PRON` | pronoun | I, you, he, she, myself, themselves, somebody |
| `PROPN` | proper noun | Mary, John, London, NATO, HBO |
| `PUNCT` | punctuation | ., (, ), ? |
| `SCONJ` | subordinating conjunction | if, while, that |
| `SYM` | symbol | \$, %, §, ©, +, , ×, ÷, =, :), 😝 |
| `VERB` | verb | run, runs, running, eat, ate, eating |
| `X` | other | sfpksdpsxmsa |
| `SPACE` | space |
</Accordion>
<Accordion title="English" id="pos-en">
The English part-of-speech tagger uses the
[OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) version of the Penn
Treebank tag set. We also map the tags to the simpler Universal Dependencies v2
POS tag set.
| Tag |  POS | Morphology | Description |
| ------------------------------------- | ------- | --------------------------------------- | ----------------------------------------- |
| `$` | `SYM` | | symbol, currency |
| <InlineCode>&#96;&#96;</InlineCode> | `PUNCT` | `PunctType=quot PunctSide=ini` | opening quotation mark |
| `''` | `PUNCT` | `PunctType=quot PunctSide=fin` | closing quotation mark |
| `,` | `PUNCT` | `PunctType=comm` | punctuation mark, comma |
| `-LRB-` | `PUNCT` | `PunctType=brck PunctSide=ini` | left round bracket |
| `-RRB-` | `PUNCT` | `PunctType=brck PunctSide=fin` | right round bracket |
| `.` | `PUNCT` | `PunctType=peri` | punctuation mark, sentence closer |
| `:` | `PUNCT` | | punctuation mark, colon or ellipsis |
| `ADD` | `X` | | email |
| `AFX` | `ADJ` | `Hyph=yes` | affix |
| `CC` | `CCONJ` | `ConjType=comp` | conjunction, coordinating |
| `CD` | `NUM` | `NumType=card` | cardinal number |
| `DT` | `DET` | | determiner |
| `EX` | `PRON` | `AdvType=ex` | existential there |
| `FW` | `X` | `Foreign=yes` | foreign word |
| `GW` | `X` | | additional word in multi-word expression |
| `HYPH` | `PUNCT` | `PunctType=dash` | punctuation mark, hyphen |
| `IN` | `ADP` | | conjunction, subordinating or preposition |
| `JJ` | `ADJ` | `Degree=pos` | adjective |
| `JJR` | `ADJ` | `Degree=comp` | adjective, comparative |
| `JJS` | `ADJ` | `Degree=sup` | adjective, superlative |
| `LS` | `X` | `NumType=ord` | list item marker |
| `MD` | `VERB` | `VerbType=mod` | verb, modal auxiliary |
| `NFP` | `PUNCT` | | superfluous punctuation |
| `NIL` | `X` | | missing tag |
| `NN` | `NOUN` | `Number=sing` | noun, singular or mass |
| `NNP` | `PROPN` | `NounType=prop Number=sing` | noun, proper singular |
| `NNPS` | `PROPN` | `NounType=prop Number=plur` | noun, proper plural |
| `NNS` | `NOUN` | `Number=plur` | noun, plural |
| `PDT` | `DET` | | predeterminer |
| `POS` | `PART` | `Poss=yes` | possessive ending |
| `PRP` | `PRON` | `PronType=prs` | pronoun, personal |
| `PRP$` | `DET` | `PronType=prs Poss=yes` | pronoun, possessive |
| `RB` | `ADV` | `Degree=pos` | adverb |
| `RBR` | `ADV` | `Degree=comp` | adverb, comparative |
| `RBS` | `ADV` | `Degree=sup` | adverb, superlative |
| `RP` | `ADP` | | adverb, particle |
| `SP` | `SPACE` | | space |
| `SYM` | `SYM` | | symbol |
| `TO` | `PART` | `PartType=inf VerbForm=inf` | infinitival "to" |
| `UH` | `INTJ` | | interjection |
| `VB` | `VERB` | `VerbForm=inf` | verb, base form |
| `VBD` | `VERB` | `VerbForm=fin Tense=past` | verb, past tense |
| `VBG` | `VERB` | `VerbForm=part Tense=pres Aspect=prog` | verb, gerund or present participle |
| `VBN` | `VERB` | `VerbForm=part Tense=past Aspect=perf` | verb, past participle |
| `VBP` | `VERB` | `VerbForm=fin Tense=pres` | verb, non-3rd person singular present |
| `VBZ` | `VERB` | `VerbForm=fin Tense=pres Number=sing Person=three` | verb, 3rd person singular present |
| `WDT` | `DET` | | wh-determiner |
| `WP` | `PRON` | | wh-pronoun, personal |
| `WP$` | `DET` | `Poss=yes` | wh-pronoun, possessive |
| `WRB` | `ADV` | | wh-adverb |
| `XX` | `X` | | unknown |
| `_SP` | `SPACE` | | |
</Accordion>
<Accordion title="German" id="pos-de">
The German part-of-speech tagger uses the
[TIGER Treebank](http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/index.html)
annotation scheme. We also map the tags to the simpler Universal Dependencies
v2 POS tag set.
| Tag |  POS | Morphology | Description |
| --------- | ------- | ---------------------------------------- | ------------------------------------------------- |
| `$(` | `PUNCT` | `PunctType=brck` | other sentence-internal punctuation mark |
| `$,` | `PUNCT` | `PunctType=comm` | comma |
| `$.` | `PUNCT` | `PunctType=peri` | sentence-final punctuation mark |
| `ADJA` | `ADJ` | | adjective, attributive |
| `ADJD` | `ADJ` | | adjective, adverbial or predicative |
| `ADV` | `ADV` | | adverb |
| `APPO` | `ADP` | `AdpType=post` | postposition |
| `APPR` | `ADP` | `AdpType=prep` | preposition; circumposition left |
| `APPRART` | `ADP` | `AdpType=prep PronType=art` | preposition with article |
| `APZR` | `ADP` | `AdpType=circ` | circumposition right |
| `ART` | `DET` | `PronType=art` | definite or indefinite article |
| `CARD` | `NUM` | `NumType=card` | cardinal number |
| `FM` | `X` | `Foreign=yes` | foreign language material |
| `ITJ` | `INTJ` | | interjection |
| `KOKOM` | `CCONJ` | `ConjType=comp` | comparative conjunction |
| `KON` | `CCONJ` | | coordinate conjunction |
| `KOUI` | `SCONJ` | | subordinate conjunction with "zu" and infinitive |
| `KOUS` | `SCONJ` | | subordinate conjunction with sentence |
| `NE` | `PROPN` | | proper noun |
| `NN` | `NOUN` | | noun, singular or mass |
| `NNE` | `PROPN` | | proper noun |
| `PDAT` | `DET` | `PronType=dem` | attributive demonstrative pronoun |
| `PDS` | `PRON` | `PronType=dem` | substituting demonstrative pronoun |
| `PIAT` | `DET` | `PronType=ind|neg|tot` | attributive indefinite pronoun without determiner |
| `PIS` | `PRON` | `PronType=ind|neg|tot` | substituting indefinite pronoun |
| `PPER` | `PRON` | `PronType=prs` | non-reflexive personal pronoun |
| `PPOSAT` | `DET` | `Poss=yes PronType=prs` | attributive possessive pronoun |
| `PPOSS` | `PRON` | `Poss=yes PronType=prs` | substituting possessive pronoun |
| `PRELAT` | `DET` | `PronType=rel` | attributive relative pronoun |
| `PRELS` | `PRON` | `PronType=rel` | substituting relative pronoun |
| `PRF` | `PRON` | `PronType=prs Reflex=yes` | reflexive personal pronoun |
| `PROAV` | `ADV` | `PronType=dem` | pronominal adverb |
| `PTKA` | `PART` | | particle with adjective or adverb |
| `PTKANT` | `PART` | `PartType=res` | answer particle |
| `PTKNEG` | `PART` | `Polarity=neg` | negative particle |
| `PTKVZ` | `ADP` | `PartType=vbp` | separable verbal particle |
| `PTKZU` | `PART` | `PartType=inf` | "zu" before infinitive |
| `PWAT` | `DET` | `PronType=int` | attributive interrogative pronoun |
| `PWAV` | `ADV` | `PronType=int` | adverbial interrogative or relative pronoun |
| `PWS` | `PRON` | `PronType=int` | substituting interrogative pronoun |
| `TRUNC` | `X` | `Hyph=yes` | word remnant |
| `VAFIN` | `AUX` | `Mood=ind VerbForm=fin` | finite verb, auxiliary |
| `VAIMP` | `AUX` | `Mood=imp VerbForm=fin` | imperative, auxiliary |
| `VAINF` | `AUX` | `VerbForm=inf` | infinitive, auxiliary |
| `VAPP` | `AUX` | `Aspect=perf VerbForm=part` | perfect participle, auxiliary |
| `VMFIN` | `VERB` | `Mood=ind VerbForm=fin VerbType=mod` | finite verb, modal |
| `VMINF` | `VERB` | `VerbForm=inf VerbType=mod` | infinitive, modal |
| `VMPP` | `VERB` | `Aspect=perf VerbForm=part VerbType=mod` | perfect participle, modal |
| `VVFIN` | `VERB` | `Mood=ind VerbForm=fin` | finite verb, full |
| `VVIMP` | `VERB` | `Mood=imp VerbForm=fin` | imperative, full |
| `VVINF` | `VERB` | `VerbForm=inf` | infinitive, full |
| `VVIZU` | `VERB` | `VerbForm=inf` | infinitive with "zu", full |
| `VVPP` | `VERB` | `Aspect=perf VerbForm=part` | perfect participle, full |
| `XY` | `X` | | non-word containing non-letter |
| `_SP` | `SPACE` | | |
</Accordion>
---
<Infobox title="Annotation schemes for other models">
For the label schemes used by the other models, see the respective `tag_map.py`
in [`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang).
</Infobox>
## Syntactic Dependency Parsing {#dependency-parsing}
> #### Tip: Understanding labels
>
> You can also use `spacy.explain` to get the description for the string
> representation of a label. For example, `spacy.explain("prt")` will return
> "particle".
This section lists the syntactic dependency labels assigned by spaCy's
[models](/models). The individual labels are language-specific and depend on the
training corpus.
<Accordion title="Universal Dependency Labels" id="dependency-parsing-universal">
The [Universal Dependencies scheme](http://universaldependencies.org/u/dep/) is
used in all languages trained on Universal Dependency Corpora.
| Label | Description |
| ------------ | -------------------------------------------- |
| `acl` | clausal modifier of noun (adjectival clause) |
| `advcl` | adverbial clause modifier |
| `advmod` | adverbial modifier |
| `amod` | adjectival modifier |
| `appos` | appositional modifier |
| `aux` | auxiliary |
| `case` | case marking |
| `cc` | coordinating conjunction |
| `ccomp` | clausal complement |
| `clf` | classifier |
| `compound` | compound |
| `conj` | conjunct |
| `cop` | copula |
| `csubj` | clausal subject |
| `dep` | unspecified dependency |
| `det` | determiner |
| `discourse` | discourse element |
| `dislocated` | dislocated elements |
| `expl` | expletive |
| `fixed` | fixed multiword expression |
| `flat` | flat multiword expression |
| `goeswith` | goes with |
| `iobj` | indirect object |
| `list` | list |
| `mark` | marker |
| `nmod` | nominal modifier |
| `nsubj` | nominal subject |
| `nummod` | numeric modifier |
| `obj` | object |
| `obl` | oblique nominal |
| `orphan` | orphan |
| `parataxis` | parataxis |
| `punct` | punctuation |
| `reparandum` | overridden disfluency |
| `root` | root |
| `vocative` | vocative |
| `xcomp` | open clausal complement |
</Accordion>
<Accordion title="English" id="dependency-parsing-english">
The English dependency labels use the
[CLEAR Style](https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md)
by [ClearNLP](http://www.clearnlp.com).
| Label | Description |
| ----------- | -------------------------------------------- |
| `acl` | clausal modifier of noun (adjectival clause) |
| `acomp` | adjectival complement |
| `advcl` | adverbial clause modifier |
| `advmod` | adverbial modifier |
| `agent` | agent |
| `amod` | adjectival modifier |
| `appos` | appositional modifier |
| `attr` | attribute |
| `aux` | auxiliary |
| `auxpass` | auxiliary (passive) |
| `case` | case marking |
| `cc` | coordinating conjunction |
| `ccomp` | clausal complement |
| `compound` | compound |
| `conj` | conjunct |
| `cop` | copula |
| `csubj` | clausal subject |
| `csubjpass` | clausal subject (passive) |
| `dative` | dative |
| `dep` | unclassified dependent |
| `det` | determiner |
| `dobj` | direct object |
| `expl` | expletive |
| `intj` | interjection |
| `mark` | marker |
| `meta` | meta modifier |
| `neg` | negation modifier |
| `nn` | noun compound modifier |
| `nounmod` | modifier of nominal |
| `npmod` | noun phrase as adverbial modifier |
| `nsubj` | nominal subject |
| `nsubjpass` | nominal subject (passive) |
| `nummod` | numeric modifier |
| `oprd` | object predicate |
| `obj` | object |
| `obl` | oblique nominal |
| `parataxis` | parataxis |
| `pcomp` | complement of preposition |
| `pobj` | object of preposition |
| `poss` | possession modifier |
| `preconj` | pre-correlative conjunction |
| `prep` | prepositional modifier |
| `prt` | particle |
| `punct` | punctuation |
| `quantmod` | modifier of quantifier |
| `relcl` | relative clause modifier |
| `root` | root |
| `xcomp` | open clausal complement |
</Accordion>
<Accordion title="German" id="dependency-parsing-german">
The German dependency labels use the
[TIGER Treebank](http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/index.html)
annotation scheme.
| Label | Description |
| ------- | ------------------------------- |
| `ac` | adpositional case marker |
| `adc` | adjective component |
| `ag` | genitive attribute |
| `ams` | measure argument of adjective |
| `app` | apposition |
| `avc` | adverbial phrase component |
| `cc` | comparative complement |
| `cd` | coordinating conjunction |
| `cj` | conjunct |
| `cm` | comparative conjunction |
| `cp` | complementizer |
| `cvc` | collocational verb construction |
| `da` | dative |
| `dm` | discourse marker |
| `ep` | expletive es |
| `ju` | junctor |
| `mnr` | postnominal modifier |
| `mo` | modifier |
| `ng` | negation |
| `nk` | noun kernel element |
| `nmc` | numerical component |
| `oa` | accusative object |
| `oa2` | second accusative object |
| `oc` | clausal object |
| `og` | genitive object |
| `op` | prepositional object |
| `par` | parenthetical element |
| `pd` | predicate |
| `pg` | phrasal genitive |
| `ph` | placeholder |
| `pm` | morphological particle |
| `pnc` | proper noun component |
| `punct` | punctuation |
| `rc` | relative clause |
| `re` | repeated element |
| `rs` | reported speech |
| `sb` | subject |
| `sbp` | passivized subject (PP) |
| `sp` | subject or predicate |
| `svp` | separable verb prefix |
| `uc` | unit component |
| `vo` | vocative |
| `ROOT` | root |
</Accordion>
## Named Entity Recognition {#named-entities}
> #### Tip: Understanding entity types
>
> You can also use `spacy.explain` to get the description for the string
> representation of an entity label. For example, `spacy.explain("LANGUAGE")`
> will return "any named language".
Models trained on the [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19)
corpus support the following entity types:
| Type | Description |
| ------------- | ---------------------------------------------------- |
| `PERSON` | People, including fictional. |
| `NORP` | Nationalities or religious or political groups. |
| `FAC` | Buildings, airports, highways, bridges, etc. |
| `ORG` | Companies, agencies, institutions, etc. |
| `GPE` | Countries, cities, states. |
| `LOC` | Non-GPE locations, mountain ranges, bodies of water. |
| `PRODUCT` | Objects, vehicles, foods, etc. (Not services.) |
| `EVENT` | Named hurricanes, battles, wars, sports events, etc. |
| `WORK_OF_ART` | Titles of books, songs, etc. |
| `LAW` | Named documents made into laws. |
| `LANGUAGE` | Any named language. |
| `DATE` | Absolute or relative dates or periods. |
| `TIME` | Times smaller than a day. |
| `PERCENT` | Percentage, including "%". |
| `MONEY` | Monetary values, including unit. |
| `QUANTITY` | Measurements, as of weight or distance. |
| `ORDINAL` | "first", "second", etc. |
| `CARDINAL` | Numerals that do not fall under another type. |
### Wikipedia scheme {#ner-wikipedia-scheme}
Models trained on Wikipedia corpus
([Nothman et al., 2013](http://www.sciencedirect.com/science/article/pii/S0004370212000276))
use a less fine-grained NER annotation scheme and recognise the following
entities:
| Type | Description |
| ------ | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `PER` | Named person or family. |
| `LOC` | Name of politically or geographically defined location (cities, provinces, countries, international regions, bodies of water, mountains). |
| `ORG` | Named corporate, governmental, or other organizational entity. |
| `MISC` | Miscellaneous entities, e.g. events, nationalities, products or works of art. |
### IOB Scheme {#iob}
| Tag | ID | Description |
| ----- | --- | ------------------------------------- |
| `"I"` | `1` | Token is inside an entity. |
| `"O"` | `2` | Token is outside an entity. |
| `"B"` | `3` | Token begins an entity. |
| `""` | `0` | No entity tag is set (missing value). |
### BILUO Scheme {#biluo}
| Tag | Description |
| ----------- | ---------------------------------------- |
| **`B`**EGIN | The first token of a multi-token entity. |
| **`I`**N | An inner token of a multi-token entity. |
| **`L`**AST | The final token of a multi-token entity. |
| **`U`**NIT | A single-token entity. |
| **`O`**UT | A non-entity token. |
> #### Why BILUO, not IOB?
>
> There are several coding schemes for encoding entity annotations as token
> tags. These coding schemes are equally expressive, but not necessarily equally
> learnable. [Ratinov and Roth](http://www.aclweb.org/anthology/W09-1119) showed
> that the minimal **Begin**, **In**, **Out** scheme was more difficult to learn
> than the **BILUO** scheme that we use, which explicitly marks boundary tokens.
spaCy translates the character offsets into this scheme, in order to decide the
cost of each action given the current state of the entity recognizer. The costs
are then used to calculate the gradient of the loss, to train the model. The
exact algorithm is a pastiche of well-known methods, and is not currently
described in any single publication. The model is a greedy transition-based
parser guided by a linear model whose weights are learned using the averaged
perceptron loss, via the
[dynamic oracle](http://www.aclweb.org/anthology/C12-1059) imitation learning
strategy. The transition system is equivalent to the BILUO tagging scheme.
## Models and training data {#training}
### JSON input format for training {#json-input}
spaCy takes training data in JSON format. The built-in
[`convert`](/api/cli#convert) command helps you convert the `.conllu` format
used by the
[Universal Dependencies corpora](https://github.com/UniversalDependencies) to
spaCy's training format. To convert one or more existing `Doc` objects to
spaCy's JSON format, you can use the
[`gold.docs_to_json`](/api/goldparse#docs_to_json) helper.
> #### Annotating entities
>
> Named entities are provided in the [BILUO](#biluo) notation. Tokens outside an
> entity are set to `"O"` and tokens that are part of an entity are set to the
> entity label, prefixed by the BILUO marker. For example `"B-ORG"` describes
> the first token of a multi-token `ORG` entity and `"U-PERSON"` a single token
> representing a `PERSON` entity. The
> [`biluo_tags_from_offsets`](/api/goldparse#biluo_tags_from_offsets) function
> can help you convert entity offsets to the right format.
```python
### Example structure
[{
"id": int, # ID of the document within the corpus
"paragraphs": [{ # list of paragraphs in the corpus
"raw": string, # raw text of the paragraph
"sentences": [{ # list of sentences in the paragraph
"tokens": [{ # list of tokens in the sentence
"id": int, # index of the token in the document
"dep": string, # dependency label
"head": int, # offset of token head relative to token index
"tag": string, # part-of-speech tag
"orth": string, # verbatim text of the token
"ner": string # BILUO label, e.g. "O" or "B-ORG"
}],
"brackets": [{ # phrase structure (NOT USED by current models)
"first": int, # index of first token
"last": int, # index of last token
"label": string # phrase label
}]
}],
"cats": [{ # new in v2.2: categories for text classifier
"label": string, # text category label
"value": float / bool # label applies (1.0/true) or not (0.0/false)
}]
}]
}]
```
Here's an example of dependencies, part-of-speech tags and names entities, taken
from the English Wall Street Journal portion of the Penn Treebank:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/training-data.json
```
### Lexical data for vocabulary {#vocab-jsonl new="2"}
To populate a model's vocabulary, you can use the
[`spacy init-model`](/api/cli#init-model) command and load in a
[newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
lexical entry per line via the `--jsonl-loc` option. The first line defines the
language and vocabulary settings. All other lines are expected to be JSON
objects describing an individual lexeme. The lexical attributes will be then set
as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical
data.
```python
### First line
{"lang": "en", "settings": {"oov_prob": -20.502029418945312}}
```
```python
### Entry structure
{
"orth": string, # the word text
"id": int, # can correspond to row in vectors table
"lower": string,
"norm": string,
"shape": string
"prefix": string,
"suffix": string,
"length": int,
"cluster": string,
"prob": float,
"is_alpha": bool,
"is_ascii": bool,
"is_digit": bool,
"is_lower": bool,
"is_punct": bool,
"is_space": bool,
"is_title": bool,
"is_upper": bool,
"like_url": bool,
"like_num": bool,
"like_email": bool,
"is_stop": bool,
"is_oov": bool,
"is_quote": bool,
"is_left_punct": bool,
"is_right_punct": bool
}
```
Here's an example of the 20 most frequent lexemes in the English training data:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
```

View File

@ -97,7 +97,7 @@ $ python -m spacy validate
## Convert {#convert}
Convert files into spaCy's
[binary training data format](/usage/training#data-format), a serialized
[binary training data format](/api/data-formats#binary-training), a serialized
[`DocBin`](/api/docbin), for use with the `train` command and other experiment
management functions. The converter can be specified on the command line, or
chosen based on the file extension of the input file.
@ -128,7 +128,7 @@ $ python -m spacy convert [input_file] [output_dir] [--converter]
| ID | Description |
| ------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `auto` | Automatically pick converter based on file extension and file content (default). |
| `json` | JSON-formatted training data used in spaCy v2.x and produced by [`docs2json`](/api/goldparse#docs_to_json). |
| `json` | JSON-formatted training data used in spaCy v2.x and produced by [`docs2json`](/api/top-level#docs_to_json). |
| `conll` | Universal Dependencies `.conllu` or `.conll` format. |
| `ner` | NER with IOB/IOB2 tags, one token per line with columns separated by whitespace. The first column is the token and the final column is the IOB tag. Sentences are separated by blank lines and documents are separated by the line `-DOCSTART- -X- O O`. Supports CoNLL 2003 NER format. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
| `iob` | NER with IOB/IOB2 tags, one sentence per line with tokens separated by whitespace and annotation separated by `|`, either `word|B-ENT` or `word|POS|B-ENT`. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
@ -300,8 +300,8 @@ will not be available.
<!-- TODO: document new training -->
Train a model. Expects data in spaCy's
[JSON format](/api/annotation#json-input). On each epoch, a model will be saved
out to the directory. Accuracy scores and model details will be added to a
[JSON format](/api/data-formats#json-input). On each epoch, a model will be
saved out to the directory. Accuracy scores and model details will be added to a
[`meta.json`](/usage/training#models-generating) to allow packaging the model
using the [`package`](/api/cli#package) command.
@ -438,7 +438,7 @@ tokenization can be provided.
Create a new model directory from raw data, like word frequencies, Brown
clusters and word vectors. This command is similar to the `spacy model` command
in v1.x. Note that in order to populate the model's vocab, you need to pass in a
JSONL-formatted [vocabulary file](<(/api/annotation#vocab-jsonl)>) as
JSONL-formatted [vocabulary file](/api/data-formats#vocab-jsonl) as
`--jsonl-loc` with optional `id` values that correspond to the vectors table.
Just loading in vectors will not automatically populate the vocab.
@ -451,7 +451,7 @@ $ python -m spacy init-model [lang] [output_dir] [--jsonl-loc] [--vectors-loc]
| ----------------------------------------------------------- | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `lang` | positional | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes), e.g. `en`. |
| `output_dir` | positional | Model output directory. Will be created if it doesn't exist. |
| `--jsonl-loc`, `-j` | option | Optional location of JSONL-formatted [vocabulary file](/api/annotation#vocab-jsonl) with lexical attributes. |
| `--jsonl-loc`, `-j` | option | Optional location of JSONL-formatted [vocabulary file](/api/data-formats#vocab-jsonl) with lexical attributes. |
| `--vectors-loc`, `-v` | option | Optional location of vectors. Should be a file where the first row contains the dimensions of the vectors, followed by a space-separated Word2Vec table. File can be provided in `.txt` format or as a zipped text file in `.zip` or `.tar.gz` format. |
| `--truncate-vectors`, `-t` <Tag variant="new">2.3</Tag> | option | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. |
| `--prune-vectors`, `-V` | option | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. |

View File

@ -0,0 +1,130 @@
---
title: Data formats
teaser: Details on spaCy's input and output data formats
menu:
- ['Training data', 'training']
- ['Vocabulary', 'vocab']
---
This section documents input and output formats of data used by spaCy, including
training data and lexical vocabulary data. For an overview of label schemes used
by the models, see the [models directory](/models). Each model documents the
label schemes used in its components, depending on the data it was trained on.
## Training data {#training}
### Binary training format {#binary-training new="3"}
<!-- TODO: document DocBin format -->
### JSON input format for training {#json-input}
spaCy takes training data in JSON format. The built-in
[`convert`](/api/cli#convert) command helps you convert the `.conllu` format
used by the
[Universal Dependencies corpora](https://github.com/UniversalDependencies) to
spaCy's training format. To convert one or more existing `Doc` objects to
spaCy's JSON format, you can use the
[`gold.docs_to_json`](/api/top-level#docs_to_json) helper.
> #### Annotating entities
>
> Named entities are provided in the
> [BILUO](/usage/linguistic-features#accessing-ner) notation. Tokens outside an
> entity are set to `"O"` and tokens that are part of an entity are set to the
> entity label, prefixed by the BILUO marker. For example `"B-ORG"` describes
> the first token of a multi-token `ORG` entity and `"U-PERSON"` a single token
> representing a `PERSON` entity. The
> [`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) function
> can help you convert entity offsets to the right format.
```python
### Example structure
[{
"id": int, # ID of the document within the corpus
"paragraphs": [{ # list of paragraphs in the corpus
"raw": string, # raw text of the paragraph
"sentences": [{ # list of sentences in the paragraph
"tokens": [{ # list of tokens in the sentence
"id": int, # index of the token in the document
"dep": string, # dependency label
"head": int, # offset of token head relative to token index
"tag": string, # part-of-speech tag
"orth": string, # verbatim text of the token
"ner": string # BILUO label, e.g. "O" or "B-ORG"
}],
"brackets": [{ # phrase structure (NOT USED by current models)
"first": int, # index of first token
"last": int, # index of last token
"label": string # phrase label
}]
}],
"cats": [{ # new in v2.2: categories for text classifier
"label": string, # text category label
"value": float / bool # label applies (1.0/true) or not (0.0/false)
}]
}]
}]
```
Here's an example of dependencies, part-of-speech tags and names entities, taken
from the English Wall Street Journal portion of the Penn Treebank:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/training-data.json
```
## Lexical data for vocabulary {#vocab-jsonl new="2"}
To populate a model's vocabulary, you can use the
[`spacy init-model`](/api/cli#init-model) command and load in a
[newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
lexical entry per line via the `--jsonl-loc` option. The first line defines the
language and vocabulary settings. All other lines are expected to be JSON
objects describing an individual lexeme. The lexical attributes will be then set
as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical
data.
```python
### First line
{"lang": "en", "settings": {"oov_prob": -20.502029418945312}}
```
```python
### Entry structure
{
"orth": string, # the word text
"id": int, # can correspond to row in vectors table
"lower": string,
"norm": string,
"shape": string
"prefix": string,
"suffix": string,
"length": int,
"cluster": string,
"prob": float,
"is_alpha": bool,
"is_ascii": bool,
"is_digit": bool,
"is_lower": bool,
"is_punct": bool,
"is_space": bool,
"is_title": bool,
"is_upper": bool,
"like_url": bool,
"like_num": bool,
"like_email": bool,
"is_stop": bool,
"is_oov": bool,
"is_quote": bool,
"is_left_punct": bool,
"is_right_punct": bool
}
```
Here's an example of the 20 most frequent lexemes in the English training data:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
```

View File

@ -1,206 +0,0 @@
---
title: GoldParse
teaser: A collection for training annotations
tag: class
source: spacy/gold.pyx
---
## GoldParse.\_\_init\_\_ {#init tag="method"}
Create a `GoldParse`. The [`TextCategorizer`](/api/textcategorizer) component
expects true examples of a label to have the value `1.0`, and negative examples
of a label to have the value `0.0`. Labels not in the dictionary are treated as
missing the gradient for those labels will be zero.
| Name | Type | Description |
| ----------------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document the annotations refer to. |
| `words` | iterable | A sequence of word strings. |
| `tags` | iterable | A sequence of strings, representing tag annotations. |
| `heads` | iterable | A sequence of integers, representing syntactic head offsets. |
| `deps` | iterable | A sequence of strings, representing the syntactic relation types. |
| `entities` | iterable | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
| `cats` | dict | Labels for text classification. Each key in the dictionary is a string label for the category and each value is `1.0` (positive) or `0.0` (negative). |
| `links` | dict | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either `1.0` (positive) or `0.0` (negative). |
| `make_projective` | bool | Whether to projectivize the dependency tree. Defaults to `False`. |
| **RETURNS** | `GoldParse` | The newly constructed object. |
## GoldParse.\_\_len\_\_ {#len tag="method"}
Get the number of gold-standard tokens.
| Name | Type | Description |
| ----------- | ---- | ----------------------------------- |
| **RETURNS** | int | The number of gold-standard tokens. |
## GoldParse.is_projective {#is_projective tag="property"}
Whether the provided syntactic annotations form a projective dependency tree.
| Name | Type | Description |
| ----------- | ---- | ----------------------------------------- |
| **RETURNS** | bool | Whether annotations form projective tree. |
## Attributes {#attributes}
| Name | Type | Description |
| ------------------------------------ | ---- | ------------------------------------------------------------------------------------------------------------------------ |
| `words` | list | The words. |
| `tags` | list | The part-of-speech tag annotations. |
| `heads` | list | The syntactic head annotations. |
| `labels` | list | The syntactic relation-type annotations. |
| `ner` | list | The named entity annotations as BILUO tags. |
| `cand_to_gold` | list | The alignment from candidate tokenization to gold tokenization. |
| `gold_to_cand` | list | The alignment from gold tokenization to candidate tokenization. |
| `cats` <Tag variant="new">2</Tag> | dict | Keys in the dictionary are string category labels with values `1.0` or `0.0`. |
| `links` <Tag variant="new">2.2</Tag> | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries. |
## Utilities {#util}
### gold.docs_to_json {#docs_to_json tag="function"}
Convert a list of Doc objects into the
[JSON-serializable format](/api/annotation#json-input) used by the
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a
'paragraph' in the output doc.
> #### Example
>
> ```python
> from spacy.gold import docs_to_json
>
> doc = nlp("I like London")
> json_data = docs_to_json([doc])
> ```
| Name | Type | Description |
| ----------- | ---------------- | ------------------------------------------ |
| `docs` | iterable / `Doc` | The `Doc` object(s) to convert. |
| `id` | int | ID to assign to the JSON. Defaults to `0`. |
| **RETURNS** | dict | The data in spaCy's JSON format. |
### gold.align {#align tag="function"}
Calculate alignment tables between two tokenizations, using the Levenshtein
algorithm. The alignment is case-insensitive.
<Infobox title="Important note" variant="warning">
The current implementation of the alignment algorithm assumes that both
tokenizations add up to the same string. For example, you'll be able to align
`["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
`["I", "'m"]` and `["I", "am"]`.
</Infobox>
> #### Example
>
> ```python
> from spacy.gold import align
>
> bert_tokens = ["obama", "'", "s", "podcast"]
> spacy_tokens = ["obama", "'s", "podcast"]
> alignment = align(bert_tokens, spacy_tokens)
> cost, a2b, b2a, a2b_multi, b2a_multi = alignment
> ```
| Name | Type | Description |
| ----------- | ----- | -------------------------------------------------------------------------- |
| `tokens_a` | list | String values of candidate tokens to align. |
| `tokens_b` | list | String values of reference tokens to align. |
| **RETURNS** | tuple | A `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the alignment. |
The returned tuple contains the following alignment information:
> #### Example
>
> ```python
> a2b = array([0, -1, -1, 2])
> b2a = array([0, 2, 3])
> a2b_multi = {1: 1, 2: 1}
> b2a_multi = {}
> ```
>
> If `a2b[3] == 2`, that means that `tokens_a[3]` aligns to `tokens_b[2]`. If
> there's no one-to-one alignment for a token, it has the value `-1`.
| Name | Type | Description |
| ----------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `cost` | int | The number of misaligned tokens. |
| `a2b` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_a` to indices in `tokens_b`. |
| `b2a` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_b` to indices in `tokens_a`. |
| `a2b_multi` | dict | A dictionary mapping indices in `tokens_a` to indices in `tokens_b`, where multiple tokens of `tokens_a` align to the same token of `tokens_b`. |
| `b2a_multi` | dict | A dictionary mapping indices in `tokens_b` to indices in `tokens_a`, where multiple tokens of `tokens_b` align to the same token of `tokens_a`. |
### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
Encode labelled spans into per-token tags, using the
[BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
list of strings, describing the tags. Each tag string will be of the form of
either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`,
`"L"`, `"U"`. The string `"-"` is used where the entity offsets don't align with
the tokenization in the `Doc` object. The training algorithm will view these as
missing values. `O` denotes a non-entity token. `B` denotes the beginning of a
multi-token entity, `I` the inside of an entity of three or more tokens, and `L`
the end of an entity of two or more tokens. `U` denotes a single-token entity.
> #### Example
>
> ```python
> from spacy.gold import biluo_tags_from_offsets
>
> doc = nlp("I like London.")
> entities = [(7, 13, "LOC")]
> tags = biluo_tags_from_offsets(doc, entities)
> assert tags == ["O", "O", "U-LOC", "O"]
> ```
| Name | Type | Description |
| ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. |
| `entities` | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
| **RETURNS** | list | str strings, describing the [BILUO](/api/annotation#biluo) tags. |
### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
entity offsets.
> #### Example
>
> ```python
> from spacy.gold import offsets_from_biluo_tags
>
> doc = nlp("I like London.")
> tags = ["O", "O", "U-LOC", "O"]
> entities = offsets_from_biluo_tags(doc, tags)
> assert entities == [(7, 13, "LOC")]
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. |
### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
[`Span`](/api/span) objects. This can be used to create entity spans from
token-based tags, e.g. to overwrite the `doc.ents`.
> #### Example
>
> ```python
> from spacy.gold import spans_from_biluo_tags
>
> doc = nlp("I like London.")
> tags = ["O", "O", "U-LOC", "O"]
> doc.ents = spans_from_biluo_tags(doc, tags)
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `Span` objects with added entity labels. |

View File

@ -252,10 +252,10 @@ If a setting is not present in the options, the default value will be used.
| `colors` | dict | Color overrides. Entity types in uppercase should be mapped to color names or values. | `{}` |
| `template` <Tag variant="new">2.2</Tag> | str | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. | see [`templates.py`](https://github.com/explosion/spaCy/blob/master/spacy/displacy/templates.py) |
By default, displaCy comes with colors for all
[entity types supported by spaCy](/api/annotation#named-entities). If you're
using custom entity types, you can use the `colors` setting to add your own
colors for them. Your application or model package can also expose a
By default, displaCy comes with colors for all entity types used by
[spaCy models](/models). If you're using custom entity types, you can use the
`colors` setting to add your own colors for them. Your application or model
package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically.
@ -264,7 +264,7 @@ to add custom labels and their colors automatically.
### gold.docs_to_json {#docs_to_json tag="function"}
Convert a list of Doc objects into the
[JSON-serializable format](/api/annotation#json-input) used by the
[JSON-serializable format](/api/data-formats#json-input) used by the
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a
'paragraph' in the output doc.
@ -339,14 +339,15 @@ The returned tuple contains the following alignment information:
### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
Encode labelled spans into per-token tags, using the
[BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
list of strings, describing the tags. Each tag string will be of the form of
either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`,
`"L"`, `"U"`. The string `"-"` is used where the entity offsets don't align with
the tokenization in the `Doc` object. The training algorithm will view these as
missing values. `O` denotes a non-entity token. `B` denotes the beginning of a
multi-token entity, `I` the inside of an entity of three or more tokens, and `L`
the end of an entity of two or more tokens. `U` denotes a single-token entity.
[BILUO scheme](/usage/linguistic-features#accessing-ner) (Begin, In, Last, Unit,
Out). Returns a list of strings, describing the tags. Each tag string will be of
the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of
`"B"`, `"I"`, `"L"`, `"U"`. The string `"-"` is used where the entity offsets
don't align with the tokenization in the `Doc` object. The training algorithm
will view these as missing values. `O` denotes a non-entity token. `B` denotes
the beginning of a multi-token entity, `I` the inside of an entity of three or
more tokens, and `L` the end of an entity of two or more tokens. `U` denotes a
single-token entity.
> #### Example
>
@ -363,12 +364,12 @@ the end of an entity of two or more tokens. `U` denotes a single-token entity.
| ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. |
| `entities` | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
| **RETURNS** | list | str strings, describing the [BILUO](/api/annotation#biluo) tags. |
| **RETURNS** | list | str strings, describing the [BILUO](/usage/linguistic-features#accessing-ner) tags. |
### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
entity offsets.
Encode per-token tags following the
[BILUO scheme](/usage/linguistic-features#accessing-ner) into entity offsets.
> #### Example
>
@ -381,15 +382,16 @@ entity offsets.
> assert entities == [(7, 13, "LOC")]
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. |
| Name | Type | Description |
| ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/usage/linguistic-features#accessing-ner) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. |
### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
Encode per-token tags following the
[BILUO scheme](/usage/linguistic-features#accessing-ner) into
[`Span`](/api/span) objects. This can be used to create entity spans from
token-based tags, e.g. to overwrite the `doc.ents`.
@ -403,11 +405,11 @@ token-based tags, e.g. to overwrite the `doc.ents`.
> doc.ents = spans_from_biluo_tags(doc, tags)
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `Span` objects with added entity labels. |
| Name | Type | Description |
| ----------- | -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/usage/linguistic-features#accessing-ner) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `Span` objects with added entity labels. |
## Utility functions {#util source="spacy/util.py"}

View File

@ -7,6 +7,8 @@ menu:
- ['Conventions', 'conventions']
---
<!-- Update page, refer to new /api/architectures and training docs -->
The models directory includes two types of pretrained models:
1. **Core models:** General-purpose pretrained models to predict named entities,
@ -32,111 +34,6 @@ For more details on how to use models with spaCy, see the
</Infobox>
## Model architecture {#architecture}
spaCy v2.0 features new neural models for **tagging**, **parsing** and **entity
recognition**. The models have been designed and implemented from scratch
specifically for spaCy, to give you an unmatched balance of speed, size and
accuracy. A novel bloom embedding strategy with subword features is used to
support huge vocabularies in tiny tables. Convolutional layers with residual
connections, layer normalization and maxout non-linearity are used, giving much
better efficiency than the standard BiLSTM solution.
The parser and NER use an imitation learning objective to deliver **accuracy
in-line with the latest research systems**, even when evaluated from raw text.
With these innovations, spaCy v2.0's models are **10× smaller**, **20% more
accurate**, and **even cheaper to run** than the previous generation. The
current architecture hasn't been published yet, but in the meantime we prepared
a video that explains how the models work, with particular focus on NER.
<YouTube id="sqDHBH9IjRU" />
The parsing model is a blend of recent results. The two recent inspirations have
been the work of Eli Klipperwasser and Yoav Goldberg at Bar Ilan[^1], and the
SyntaxNet team from Google. The foundation of the parser is still based on the
work of Joakim Nivre[^2], who introduced the transition-based framework[^3], the
arc-eager transition system, and the imitation learning objective. The model is
implemented using [Thinc](https://github.com/explosion/thinc), spaCy's machine
learning library. We first predict context-sensitive vectors for each word in
the input:
```python
(embed_lower | embed_prefix | embed_suffix | embed_shape)
>> Maxout(token_width)
>> convolution ** 4
```
This convolutional layer is shared between the tagger, parser and NER, and will
also be shared by the future neural lemmatizer. Because the parser shares these
layers with the tagger, the parser does not require tag features. I got this
trick from David Weiss's "Stack Combination" paper[^4].
To boost the representation, the tagger actually predicts a "super tag" with
POS, morphology and dependency label[^5]. The tagger predicts these supertags by
adding a softmax layer onto the convolutional layer so, we're teaching the
convolutional layer to give us a representation that's one affine transform from
this informative lexical information. This is obviously good for the parser
(which backprops to the convolutions, too). The parser model makes a state
vector by concatenating the vector representations for its context tokens. The
current context tokens:
| Context tokens | Description |
| ---------------------------------------------------------------------------------- | --------------------------------------------------------------------------- |
| `S0`, `S1`, `S2` | Top three words on the stack. |
| `B0`, `B1` | First two words of the buffer. |
| `S0L1`, `S1L1`, `S2L1`, `B0L1`, `B1L1`<br />`S0L2`, `S1L2`, `S2L2`, `B0L2`, `B1L2` | Leftmost and second leftmost children of `S0`, `S1`, `S2`, `B0` and `B1`. |
| `S0R1`, `S1R1`, `S2R1`, `B0R1`, `B1R1`<br />`S0R2`, `S1R2`, `S2R2`, `B0R2`, `B1R2` | Rightmost and second rightmost children of `S0`, `S1`, `S2`, `B0` and `B1`. |
This makes the state vector quite long: `13*T`, where `T` is the token vector
width (128 is working well). Fortunately, there's a way to structure the
computation to save some expense (and make it more GPU-friendly).
The parser typically visits `2*N` states for a sentence of length `N` (although
it may visit more, if it back-tracks with a non-monotonic transition[^4]). A
naive implementation would require `2*N (B, 13*T) @ (13*T, H)` matrix
multiplications for a batch of size `B`. We can instead perform one
`(B*N, T) @ (T, 13*H)` multiplication, to pre-compute the hidden weights for
each positional feature with respect to the words in the batch. (Note that our
token vectors come from the CNN — so we can't play this trick over the
vocabulary. That's how Stanford's NN parser[^3] works — and why its model is so
big.)
This pre-computation strategy allows a nice compromise between GPU-friendliness
and implementation simplicity. The CNN and the wide lower layer are computed on
the GPU, and then the precomputed hidden weights are moved to the CPU, before we
start the transition-based parsing process. This makes a lot of things much
easier. We don't have to worry about variable-length batch sizes, and we don't
have to implement the dynamic oracle in CUDA to train.
Currently the parser's loss function is multi-label log loss[^6], as the dynamic
oracle allows multiple states to be 0 cost. This is defined as follows, where
`gZ` is the sum of the scores assigned to gold classes:
```python
(exp(score) / Z) - (exp(score) / gZ)
```
<Infobox title="Bibliography">
1. [Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations {#fn-1}](https://www.semanticscholar.org/paper/Simple-and-Accurate-Dependency-Parsing-Using-Bidir-Kiperwasser-Goldberg/3cf31ecb2724b5088783d7c96a5fc0d5604cbf41).
Eliyahu Kiperwasser, Yoav Goldberg. (2016)
2. [A Dynamic Oracle for Arc-Eager Dependency Parsing {#fn-2}](https://www.semanticscholar.org/paper/A-Dynamic-Oracle-for-Arc-Eager-Dependency-Parsing-Goldberg-Nivre/22697256ec19ecc3e14fcfc63624a44cf9c22df4).
Yoav Goldberg, Joakim Nivre (2012)
3. [Parsing English in 500 Lines of Python {#fn-3}](https://explosion.ai/blog/parsing-english-in-python).
Matthew Honnibal (2013)
4. [Stack-propagation: Improved Representation Learning for Syntax {#fn-4}](https://www.semanticscholar.org/paper/Stack-propagation-Improved-Representation-Learning-Zhang-Weiss/0c133f79b23e8c680891d2e49a66f0e3d37f1466).
Yuan Zhang, David Weiss (2016)
5. [Deep multi-task learning with low level tasks supervised at lower layers {#fn-5}](https://www.semanticscholar.org/paper/Deep-multi-task-learning-with-low-level-tasks-supe-S%C3%B8gaard-Goldberg/03ad06583c9721855ccd82c3d969a01360218d86).
Anders Søgaard, Yoav Goldberg (2016)
6. [An Improved Non-monotonic Transition System for Dependency Parsing {#fn-6}](https://www.semanticscholar.org/paper/An-Improved-Non-monotonic-Transition-System-for-De-Honnibal-Johnson/4094cee47ade13b77b5ab4d2e6cb9dd2b8a2917c).
Matthew Honnibal, Mark Johnson (2015)
7. [A Fast and Accurate Dependency Parser using Neural Networks {#fn-7}](http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf).
Danqi Cheng, Christopher D. Manning (2014)
8. [Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative Estimation Techniques {#fn-8}](https://www.semanticscholar.org/paper/Parsing-the-Wall-Street-Journal-using-a-Lexical-Fu-Riezler-King/0ad07862a91cd59b7eb5de38267e47725a62b8b2).
Stefan Riezler et al. (2002)
</Infobox>
## Model naming conventions {#conventions}
In general, spaCy expects all model packages to follow the naming convention of

View File

@ -1,10 +1,9 @@
A named entity is a "real-world object" that's assigned a name for example, a
person, a country, a product or a book title. spaCy can **recognize
[various types](/api/annotation#named-entities)** of named entities in a
document, by asking the model for a **prediction**. Because models are
statistical and strongly depend on the examples they were trained on, this
doesn't always work _perfectly_ and might need some tuning later, depending on
your use case.
person, a country, a product or a book title. spaCy can **recognize various
types of named entities in a document, by asking the model for a
**prediction\*\*. Because models are statistical and strongly depend on the
examples they were trained on, this doesn't always work _perfectly_ and might
need some tuning later, depending on your use case.
Named entities are available as the `ents` property of a `Doc`:

View File

@ -1,207 +0,0 @@
---
title: Examples
teaser: Full code examples you can modify and run
menu:
- ['Information Extraction', 'information-extraction']
- ['Pipeline', 'pipeline']
- ['Training', 'training']
- ['Vectors & Similarity', 'vectors']
- ['Deep Learning', 'deep-learning']
---
## Information Extraction {#information-extraction hidden="true"}
### Using spaCy's phrase matcher {#phrase-matcher new="2"}
This example shows how to use the new [`PhraseMatcher`](/api/phrasematcher) to
efficiently find entities from a large terminology list.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/phrase_matcher.py
```
### Extracting entity relations {#entity-relations}
A simple example of extracting relations between phrases and entities using
spaCy's named entity recognizer and the dependency parse. Here, we extract money
and currency values (entities labelled as `MONEY`) and then check the dependency
tree to find the noun phrase they are referring to for example:
`"$9.4 million"``"Net income"`.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/entity_relations.py
```
### Navigating the parse tree and subtrees {#subtrees}
This example shows how to navigate the parse tree including subtrees attached to
a word.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/parse_subtrees.py
```
## Pipeline {#pipeline hidden="true"}
### Custom pipeline components and attribute extensions {#custom-components-entities new="2"}
This example shows the implementation of a pipeline component that sets entity
annotations based on a list of single or multiple-word company names, merges
entities into one token and sets custom attributes on the `Doc`, `Span` and
`Token`.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_entities.py
```
### Custom pipeline components and attribute extensions via a REST API {#custom-components-api new="2"}
This example shows the implementation of a pipeline component that fetches
country meta data via the [REST Countries API](https://restcountries.eu) sets
entity annotations for countries, merges entities into one token and sets custom
attributes on the `Doc`, `Span` and `Token` for example, the capital,
latitude/longitude coordinates and the country flag.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_countries_api.py
```
### Custom method extensions {#custom-components-attr-methods new="2"}
A collection of snippets showing examples of extensions adding custom methods to
the `Doc`, `Token` and `Span`.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_attr_methods.py
```
### Multi-processing with Joblib {#multi-processing}
This example shows how to use multiple cores to process text using spaCy and
[Joblib](https://joblib.readthedocs.io/en/latest/). We're exporting
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
each "sentence" on a newline, and spaces between tokens. Data is loaded from the
IMDB movie reviews dataset and will be loaded automatically via Thinc's built-in
dataset loader.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/multi_processing.py
```
## Training {#training hidden="true"}
### Training spaCy's Named Entity Recognizer {#training-ner}
This example shows how to update spaCy's entity recognizer with your own
examples, starting off with an existing, pretrained model, or from scratch
using a blank `Language` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py
```
### Training an additional entity type {#new-entity-type}
This script shows how to add a new entity type to an existing pretrained NER
model. To keep the example short and simple, only four sentences are provided as
examples. In practice, you'll need many more — a few hundred would be a good
start.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_new_entity_type.py
```
### Creating a Knowledge Base for Named Entity Linking {#kb}
This example shows how to create a knowledge base in spaCy,
which is needed to implement entity linking functionality.
It requires as input a spaCy model with pretrained word vectors,
and it stores the KB to file (if an `output_dir` is provided).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/create_kb.py
```
### Training spaCy's Named Entity Linker {#nel}
This example shows how to train spaCy's entity linker with your own custom
examples, starting off with a predefined knowledge base and its vocab,
and using a blank `English` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_entity_linker.py
```
### Training spaCy's Dependency Parser {#parser}
This example shows how to update spaCy's dependency parser, starting off with an
existing, pretrained model, or from scratch using a blank `Language` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_parser.py
```
### Training spaCy's Part-of-speech Tagger {#tagger}
In this example, we're training spaCy's part-of-speech tagger with a custom tag
map, mapping our own tags to the mapping those tags to the
[Universal Dependencies scheme](http://universaldependencies.github.io/docs/u/pos/index.html).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_tagger.py
```
### Training a custom parser for chat intent semantics {#intent-parser}
spaCy's parser component can be used to trained to predict any type of tree
structure over your input text. You can also predict trees over whole documents
or chat logs, with connections between the sentence-roots used to annotate
discourse structure. In this example, we'll build a message parser for a common
"chat intent": finding local businesses. Our message semantics will have the
following types of relations: `ROOT`, `PLACE`, `QUALITY`, `ATTRIBUTE`, `TIME`
and `LOCATION`.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_intent_parser.py
```
### Training spaCy's text classifier {#textcat new="2"}
This example shows how to train a multi-label convolutional neural network text
classifier on IMDB movie reviews, using spaCy's new
[`TextCategorizer`](/api/textcategorizer) component. The dataset will be loaded
automatically via Thinc's built-in dataset loader. Predictions are available via
[`Doc.cats`](/api/doc#attributes).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_textcat.py
```
## Vectors {#vectors hidden="true"}
### Visualizing spaCy vectors in TensorBoard {#tensorboard}
This script lets you load any spaCy model containing word vectors into
[TensorBoard](https://projector.tensorflow.org/) to create an
[embedding visualization](https://github.com/tensorflow/tensorboard/blob/master/docs/tensorboard_projector_plugin.ipynb).
```python
https://github.com/explosion/spaCy/tree/master/examples/vectors_tensorboard.py
```
## Deep Learning {#deep-learning hidden="true"}
### Text classification with Keras {#keras}
This example shows how to use a [Keras](https://keras.io) LSTM sentiment
classification model in spaCy. spaCy splits the document into sentences, and
each sentence is classified using the LSTM. The scores for the sentences are
then aggregated to give the document score. This kind of hierarchical model is
quite difficult in "pure" Keras or TensorFlow, but it's very effective. The
Keras example on this dataset performs quite poorly, because it cuts off the
documents so that they're a fixed size. This hurts review accuracy a lot,
because people often summarize their rating in the final sentence.
```python
https://github.com/explosion/spaCy/tree/master/examples/deep_learning_keras.py
```

View File

@ -370,23 +370,6 @@ from is called `spacy`. So, when using spaCy, never call anything else `spacy`.
</Accordion>
<Accordion title="Pronoun lemma is returned as -PRON-" id="pron-lemma">
```python
doc = nlp("They are")
print(doc[0].lemma_)
# -PRON-
```
This is in fact expected behavior and not a bug. Unlike verbs and common nouns,
there's no clear base form of a personal pronoun. Should the lemma of "me" be
"I", or should we normalize person as well, giving "it" — or maybe "he"? spaCy's
solution is to introduce a novel symbol, `-PRON-`, which is used as the lemma
for all personal pronouns. For more info on this, see the
[lemmatization specs](/api/annotation#lemmatization).
</Accordion>
<Accordion title="NER model doesn't recognise other entities anymore after training" id="catastrophic-forgetting">
If your training data only contained new entities and you didn't mix in any

View File

@ -2,11 +2,11 @@
title: Linguistic Features
next: /usage/rule-based-matching
menu:
- ['Tokenization', 'tokenization']
- ['POS Tagging', 'pos-tagging']
- ['Dependency Parse', 'dependency-parse']
- ['Named Entities', 'named-entities']
- ['Entity Linking', 'entity-linking']
- ['Tokenization', 'tokenization']
- ['Merging & Splitting', 'retokenization']
- ['Sentence Segmentation', 'sbd']
- ['Language data', 'language-data']
@ -31,8 +31,8 @@ import PosDeps101 from 'usage/101/\_pos-deps.md'
<Infobox title="📖 Part-of-speech tag scheme">
For a list of the fine-grained and coarse-grained part-of-speech tags assigned
by spaCy's models across different languages, see the
[POS tag scheme documentation](/api/annotation#pos-tagging).
by spaCy's models across different languages, see the label schemes documented
in the [models directory](/models).
</Infobox>
@ -290,8 +290,8 @@ for token in doc:
<Infobox title="📖 Dependency label scheme">
For a list of the syntactic dependency labels assigned by spaCy's models across
different languages, see the
[dependency label scheme documentation](/api/annotation#dependency-parsing).
different languages, see the label schemes documented in the
[models directory](/models).
</Infobox>
@ -354,7 +354,7 @@ import NER101 from 'usage/101/\_named-entities.md'
<NER101 />
### Accessing entity annotations {#accessing}
### Accessing entity annotations and labels {#accessing-ner}
The standard way to access entity annotations is the [`doc.ents`](/api/doc#ents)
property, which produces a sequence of [`Span`](/api/span) objects. The entity
@ -371,9 +371,17 @@ on a token, it will return an empty string.
> #### IOB Scheme
>
> - `I` Token is inside an entity.
> - `O` Token is outside an entity.
> - `B` Token is the beginning of an entity.
> - `I` Token is **inside** an entity.
> - `O` Token is **outside** an entity.
> - `B` Token is the **beginning** of an entity.
>
> #### BILUO Scheme
>
> - `B` Token is the **beginning** of an entity.
> - `I` Token is **inside** a multi-token entity.
> - `L` Token is the **last** token of a multi-token entity.
> - `U` Token is a single-token **unit** entity.
> - `O` Toke is **outside** an entity.
```python
### {executable="true"}
@ -492,38 +500,8 @@ responsibility for ensuring that the data is left in a consistent state.
<Infobox title="Annotation scheme">
For details on the entity types available in spaCy's pretrained models, see the
[NER annotation scheme](/api/annotation#named-entities).
</Infobox>
### Training and updating {#updating}
To provide training examples to the entity recognizer, you'll first need to
create an instance of the [`GoldParse`](/api/goldparse) class. You can specify
your annotations in a stand-off format or as token tags. If a character offset
in your entity annotations doesn't fall on a token boundary, the `GoldParse`
class will treat that annotation as a missing value. This allows for more
realistic training, because the entity recognizer is allowed to learn from
examples that may feature tokenizer errors.
```python
train_data = [
("Who is Chaka Khan?", [(7, 17, "PERSON")]),
("I like London and Berlin.", [(7, 13, "LOC"), (18, 24, "LOC")]),
]
```
```python
doc = Doc(nlp.vocab, ["rats", "make", "good", "pets"])
gold = GoldParse(doc, entities=["U-ANIMAL", "O", "O", "O"])
```
<Infobox>
For more details on **training and updating** the named entity recognizer, see
the usage guides on [training](/usage/training) or check out the runnable
[training script](https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py)
on GitHub.
"label scheme" sections of the individual models in the
[models directory](/models).
</Infobox>
@ -1103,7 +1081,7 @@ In situations like that, you often want to align the tokenization so that you
can merge annotations from different sources together, or take vectors predicted
by a
[pretrained BERT model](https://github.com/huggingface/pytorch-transformers) and
apply them to spaCy tokens. spaCy's [`gold.align`](/api/goldparse#align) helper
apply them to spaCy tokens. spaCy's [`gold.align`](/api/top-level#align) helper
returns a `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the number
of misaligned tokens, the one-to-one mappings of token indices in both
directions and the indices where multiple tokens align to one single token.

View File

@ -1,6 +1,6 @@
---
title: Language Processing Pipelines
next: vectors-similarity
next: /usage/vectors-embeddings
menu:
- ['Processing Text', 'processing']
- ['How Pipelines Work', 'pipelines']
@ -818,14 +818,14 @@ function that takes a `Doc`, modifies it and returns it.
### Wrapping other models and libraries {#wrapping-models-libraries}
Let's say you have a custom entity recognizer that takes a list of strings and
returns their [BILUO tags](/api/annotation#biluo). Given an input like
`["A", "text", "about", "Facebook"]`, it will predict and return
returns their [BILUO tags](/usage/linguistic-features#accessing-ner). Given an
input like `["A", "text", "about", "Facebook"]`, it will predict and return
`["O", "O", "O", "U-ORG"]`. To integrate it into your spaCy pipeline and make it
add those entities to the `doc.ents`, you can wrap it in a custom pipeline
component function and pass it the token texts from the `Doc` object received by
the component.
The [`gold.spans_from_biluo_tags`](/api/goldparse#spans_from_biluo_tags) is very
The [`gold.spans_from_biluo_tags`](/api/top-level#spans_from_biluo_tags) is very
helpful here, because it takes a `Doc` object and token-based BILUO tags and
returns a sequence of `Span` objects in the `Doc` with added labels. So all your
wrapper has to do is compute the entity spans and overwrite the `doc.ents`.

View File

@ -1289,10 +1289,9 @@ print([(ent.text, ent.label_, ent._.person_title) for ent in doc.ents])
>
> This example makes extensive use of part-of-speech tag and dependency
> attributes and related `Doc`, `Token` and `Span` methods. For an introduction
> on this, see the guide on
> [linguistic features](http://localhost:8000/usage/linguistic-features/). Also
> see the [annotation specs](/api/annotation#pos-tagging) for details on the
> label schemes.
> on this, see the guide on [linguistic features](/usage/linguistic-features/).
> Also see the label schemes in the [models directory](/models) for details on
> the labels.
Let's say you want to parse professional biographies and extract the person
names and company names, and whether it's a company they're _currently_ working

View File

@ -249,7 +249,7 @@ import Vectors101 from 'usage/101/\_vectors-similarity.md'
To learn more about word vectors, how to **customize them** and how to load
**your own vectors** into spaCy, see the usage guide on
[using word vectors and semantic similarities](/usage/vectors-similarity).
[using word vectors and semantic similarities](/usage/vectors-embeddings).
</Infobox>
@ -712,7 +712,7 @@ not available in the live demo).
<Infobox>
**Usage:** [Word vectors and similarity](/usage/vectors-similarity)
**Usage:** [Word vectors and similarity](/usage/vectors-embeddings)
</Infobox>

View File

@ -10,9 +10,7 @@ menu:
- ['Internal API', 'api']
---
<!-- TODO: intro describing the new v3 training philosophy -->
## Introduction to training models {#basics}
## Introduction to training models {#basics hidden="true"}
import Training101 from 'usage/101/\_training.md'
@ -33,10 +31,13 @@ ready-to-use spaCy models.
## Training CLI & config {#cli-config}
<!-- TODO: intro describing the new v3 training philosophy -->
The recommended way to train your spaCy models is via the
[`spacy train`](/api/cli#train) command on the command line.
1. The **training data** in spaCy's binary format created using
1. The **training data** in spaCy's
[binary format](/api/data-formats#binary-training) created using
[`spacy convert`](/api/cli#convert).
2. A `config.cfg` **configuration file** with all settings and hyperparameters.
3. An optional **Python file** to register
@ -44,9 +45,13 @@ The recommended way to train your spaCy models is via the
<!-- TODO: decide how we want to present the "getting started" workflow here, get a default config etc. -->
### Training data format {#data-format}
<Project id="some_example_project">
<!-- TODO: explain the new binary DocBin format -->
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
sodales lectus, ut sodales orci ullamcorper id. Sed condimentum neque ut erat
mattis pretium.
</Project>
> #### Tip: Debug your data
>
@ -158,6 +163,14 @@ dropout = null
<!-- TODO: document some basic examples for custom models, refer to Thinc, refer to example config/project -->
<Project id="some_example_project">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
sodales lectus, ut sodales orci ullamcorper id. Sed condimentum neque ut erat
mattis pretium.
</Project>
### Training with custom code
<!-- TODO: document usage of spacy train with --code -->
@ -168,6 +181,14 @@ dropout = null
<!-- TODO: document usage of spacy-transformers, refer to example config/project -->
<Project id="en_core_bert">
Try out a BERT-based model pipeline using this project template: swap in your
data, edit the settings and hyperparameters and train, evaluate, package and
visualize your model.
</Project>
### Pretraining with spaCy {#pretraining}
<!-- TODO: document spacy pretrain -->
@ -176,6 +197,14 @@ dropout = null
<!-- TODO: document Ray integration -->
<Project id="some_example_project">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
sodales lectus, ut sodales orci ullamcorper id. Sed condimentum neque ut erat
mattis pretium.
</Project>
## Internal training API {#api}
<!-- TODO: rewrite for new nlp.update / example logic -->
@ -259,5 +288,5 @@ The [`nlp.update`](/api/language#update) method takes the following arguments:
Instead of writing your own training loop, you can also use the built-in
[`train`](/api/cli#train) command, which expects data in spaCy's
[JSON format](/api/annotation#json-input). On each epoch, a model will be saved
out to the directory.
[JSON format](/api/data-formats#json-input). On each epoch, a model will be
saved out to the directory.

View File

@ -351,7 +351,7 @@ check if all of your models are up to date, you can run the
automatically to prevent spaCy from being downloaded and installed again from
pip.
- The built-in
[`biluo_tags_from_offsets`](/api/goldparse#biluo_tags_from_offsets) converter
[`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) converter
is now stricter and will raise an error if entities are overlapping (instead
of silently skipping them). If your data contains invalid entity annotations,
make sure to clean it and resolve conflicts. You can now also use the new
@ -430,7 +430,7 @@ lemma_rules = {"verb": [["ing", ""]]}
#### Converting entity offsets to BILUO tags
If you've been using the
[`biluo_tags_from_offsets`](/api/goldparse#biluo_tags_from_offsets) helper to
[`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) helper to
convert character offsets into token-based BILUO tags, you may now see an error
if the offsets contain overlapping tokens and make it impossible to create a
valid BILUO sequence. This is helpful, because it lets you spot potential

View File

@ -169,8 +169,8 @@ network to assign position-sensitive vectors to each word in the document.
<Infobox>
**API:** [`TextCategorizer`](/api/textcategorizer),
[`Doc.cats`](/api/doc#attributes), [`GoldParse.cats`](/api/goldparse#attributes)
**Usage:** [Training a text classification model](/usage/training#textcat)
[`Doc.cats`](/api/doc#attributes), `GoldParse.cats` **Usage:**
[Training a text classification model](/usage/training#textcat)
</Infobox>
@ -218,7 +218,7 @@ available via `token.orth`.
The new [`Vectors`](/api/vectors) class helps the `Vocab` manage the vectors
assigned to strings, and lets you assign vectors individually, or
[load in GloVe vectors](/usage/vectors-similarity#custom-loading-glove) from a
[load in GloVe vectors](/usage/vectors-embeddings#custom-loading-glove) from a
directory. To help you strike a good balance between coverage and memory usage,
the `Vectors` class lets you map **multiple keys** to the **same row** of the
table. If you're using the [`spacy init-model`](/api/cli#init-model) command to

View File

@ -1,12 +1,13 @@
---
title: Word Vectors and Semantic Similarity
title: Word Vectors and Embeddings
menu:
- ['Basics', 'basics']
- ['Custom Vectors', 'custom']
- ['GPU Usage', 'gpu']
- ['Word Vectors', 'vectors']
- ['Other Embeddings', 'embeddings']
---
## Basics {#basics hidden="true"}
<!-- TODO: rewrite and include both details on word vectors, other word embeddings, spaCy transformers, doc.tensor, tok2vec -->
## Word vectors and similarity
> #### Training word vectors
>
@ -21,7 +22,7 @@ import Vectors101 from 'usage/101/\_vectors-similarity.md'
<Vectors101 />
## Customizing word vectors {#custom}
### Customizing word vectors {#custom}
Word vectors let you import knowledge from raw text into your model. The
knowledge is represented as a table of numbers, with one row per term in your
@ -193,7 +194,7 @@ For more details on **adding hooks** and **overwriting** the built-in `Doc`,
</Infobox>
## Storing vectors on a GPU {#gpu}
### Storing vectors on a GPU {#gpu}
If you're using a GPU, it's much more efficient to keep the word vectors on the
device. You can do that by setting the [`Vectors.data`](/api/vectors#attributes)
@ -224,3 +225,7 @@ vector_table = numpy.zeros((3, 300), dtype="f")
vectors = Vectors(["dog", "cat", "orange"], vector_table)
vectors.data = torch.Tensor(vectors.data).cuda(0)
```
## Other embeddings {#embeddings}
<!-- TODO: explain spacy-transformers, doc.tensor, tok2vec? -->

View File

@ -130,10 +130,9 @@ If you specify a list of `ents`, only those entity types will be rendered fo
example, you can choose to display `PERSON` entities. Internally, the visualizer
knows nothing about available entity types and will render whichever spans and
labels it receives. This makes it especially easy to work with custom entity
types. By default, displaCy comes with colors for all
[entity types supported by spaCy](/api/annotation#named-entities). If you're
using custom entity types, you can use the `colors` setting to add your own
colors for them.
types. By default, displaCy comes with colors for all entity types used by
[spaCy models](/models). If you're using custom entity types, you can use the
`colors` setting to add your own colors for them.
> #### Options example
>

View File

@ -18,7 +18,7 @@
{ "text": "Linguistic Features", "url": "/usage/linguistic-features" },
{ "text": "Rule-based Matching", "url": "/usage/rule-based-matching" },
{ "text": "Processing Pipelines", "url": "/usage/processing-pipelines" },
{ "text": "Vectors & Similarity", "url": "/usage/vectors-similarity" },
{ "text": "Vectors & Embeddings", "url": "/usage/vectors-embeddings" },
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
@ -26,8 +26,10 @@
]
},
{
"label": "In-depth",
"items": [{ "text": "Code Examples", "url": "/usage/examples" }]
"label": "Resources",
"items": [
{ "text": "Project Templates", "url": "https://github.com/explosion/projects" }
]
}
]
},
@ -56,7 +58,7 @@
"items": [
{ "text": "Library Architecture", "url": "/api" },
{ "text": "Model Architectures", "url": "/api/architectures" },
{ "text": "Annotation Specs", "url": "/api/annotation" },
{ "text": "Data Formats", "url": "/api/data-formats" },
{ "text": "Command Line", "url": "/api/cli" },
{ "text": "Functions", "url": "/api/top-level" }
]

View File

@ -0,0 +1,48 @@
import React, { useState, useRef } from 'react'
import Icon from './icon'
import classes from '../styles/copy.module.sass'
const CopyInput = ({ text, prefix }) => {
const isClient = typeof window !== 'undefined'
const supportsCopy = isClient && document.queryCommandSupported('copy')
const textareaRef = useRef()
const [copySuccess, setCopySuccess] = useState(false)
function copyToClipboard() {
if (textareaRef.current && isClient) {
textareaRef.current.select()
document.execCommand('copy')
setCopySuccess(true)
textareaRef.current.blur()
setTimeout(() => setCopySuccess(false), 1000)
}
}
function selectText() {
if (textareaRef.current && isClient) {
textareaRef.current.select()
}
}
return (
<div className={classes.root}>
{prefix && <span className={classes.prefix}>{prefix}</span>}
<textarea
ref={textareaRef}
readOnly
className={classes.textarea}
defaultValue={text}
rows={1}
onClick={selectText}
/>
{supportsCopy && (
<button title="Copy to clipboard" onClick={copyToClipboard}>
<Icon width={16} name={copySuccess ? 'accept' : 'clipboard'} />
</button>
)}
</div>
)
}
export default CopyInput

View File

@ -20,6 +20,7 @@ import { ReactComponent as NeutralIcon } from '../images/icons/neutral.svg'
import { ReactComponent as OfflineIcon } from '../images/icons/offline.svg'
import { ReactComponent as SearchIcon } from '../images/icons/search.svg'
import { ReactComponent as MoonIcon } from '../images/icons/moon.svg'
import { ReactComponent as ClipboardIcon } from '../images/icons/clipboard.svg'
import classes from '../styles/icon.module.sass'
@ -43,6 +44,7 @@ const icons = {
offline: OfflineIcon,
search: SearchIcon,
moon: MoonIcon,
clipboard: ClipboardIcon,
}
const Icon = ({ name, width, height, inline, variant, className }) => {

View File

@ -0,0 +1,4 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<rect x="9" y="9" width="13" height="13" rx="2" ry="2" fill="none"></rect>
<path d="M5 15H4a2 2 0 0 1-2-2V4a2 2 0 0 1 2-2h9a2 2 0 0 1 2 2v1" fill="none"></path>
</svg>

After

Width:  |  Height:  |  Size: 358 B

View File

@ -0,0 +1,21 @@
.root
background: var(--color-back)
border-radius: 2em
border: 1px solid var(--color-subtle)
width: 100%
padding: 0.25em 1em
display: inline-flex
margin: var(--spacing-xs) 0
font: var(--font-size-code)/var(--line-height-code) var(--font-code)
-webkit-font-smoothing: subpixel-antialiased
-moz-osx-font-smoothing: auto
.textarea
flex: 100%
background: transparent
resize: none
font: inherit
.prefix
margin-right: 0.75em
color: var(--color-subtle-dark)

View File

@ -5,7 +5,7 @@
padding: 1.5rem 2rem 0.75rem 1.5rem
border-radius: var(--border-radius)
color: var(--color-dark)
border-left: 0.75rem solid var(--color-theme)
border-left: 0.75rem solid var(--color-subtle-light)
p, pre, ul, ol
margin-bottom: var(--spacing-xs)
@ -21,6 +21,10 @@
margin-bottom: var(--spacing-xs)
font-size: var(--font-size-md)
code
font-weight: normal
color: inherit
.icon
color: var(--color-theme)
vertical-align: baseline

View File

@ -32,6 +32,7 @@ import Grid from '../components/grid'
import { YouTube, SoundCloud, Iframe, Image } from '../components/embed'
import Alert from '../components/alert'
import Search from '../components/search'
import Project from '../widgets/project'
const mdxComponents = {
a: Link,
@ -73,6 +74,7 @@ const scopeComponents = {
Accordion,
Grid,
InlineCode,
Project,
}
const AlertSpace = ({ nightly }) => {

View File

@ -0,0 +1,32 @@
import React from 'react'
import CopyInput from '../components/copy'
import Infobox from '../components/infobox'
import Link from '../components/link'
import { InlineCode } from '../components/code'
// TODO: move to meta?
const DEFAULT_REPO = 'https://github.com/explosion/projects'
const COMMAND = 'python -m spacy project clone'
const Project = ({ id, repo, children }) => {
const repoArg = repo ? ` --repo ${repo}` : ''
const text = `${COMMAND} ${id}${repoArg}`
const url = `${repo || DEFAULT_REPO}/${id}`
const title = (
<>
🪐 Get started with a project template:{' '}
<Link to={url}>
<InlineCode>{id}</InlineCode>
</Link>
</>
)
return (
<Infobox title={title}>
{children}
<CopyInput text={text} prefix="$" />
</Infobox>
)
}
export default Project